
Enriching Cloud-native Applications with
Sustainability Features

Monica Vitali
DEIB

Politecnico di Milano
Milan, Italy

monica.vitali@polimi.it

Paul Schmiedmayer
Department of Informatics

Technical University of Munich
Munich, Germany

paul.schmiedmayer@tum.de

Valentin Bootz
Department of Informatics

Technical University of Munich
Munich, Germany

v.bootz@tum.de

Abstract—Due to the ever-growing demand for computational
resources, the environmental impact of data centers is con-
tinuously increasing. Recently, a great effort has been made
to mitigate this impact, while the demand for computational
resources has continued to grow. Current mitigation strategies
focus on the infrastructure perspective, while the application
perspective has been neglected. This paper aims to engage
application designers and developers on the path to greener
application design. Following the Sustainable Application Design
Process (SADP) methodology, we introduce a Sustainable Ap-
plication Design Architecture (SADA) for enriching cloud-native
application components with sustainability features that can be
exploited to adapt the application workflow to the environmen-
tal context. The architecture enables synergies from design to
deployment between all stakeholders involved in the application
management. The paper focuses on enriching the application with
sustainability features in the design and development phases. We
also present and discuss a prototype that can translate design-
level sustainability features into development features.

Index Terms—cloud-native applications, green IS, application
design, adaptive workflow, microservices

I. INTRODUCTION

The energy demand for data centers has been continuously
growing in the last decade: Even though it is difficult to assess
their actual environmental impact, it is estimated that data
centers are responsible for 3% of the global electricity supply
and 2% of total greenhouse gas emissions1. The increased sen-
sitiveness towards global warming and environmental sustain-
ability, and the recent national and international regulations for
reducing CO2 emissions, have pushed leading cloud providers
and IT companies, such as Facebook, Google, and Apple,
towards environmental sustainability2. These stakeholders are
advertising to have reached or are near carbon neutrality, even
though these statements are sometimes controversial and in-
accurate [1]. From a research perspective, two complementary
approaches have been proposed for reducing the environmental
impact of data centers: (i) design efficient facilities [2] and (ii)
improve server utilization [3].

Even if organizations have implemented both approaches,
the demand for cloud services is increasing3: the global

1https://datacentremagazine.com/articles/efficiency-to-loom-large-for-data-centre-
industry-in-2023

2https://cloudscene.com/news/2016/12/going-green/
3https://www.iea.org/reports/data-centres-and-data-transmission-networks

demand for compute instances for training AI models has
increased 300’000 times over the past ten years [4][5] while
the energy demand of data centers has doubled [6]. This trend
shows that merely focusing on the infrastructural perspective
will not be a long-term solution for reaching carbon neutrality
in IT. It will become essential that applications are also
designed and executed based on their environmental footprint.
At the same time, an evolution in the architectural style of
the applications has been observed, moving from monolithic
to cloud-native applications, designed to take advantage of the
characteristics of cloud computing [7] [8] and becoming the de
facto standard in industry [9]. In this architectural style, appli-
cations are designed by combining tens of microservices that
are simple, single-function, and loosely coupled components.
This architectural style hides the cloud provider the internal
logic and the interaction among the components.

We aim to increase the sustainability awareness of the
stakeholders involved in cloud-native application management,
from design to deployment, and to support the development
of sustainable applications by enriching them with metadata to
be exploited for more efficient deployment. Starting from the
general Sustainable Application Design Process (SADP) [10],
we present an architecture supporting the methodology and
define the components needed for its enactment. Additionally,
we implemented and tested a prototype on two use cases.

The main contributions of this paper are:

• the definition of an approach to Sustainable Application
Design enabling the synergy between infrastructure and
application providers;

• a Sustainable Application Design Architecture (SADA)
defining the components needed to enrich the application
design with sustainability features defined by the SADP
and their interconnections;

• a working prototype to support the design and develop-
ment of sustainable applications.

The paper is organized as follows. In Section II, we discuss
existing approaches toward green application design and man-
agement. In Section III, we introduce the SADP. Section IV
describes the components of the SADA and how they support
the implementation of SADP. Finally, the prototype of an
interactive interface for designing applications enriched with



the features identified in this paper is presented in Section V
and validated on two use cases. Section VI draws conclusions
and future improvements.

II. STATE OF THE ART

Sustainability is becoming a relevant topic in all fields,
including IT. Sustainability includes four aspects: technical,
economical, social, and environmental[11]. Reference archi-
tectures, standards, and metrics are needed to enable prac-
titioners to analyze, design, evaluate, and maintain software
systems in collaboration with other stakeholders. In this work,
we focus on the environmental aspect.

