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We experimentally demonstrate temporal pumping of elastic waves in an electromechanical waveg-
uide. Temporal pumping exploits a virtual dimension mapped to time, enabling the generation and
control of edge states, typical of two-dimensional systems, in a one-dimensional waveguide. We
show experimentally that the temporal modulation of the stiffness drives the transfer of edge states
from one boundary of the waveguide to the other. The considered implementation, that consists
of an elastic waveguide coupled with tunable electrical impedances, allows the pumping to occur in
a controllable manner. The framework presented herein opens new avenues for the manipulation
and transport of information through elastic waves, with potential technological applications for
digital delay lines and digitally controlled waveguides. This study also explores higher dimensional
topological physics using virtual dimensions mapped to time in electromechanical systems.

The transport of information along one-dimensional
(1D) waveguides is key to numerous technological appli-
cations, but is generally limited by two main factors: (i)
fixed propagation speeds and associated wave dispersion
that are determined by the properties of the medium, and
(ii) scattering and localization of the propagating signal
at defects and imperfections. The study of topological in-
sulators has opened new pathways to overcome these lim-
itations, sparkling broad interest across different realms
of physics, including quantum, [1] electromagnetic, [2, 3]
acoustic [4–6] and elastic [7] media. Robust waveguid-
ing along edges and interfaces of two-dimensional (2D)
domains has been demonstrated in different elastic and
acoustic platforms, exploiting analogies with the Quan-
tum Hall Effect (QHE), [8–16] the Quantum Spin Hall
Effect (QSHE) [7, 17–21] and the Quantum Valley Hall
Effect (QVHE). [22–25] These works and the references
therein illustrate a variety of strategies for robust wave
transport, which generally require 2D domains, and oc-
cur at fixed (non-tunable) speeds.

A recent line of work exploits virtual dimensions in pa-
rameter space to explore higher dimensional topological
effects in lower dimensional systems. [26–30] For exam-
ple, edge states commonly attributed to (2D) QHE sys-
tems have been illustrated in 1D periodic [31, 32] and
quasiperiodic [33–37] systems, while 4D and 6D Quan-
tum hall phases have been observed in 2D [38–40] and
3D [30, 41] lattices. In this context, topological pump-
ing emerges as a phenomenon that promotes edge-to-edge
transitions of topological states, induced by parametric
variations along one additional dimension, either spa-
tial [32, 33, 38, 39, 42–44] or temporal. [15, 45–50] A tem-
poral pump embodies a 2D topological effect that governs
the robust energy transport in systems of a single spatial
dimension. While a promising concept supported mostly
by theoretical investigations, [15, 48, 50, 51] its experi-
mental realization for elastic waves has so far been elu-

sive. Notable recent studies include the temporal pump-
ing illustrated in a dimerized magneto-mechanical system
emulating the Su-Schreefer-Heeger (SSH) model, [47],
and its realization for acoustic lattices. [52] These con-
tributions highlight the potential of temporal pumping
for robust wave transport, but further efforts are still re-
quired towards implementations in compact and modular
configurations, which can be potentially scaled down for
on-chip applications.

Among the available physical platforms, continuous
waveguides are excellent candidates for this purpose, and
have been extensively employed as versatile platforms for
the realization of phononic circuits with distinct func-
tionalities [21, 53, 54]. Motivated by these works and by
prior works on topological pumping through spatial stiff-
ness modulations in two-dimensional domains [32, 43],
we pursue temporal pumping of edge states in a 1D con-
tinuous system. To this end, we explore a configuration
that enables the time modulation of the elastic proper-
ties of an electro-mechanical waveguide, which allows for
the control of both magnitude and schedule of the modu-
lations. This behavior was previoulsy illustrated for me-
chanical systems in pure theoretical studies [32, 51], and
in discrete systems of limited tunability and modal con-
tent [35, 47]. Thus, we provide an experimental demon-
stration of adiabatic temporal pumping for the first time
in a continuous waveguide through an experimental set-
up that is suitable for miniaturization and for device-
level implementation, and constitute a physical platform
to study higher dimensional topological effects in lower
dimensional systems.