The attempts to reduce the environmental impact of Infor-
mation and Communication Technologies (ICT) have been on-
going for several years. Most of them have been driven by the
improvement of the Power Usage Efficiency (PUE) metric to
measure data centers’ energy efficiency and have successfully
focused on the cooling efficiency [12]. However, the focus
on PUE has shown its limitations, as it does not account
for the type of energy used (brown or renewable) [13] and
the efficiency of IT operations [14]. A more comprehensive
approach to sustainability in cloud computing has been pre-
sented by Gill and Buyya [15], through a set of taxonomies for
several aspects of Cloud Data Centers sustainability taking the
cloud providers’ perspective. The considered aspects include
application design, sustainability metrics, capacity planning,
energy management, and virtualization. Existing techniques
are described and classified, but no specific approach is
suggested to enact them comprehensively. The cloud provider
perspective is also adopted by exploiting the intermittent
availability of renewable energy by Thi, Pierson, and Da Costa,
Hu, Li, and Sun [16], [17], involving operations such as
server consolidation [3], [18] and shutdown policies to ensure
a trade-off between energy efficiency and performance [19].
Over the years, best practices have been suggested to promote
data center efficiency improvements, such as the EU Code of
Conduct [20] and the Data Center Maturity Model [21].

Energy reduction should be a shared responsibility between
the cloud provider and the application provider (or cloud
consumer) [22]. However, application providers usually lack
information to improve their environmental impact [23] while,
on the other hand, cloud providers see the applications they
host as black boxes [11]. Limited attempts have been made
to include sustainability in the application design of Green
Information Systems (Green IS) by taking the application
provider’s perspective. An empirical approach towards energy
efficiency of applications in the cloud from the application
provider perspective, focusing on architectural aspects, is
discussed by Vos, Lago, et al. [23]. Vos, Lago, et al. classify
tactics into three categories: resource monitoring (workload
energy assessment), resource allocation (scaling, scheduling,
brokering), and resource adaptation (data reduction, granular
scaling, batch execution, edge deployment). Current research
mainly focuses on dynamic resource allocation and scheduling
according to energy efficiency optimization [24], [25]. Google
uses an approach to resource allocation based on time and

space considerations [26], [27]. Single microservices are con-
sidered black boxes in this decision process, and diversity and
interactions between microservices are not exploited. Other
attempts have proposed general principles and lack practical
solutions [28]–[31].

The energy impact of individual workloads has to be
monitored to improve the sustainability of applications. Its
measurement is not trivial. Google has recently presented a
Carbon Footprint Reporting Methodology to provide a report
of the emissions produced by a user using its services4. Mi-
crosoft Azure [32], Google Cloud Platform [33], and Amazon
Web Service [34] are now providing a dashboard to report the
energy consumption and CO2 emissions at the cloud service
level. All these tools lack details and do not provide timely
information. Third parties tools have been developed to timely
estimate applications’ energy usage and carbon emissions.
The CodeCarbon initiative [35] estimates CO2 emissions of
Machine Learning tasks in the geographical location and the
energy mix of the country in which the application is deployed.
Similarly, The Cloud Carbon Footprint Tool [36] estimates
the energy consumption of cloud instances. Power is also one
of the metrics considered by Brondolin and Santambrogio,
providing closed-box monitoring for multi-component appli-
cations [37]. Some proposals aimed to estimate the energy
efficiency of specific applications in embedded systems [38]
but cannot be applied in complex cloud infrastructures. A vir-
tual energy system exploited to optimize the carbon efficiency
of applications is proposed by Souza, Bashir, et al. [39].

All the introduced approaches attempt to enable energy
awareness in cloud applications, but the workflow enhance-
ment perspective is missing. Some solutions have been pro-
posed for specific types of applications as by Schneider,
Basalla, and Seidel, where guidelines are provided for design-
ing Data Mining tasks [40]. Aligning with current trends in
cloud application design, we decide to focus on cloud-native
applications. Cloud-native applications empower the design
and execution of scalable, loosely coupled, resilient, manage-
able, and observable applications [8]. These applications gen-
erate complex workflows as a consequence of the microservice
architectural style. Specific characteristics of these applications
can be exploited to improve energy efficiency. Elasticity can
be used to balance energy and performance [41]. Energy-
driven considerations in Mobile Cloud Computing can lead
to microservices’ offloading [42]. An attempt to consider the
workflow and the interdependencies between microservices of
the same applications is presented by Saboor, Mahmood, et
al. [43], where a ranking approach allocates microservices to
containers according to their interactions. All these approaches
keep the infrastructural perspective in the optimization of
resource usage. The design of adaptive applications, able
to change their workflow according to the current workload
and energy mix, is necessary to empower green applications
from an application provider perspective. The power-aware
brownout strategy proposed Papadopoulos, Krzywda, et al.