We consider an elastic beam (gray solid in Fig. 1)
where spatio-temporal modulation is induced by an ar-
ray of piezoelectric patches (yellow), bonded on the top
and bottom surfaces and shunted through negative ca-
pacitance (NC) circuits. [55] The NC shunts modify the
equivalent bending stiffness D according to the following
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FIG. 1. Concept of temporal pumping implemented in
an electromechanical elastic beam. The equivalent stiffness
Dn(φ) at the location of the n-th piezoelectric patches (red
lines) is obtained by sampling the surface D(x, φ) = D0[1 +
α cos(2πθx + φ)] at xn = n. [32] The spatial stiffness mod-
ulation with slowly varying temporal phase φ(t) induces the
transition of the left-localized edge state (input) into a right-
localized state (output).

modulation:

Dn(φ) = D0[1 + α cos(2πnθ + φ)], (1)

where Dn is the contribution to the bending stiffness at
the location of the nth piezo pair (Fig. 1). This spa-
tial stiffness modulation produces edge states localized
at one of the boundaries of the waveguide depending on
the assigned value of the modulation phase φ. [32] An
adiabatic temporal modulation of the phase φ(t) drives
a left-localized edge state (input) across the waveguide
producing a right-localized state (output), thus imple-
menting topological pumping.

Wave motion along the waveguide is predicted by em-
ploying Euler-Bernoulli beam theory, [56] which describes
the transverse harmonic motion at w(x, ω) of the waveg-
uide through the following governing equation:

[D(x)w,xx],xx = ω2m(x)w(x, ω) (2)

where [],x denotes a derivative with respect to x, while m
is the linear mass of the beam. The stiffness and inertia
properties of the waveguide can be expressed as:

D(x) = Db +
∑
n

DnH(x− nxp, lp), (3)

m(x) = mb +
∑
n

mpH(x− nxp, lp) (4)

where Dn is given in Eqn. (1), Db,mb respectively denote
the bending stiffness and linear mass of the base beam,
and mp is the increase in linear mass at the locations of
the patches. Also in Eqn. (3), H(·) is a unit step function
centered at location nxp and of length lp.

The parameter θ controls the periodicity of the struc-
ture: rational values of the type θ = p/q produces peri-

odic domains, while irrational θ values results in quasi-
periodic or incommensurate domains. For simplicity, we
consider a modulation with θ = 1/3 in Eqn. (1), result-
ing in a periodic beam, whose period Lc = 72 mm com-
prises 3 piezoelectric elements of length lp = 22 mm,
that are 2 mm apart. Other θ values can also produce
edge states that can be used for pumping, as discussed
in [32, 35, 36, 50, 57]. The variable resistance NC shunts
produce a stiffness modulation that is quantified by a
value of α = 0.172. The estimation of these values is
based on the procedures described in Supplemental Ma-
terials (SM), [58] where details about the system geomet-
rical and physical parameters are found.

We first investigate the dispersion properties of the
modulated waveguide, which are evaluated by employ-
ing a finite element discretization of Eqn. (2) and the
application of Bloch conditions on a unit cell, [59] i.e.
w(ω, x + Lc) = w(ω, x)e−iκLc , where κ is the wavenum-
ber. Figure 2(a) depicts two dispersion surfaces as a func-
tion of φ and µ = κLc, which are separated by a gap of
center frequency close to 9.7 kHz. The inset displays the
dispersion ω(µ) for φ = 0, and shows five bands. The
inset also highlights, through the shaded blue area, the
frequency range corresponding to the surfaces shown in
the main plot, which focuses primarily on the gap sepa-
rating the fourth and fifth bands. The consideration of
the virtual parameter φ augments the dispersion bands
to be defined over a two-dimensional torus [µ, φ] ∈ [0, 2π],
where the Chern number becomes the relevant topologi-
cal invariant [32, 43, 60]. Evaluation of the Chern num-
ber results in C4 = 1 for the fourth band of Fig. 2(a)
(green surface), and C1 = 1, C2 = −2, C3 = 1 for the
first three bands not depicted in the figure (see details
in SM [58]). Similarly, a label for gap r is assigned by
the algebraic sum of the Chern number of the bands be-

low it, i.e. C
(r)
g =

∑r
n=1 Cn. The first gap in Fig. 2(a)

(shaded gray region) is topologically trivial with Cg = 0,
while the following gap (shaded red region) is non-trivial
with Cg = 1. The non-zero label indicates its ability to
support an edge state spanning the gap in a finite struc-
ture. [32, 43] We illustrate this by computing the eigen-
frequencies of a finite beam comprising 8 unit cells for a
total of 24 pair of patches. For simplicity, we consider
simply supported boundary conditions, while a more ac-
curate model is introduced in the remainder of the let-
ter to fit the experimental data. Results are shown in
Fig. 2(b), which displays the variation of the eigenfre-
quencies as a function of φ (black lines), superimposed
to the bulk bands represented by the shaded gray areas.
The additional mode spanning the non-trivial gap is an
edge state, where dashed (solid) lines are used for values
of φ corresponding to left (right) localized modes. The
three representative modes marked in Fig. 2(b) are dis-
played in Fig. 2(c) to illustrate a transition of the edge
state from right-localized (I), to bulk (II), and then to
left-localized (III) for increasing φ values. Such transi-
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tion is hereafter employed to induce edge-to-edge pump-
ing through a smooth modulation of φ in time.

The experimental investigations have as a first goal
the characterization of the beam spectrum and its depen-
dence on φ. The waveguide is equipped with clamps at
both boundaries, which are modeled through the addition
of linear and torsional springs [58], and excited at one end
by one of the patches. A scanning laser Doppler vibrom-
eter (LDV) measures the velocity field ẇ(x, t) along the
beam resulting from a band-limited noise excitation in
the 3−15 kHz frequency range. The signal is continuously
applied for the duration of the test (T = 2.2 s), while the
phase φ varies in the interval [0, 2π]. The resulting input
and output signals are post-processed to estimate the fre-
quency response of the beam as a function of the phase φ.
To this end, the signals are multiplied by a rectangular
window of length Ts = 0.22 s, centered at an instant t0,
and the frequency response of the beam for φ = φ(t0), i.e.
W (x, φ(t0), ω), is obtained by employing an H1 frequency
estimator. [61] The center of the window t0 is smoothly
translated in time, while the L2 norm is taken along the
spatial x coordinate. This produces estimations of the
frequency response as a function of φ(t0), i.eW (φ, ω) [58].
The results are reported as contour plots in Figs. 3(a,b),
which correspond to two experiments where the beam is
excited at the left and right boundary, respectively. Black
and red lines superimposed to the experimental contours
correspond to the eigenfrequencies of the bulk and edge
modes predicted numerically. The experimental results
show a good agreement with the numerical spectrum: left
excitation (Fig. 3(a)) reproduces mostly the left-localized
branch of the edge state (dashed lines), while the right
excitation experiment (Fig. 3(b)) captures primarily the
right-localized branch (solid line). Experimentally mea-
sured left-localized and right-localized modes correspond-
ing to the points marked as ‘I’ and ‘II’ Figs. 3(a,b) are
shown in Figure 3(c) and compared to the numerical ve-
locity profile.

Upon characterization of the spectrum and corre-
sponding edge states, we next impose the smooth tem-
poral variation of φ to induce topological pumping. We
first target the left-localized mode defined for φ1 = 1.6π
(mode I in Figs. 3(a,c)) by applying a harmonic excita-
tion of frequency 9.45kHz to the left boundary. The exci-
tation signal is maintained for an interval of 12 ms, which
is found sufficient to induce the steady-state motion of
the left-localized mode and to avoid any contribution of
neighboring bulk models. Upon stopping the excitation,
we observe the free evolution of the waveguide response
as the phase φ is varied linearly in time to reach a value of
φ2 = 0.4π, which takes approximately 2 ms (Fig. 4(b)).
Figure 4(a) displays the magnitude of the experimentally
recorded transverse motion of the beam from t = 12 ms
onwards, i.e. after steady state conditions are reached.
During the displayed time interval, the linear variation
of the phase from φ1 = 1.6π → φ2 = 0.4π induces the