4https://cloud.google.com/carbon-footprint/docs/methodology

https://cloud.google.com/carbon-footprint/docs/methodology


presented an approach to adapt the workflow execution by
producing a response containing minimal components (manda-
tory part) while disabling additional components in case
of limitations in power availability [44]. Gerostathopoulos,
Raibulet, and Lago suggest the usage of decision maps to
make sustainability-driven decisions [45]. Decision maps as-
sociate tactics and sustainability goals. For example, they use
service scaling and something similar to brown out to adapt
the application workflow from an economical and technical
sustainability perspective. A way to represent the workflow
is needed to enable the application’s adaptivity. A standard
way to model the interaction between microservices is miss-
ing, even though this information is crucial to enhance their
management. We opted to represent microservice choreogra-
phy through Business Process Model and Notation (BPMN)
fragments, exploiting a well-known process modeling notation
to represent microservices interactions [46]. However, in their
approach, the adaptive aspect of the interaction cannot be
mapped.

This work focuses on enriching the design of cloud-
native applications and their workflow to boost the opportu-
nity to reach sustainable applications by involving all stake-
holders (application designers, developers, and infrastructure
providers) in this process.

III. SUSTAINABILITY APPROACH

The path towards carbon-neutral IT must pass not only
through an improvement of the infrastructural level and its
management but also through a more conscious and sustain-
able design of the applications using these infrastructures.

The cloud-native approach has recently become more and
more popular. According to the cloud-native paradigm, appli-
cations are implemented as a set of composite microservices
and serverless functions, uncoupled and independent, interact-
ing with each other through synchronous and asynchronous
messages. Typically, an application comprises tens to hundreds
of independent microservices cooperating to reach the goal set
by the application provider.

As described in [10], an application can be enriched with a
set of sustainability features at design time that can be utilized
by adapting the execution workflow according to the context.
Even though some of these characteristics are intrinsic in the
application design, they are currently impossible to be used as
they are embedded in the implementation details.

The design of greener applications can affect the overall
emissions of IT only if the synergy between different actors
involved is enabled. The proposed approach considers three
actors: (i) the application designer is made aware of the
current sustainability of the application through a set of
metrics and indicators and is in charge of setting sustainability
targets and of re-designing the application adding sustain-
ability features; (ii) the application developer is in charge
of implementing the sustainability features included by the
application designer according to the specific framework used
for the application development and management; (iii) the
infrastructure provider adapts the application deployment

and scheduling according to the rules and characteristics added
in the design and development phases and provides energy and
carbon footprint data about the current application execution.

The SADP approach described in [10] identifies a set of
features and makes them explicitly defined during the design
process. However, these features need to be visible to the
infrastructure provider. Thus, the features added at design time
must be reflected in the implementation of the application
components. This paper introduces a Sustainable Application
Design Architecture (SADA) and focuses on the synergy
between the design and the development phases.

In this section, we summarize the Sustainable Application
Design Process (SADP), introduced in [10], describing a set
of features used to enrich the sustainability of applications at
design time.

a) Sustainability Awareness (SA): Each microservice can
be enriched with functional and non-functional properties that
describe its requirements and capabilities. These properties
include the cloud instance type (functional) and Quality of
Service (QoS) and power consumption requirements (non-
functional). Applicability: Information about each compo-
nent’s functional and non-functional requirements enables the
assignment of the correct amount of computational resources
and the best deployment location.

b) Microservice Classification (MC): A microservice can
be labeled optional or mandatory for the application execution.
Mandatory microservices are necessary to obtain the desired
result, while optional microservices increase the Quality of Ex-
perience (QoE) of the final users or the gain of the application
provider. Applicability: Annotating each component of the
application with its relevance in the workflow makes it possible
to adapt the application workflow according to the current
execution context and to reduce the environmental impact of
applications in case of green energy sources shortage.

c) Microservice Enrichment (ME): A microservice
can have multiple implementations with different functional
and non-functional properties. The same functionality might
be carried out in several ways according to the context
of execution. An example is the fail-over mechanism, in
which the application adapts to QoS issues by executing
alternative, less demanding tasks. Applicability: Different
implementations for a microservice enable an adaptive
workflow in which a variant can be selected according to the
current context.

SADP suggests an iterative approach through which these
features are added to the application design. The three steps
are incremental refinements: the designer can focus on a single
component at each iteration, enriching the model step by step.