expected transition from a left-localized edge state to a
right-localized state, as shown in Fig. 4(a). To better
illustrate this transition, the recorded response is com-
pensated for dissipation by extracting a temporal decay
factor ξ for the edge state at constant φ, and then multi-
plying the transient time history ẇ(x, t) by eξt. Further-
more, the velocity field is normalized by the maximum
velocity value measured at the beginning of the pumping
process. A comparison with the non-compensated dia-
grams can be found in the (SM) [58]. The procedure does
not alter the spatial distribution of the velocity field ẇ at
any given time instant, but allows for a better visualiza-
tion of the pump and approximates the behavior of the
system should dissipation be minimized. The physical
mitigation of dissipation may play an important role in
future studies aiming at exploring the full limits of topo-
logical pumping, both fast and slow, and can potentially
be achieved by introducing a negative loss factor through
suitable active circuits. [47] The topological pump dis-
played in Fig. 4(a) is characterized by an adiabatic [51]
transition along the branch of the edge state, as illus-
trated by the spectral content in Fig. 4(b). In the upper
panel, the spectra in Figs. 3(a,b) are averaged to provide
a single spectral characterization of the waveguide, and
to highlight the presence of an edge state and of a bulk
mode. The spectrogram in the bottom panel is obtained
through the Fourier transformation and appropriate win-
dowing of the transient pump displayed in Fig. 4(a). [58]
The results illustrate how energy remains concentrated
around the edge state branch, with negligible contribu-
tion to the neighboring bulk modes (black line) as ex-
pected in an adiabatic state evolution. [51] We also note
that, while the employed experimental setup is subject
to variability in its electrical and mechanical parts, the
agreement between simulation and experimental results
signals a reasonable degree of robustness to defects and
imperfections. However, a detailed and quantified anal-
ysis on this matter as presented in [47], for example, is
a task left for future work, which may be of particular
relevance to technological applications requiring a higher
degree of accuracy.

Finally, we elucidate how the temporal pump realized
with controllable phase modulation speeds can be of po-
tential interest for the manipulation and transport of in-
formation across the waveguide. Figure 4(c) displays the
velocity time history for a point at the left (blue) and
right boundary (red) of the beam. The three plots cor-
respond to edge-to-edge transitions driven by different
modulation speeds. Under the aforementioned testing
conditions, we employed the same input signal, whereby
during the first 12 ms a standing left-localized edge state
is induced. At t = 12 ms the linear temporal phase mod-
ulation φ(t) starts, ranging from φ1 = 1.6π to φ2 = 0.4π
during an interval of 1 ms (bottom), 1.5 ms (middle) and
2 ms (top), which are sufficiently away from the limit
of adiabaticity Tlim = 0.67 ms (see more details in the
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(a) (b) (c)

FIG. 2. Dispersion properties and edge states for a beam with equivalent stiffness modulation Dn(φ) = D0[1+α cos(2πθn+φ)].
(a) Dispersion surfaces as a function of µ and φ with information on Chern numbers and gap labels. The inset displays the first
five bands for φ = 0, highlighting the frequency range considered for the surface plot (shaded blue region). (b) Eigenfrequencies
for a finite beam as a function of φ (black lines) superimposed to the bulk bands (shaded gray regions), where an edge state
(red lines) spans the non-trivial gap with Cg = 1. (c) States corresponding to the points marked in (b) showing examples of
right-localized mode (I), bulk mode (II) and left-localized mode (III).

(a) (b) (c)

FIG. 3. Experimental spectral characterization of modulated electromechanical beam. (a,b) Measured frequency response as
a function of φ (contours) for excitation at the left (a) and right (b) boundary, superimposed to the eigenfrequencies of bulk
(black) and edge (red) modes. The left excitation reproduces mostly the left-localized portion of the branch of the edge state
(dashed lines), while the right excitation identifies the right-localized portion (solid line). (c) Representative experimental
response for left (I) and right (II) localized modes. Black and red lines represent experimental and numerical data.

SM [58]). The time duration of the phase modulation
is highlighted by shaded gray areas to illustrate how the
arrival time of the signal to the right end of the beam (in
red) is controlled by the rate of phase modulation. This
ability to control the arrival time independently from the
underlying properties of the medium (the beam in this
case) suggests opportunities for the design of digitally
controllable electromechanical delay lines based on topo-
logical pumping.

This letter illustrates an experimental demonstration
of temporal pumping in a continuous electromechani-
cal waveguide with controllable modulation capabilities.
Such modulations are employed for the topological pump-
ing of edge states according to different modulation rates.
This suggests the possibility to implement transfer of in-
formation in waveguides at speeds that are uniquely de-

fined by the induced phase modulation, and independent
of the physical parameters of the host structure. While
current limitations associated with bandwidth and con-
trolling the signal shape are noted, these results highlight
potential applications to devices relying on robust signal
transport, with tunable arrival times and phase delays,
and open potential pathways for manipulating elastic
waves using electromechanical waveguides. The present
work also suggests that elastic structures are convenient
platforms for fundamental studies on higher dimensional
topological effects by using virtual dimensions (the phase
φ in the present work) mapped to time. For example,
2D plate-like domains with time-modulation capabilities
provided by piezoelectric patches can be employed in fu-
ture studies to explore 4D quantum hall physics where
two virtual parameters can be mapped to time [38, 40].
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(a) (b) (c)

FIG. 4. Experimental demonstration of temporal pumping in the electromechanical waveguide. (a) Transient time history
illustrating a transition from a left-localized mode to a right-localized mode, induced by a linear temporal phase variation
from φ1 = 1.6π → φ2 = 0.4π starting at t = 12 ms, with a duration of 2 ms. (b) Spectral content of broad-band excitation
in quasi-static conditions (top) compared to spectrogram of the temporal pump (bottom), illustrating the adiabatic evolution
along the branch of the edge state occurring in the pump with negligible influence of the neighboring bulk mode. (c) Signals at
left (blue) and right (red) boundaries of the beam for temporal pumps induced within different modulation windows (shaded
gray regions). In the initial 12 ms, steady state vibrations of the left-localized mode are induced (with duration halved for
better visualization), while different phase modulation durations (top: 2 ms, middle: 1.5 ms and bottom: 1 ms) delay the
arrival of the signal at the right end of the beam.
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A. Alù, E. Prodan, and A. B. Khanikaev, Observation
of hofstadter butterfly and topological edge states in re-
configurable quasi-periodic acoustic crystals, Communi-
cations Physics 2, 55 (2019).

[36] R. K. Pal, M. I. N. Rosa, and M. Ruzzene, Topologi-
cal bands and localized vibration modes in quasiperiodic
beams, New Journal of Physics 21, 093017 (2019).

[37] Y. Xia, A. Erturk, and M. Ruzzene, Topological edge
states in quasiperiodic locally resonant metastructures,
Physical Review Applied 13, 014023 (2020).

[38] O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P.
Chen, Y. E. Kraus, and M. C. Rechtsman, Photonic topo-
logical boundary pumping as a probe of 4d quantum hall
physics, Nature 553, 59 (2018).

[39] M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and

I. Bloch, Exploring 4d quantum hall physics with a 2d
topological charge pump, Nature 553, 55 (2018).

[40] M. Rosa, M. Ruzzene, and E. Prodan, Topological gaps
by twisting, arXiv preprint arXiv:2006.10019 (2020).

[41] I. Petrides, H. M. Price, and O. Zilberberg, Six-
dimensional quantum hall effect and three-dimensional
topological pumps, Physical Review B 98, 125431 (2018).

[42] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, and
Y. Silberberg, Topological pumping over a photonic fi-
bonacci quasicrystal, Physical Review B 91, 064201
(2015).

[43] E. Riva, M. I. Rosa, and M. Ruzzene, Edge states and
topological pumping in stiffness-modulated elastic plates,
Physical Review B 101, 094307 (2020).

[44] Z.-G. Chen, W. Tang, R.-Y. Zhang, and G. Ma, Landau-
zener transition in topological acoustic pumping, arXiv
preprint arXiv:2008.00833 (2020).

[45] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,
L. Wang, M. Troyer, and Y. Takahashi, Topological thou-
less pumping of ultracold fermions, Nature Physics 12,
296 (2016).

[46] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,
and I. Bloch, A thouless quantum pump with ultracold
bosonic atoms in an optical superlattice, Nature Physics
12, 350 (2016).

[47] I. H. Grinberg, M. Lin, C. Harris, W. A. Benalcazar,
C. W. Peterson, T. L. Hughes, and G. Bahl, Robust tem-
poral pumping in a magneto-mechanical topological in-
sulator, Nature communications 11, 1 (2020).

[48] I. Brouzos, I. Kiorpelidis, F. Diakonos, and
G. Theocharis, Non-adiabatic time-optimal edge
mode transfer on mechanical topological chain, arXiv
preprint arXiv:1911.03375 (2019).

[49] S. Longhi, Topological pumping of edge states via adia-
batic passage, Physical Review B 99, 155150 (2019).

[50] E. Riva, V. Casieri, F. Resta, and F. Braghin, Adiabatic
pumping via avoided crossings in stiffness-modulated
quasiperiodic beams, Phys. Rev. B 102, 014305 (2020).

[51] H. Nassar, H. Chen, A. Norris, and G. Huang, Quan-
tization of band tilting in modulated phononic crystals,
Physical Review B 97, 014305 (2018).

[52] W. Cheng, E. Prodan, and C. Prodan, Demonstration
of dynamic topological pumping across incommensurate
acoustic meta-crystals, arXiv preprint arXiv:2005.14066
(2020).

[53] T.-W. Liu and F. Semperlotti, Tunable acoustic valley–
hall edge states in reconfigurable phononic elastic waveg-
uides, Phys. Rev. Applied 9, 014001 (2018).

[54] J. Vila, R. K. Pal, and M. Ruzzene, Observation of topo-
logical valley modes in an elastic hexagonal lattice, Phys.
Rev. B 96, 134307 (2017).

[55] J. Marconi, E. Riva, M. Di Ronco, G. Cazzulani,
F. Braghin, and M. Ruzzene, Experimental observation
of nonreciprocal band gaps in a space-time-modulated
beam using a shunted piezoelectric array, Physical Re-
view Applied 13, 031001 (2020).

[56] K. F. Graff, Wave motion in elastic solids (Courier Cor-
poration, 2012).

[57] E. Prodan and Y. Shmalo, The k-theoretic bulk-
boundary principle for dynamically patterned resonators,
Journal of Geometry and Physics 135, 135 (2019).

[58] See Supplemental Material at xxxx for more details on the
simulation procedures, experimental setup and methodol-
ogy, which includes Refs. [61–68].

https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1088/1367-2630/ab3cd7
https://doi.org/10.1103/PhysRevB.102.014305
https://doi.org/10.1103/PhysRevApplied.9.014001
https://doi.org/10.1103/PhysRevB.96.134307
https://doi.org/10.1103/PhysRevB.96.134307


7

[59] M. I. Hussein, M. J. Leamy, and M. Ruzzene, Dynamics
of phononic materials and structures: Historical origins,
recent progress, and future outlook, Applied Mechanics
Reviews 66 (2014).

[60] Y. Hatsugai, Chern number and edge states in the inte-
ger quantum hall effect, Physical review letters 71, 3697
(1993).

[61] K. Worden, Nonlinearity in structural dynamics: detec-
tion, identification and modelling (CRC Press, 2019).

[62] O. C. Zienkiewicz and R. L. Taylor, The finite ele-
ment method for solid and structural mechanics (Else-
vier, 2005).

[63] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in
discretized brillouin zone: efficient method of computing
(spin) hall conductances, Journal of the Physical Society
of Japan 74, 1674 (2005).
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