IV. A SUSTAINABLE APPLICATION DESIGN
ARCHITECTURE (SADA)

In this section, we introduce the Sustainable Application
Design Architecture (SADA). The architecture supports the
design of sustainable applications enabling the synergy be-
tween the stakeholders involved in the application management





«subsystem»


Sustainability-Aware Deployment

System


«subsystem»

Web Service Development


Framework


«subsystem»

Sustainable Application


Design


«component»

Sustainability Metadata


Definitions


«component»

Sustainability Interface


Exporter

«component»

Sustainability Feedback


«component»

Business Process


Modeler


«component»

Sustainable Application


Model


Export

Configuration

M
et

ad
at

a
D

ec
la

ra
tio

ns

Service Metadata
Export

Implementation
Metadata

Su
st

ai
na

bi
lit

y
In

fo
rm

at
io

n

Se
rv

ic
e 

M
et

ad
at

a
In

te
rfa

ce

Se
rv

ic
e 

M
et

ad
at

a
U

pd
at

es

Su
st

ai
na

bi
lit

y
Sc

or
es

Fig. 1. UML component diagram detailing the Sustainable Application Design Architecture (SADA) including the three subsystems: i) Web Service
Development Framework to enable developers to annotate sustainability information to web services, ii) Sustainability Application Design to integrate multiple
components and refine annotations, and iii) Sustainability-Aware Deployment System to close the feedback loop and inform cloud service providers.

phases. The overall architecture is shown in Figure 1 using
a Unified Modeling Language (UML) component diagram.
The architecture is characterized by three main subsystems,
each one responsible for one of the phases of the application
management and addressed to one of the actors defined in
Section III:

• Sustainable Application Design, addressed to the appli-
cation designer;

• Web Service Development Framework, addressed to the
application developer;

• Sustainability-Aware Deployment System, addressed to
the infrastructure provider.

While all three actors and subsystems provide and fulfill
distinct functionalities in an integrated software engineering
process, stakeholders can assume multiple roles simultane-
ously. Sometimes, a tighter integration might be beneficial
or necessary, e.g., when working in smaller teams or cross-
functional organizations. Therefore, the generalized concepts
defined in our process model can be seen as a blueprint
adaptable to the needs and requirements of each sustainability-
focused development team or infrastructure provider. We ex-
plicitly encourage cross-disciplinary collaboration to tackle the
numerous sustainability challenges for cloud-native applica-
tions.

Figure 1 defines the software architecture, including sub-
systems, components, and interfaces [47]. We intend to make
this architecture as general as possible since the web service
developers can rely on various technologies, programming
languages, and development stacks. We do not define specific
dependencies to these tools and focus on larger architectural
patterns and mechanisms.

The individual components all aim to support and automate
the stakeholders’ goals to collaborate on enhancing cloud-
native applications with sustainability features. We briefly
describe all the subsystems, focusing mainly on the design and
development phases and on how to support their alignment and
interaction. We highlight the benefits these components bring
to the day-to-day development of cloud-native applications and
how they instantiate the SADP.

A. Sustainable Application Design

This first subsystem supports the application designer in
enriching the application with sustainability features at design
time. The Sustainable Application Design subsystem has to:
(i) enable the (re)design of the application, including the
features of the SADP; (ii) provide feedback on the current
sustainability level of the application; (iii) enable to export
the application model in a machine-readable format to ease
the implementation of the defined characteristics.



The three components depicted in Figure 1 inside the
Sustainable Application Design subsystem cover these tasks.
More specifically, the subsystem is provided with two front-
end components (i.e., Business Process Modeler and Sustain-
ability Feedback) interacting with the application designer and
a back-end component (Sustainable Application Model).

1) Business Process Modeler: As discussed in Sec-
tion II, there is a lack of standard models to represent the
sustainability-related context associated with components of
an application and its workflow. We propose to embed the
sustainability context embedded in the BPMN notation [48], a
standard to model an organization’s internal processes and col-
laborations and orchestrations between different organizations.
Following the approach adopted in [46], the application can be
represented as a set of microservices orchestrated by a general
process, defining their order of execution (workflow). This
integration enables us to build on proven and tested solutions
and extend them with metrics and information relevant to all
involved stakeholders.

The Business Process Modeler component implements the
front-end for the application design using BPMN. It enables
the application designer to load and edit an existing model
or to create a new one. It also allows the enrichment of this
model with the sustainability features introduced in Section III.
Each task in the BPMN model represents a microservice of the
application and is linked to its implementation by specifying
the service identifier. This enables the alignment between the
application representation and its actual implementation.

As allowed by BPMN, the notation is enriched to include
a Cloud Native Sustainability Extension. More specifically, a
Cloud Native Sustainability Task type has been introduced
that enables to: i) classify the task as optional or mandatory
according to the MC feature in SADP through a boolean
attribute in the task definition; ii) define multiple variants for
each task according to the ME feature in SADP, specifying
the implementation endpoint for each of them; iii) specify a
set of requirements for each of the variants, each represented
in a machine-readable format as “[requirement] : [value]”.

2) Sustainability Feedback: This front-end component fo-
cuses on the sustainability awareness of the application de-
signer. It shows the environmental impact of the current imple-
mentation by exploiting the monitoring data collected by the
infrastructure provider and accessed through the Sustainability
Information interface. Additionally, the component provides
information about the current sustainability maturity level of
the application design, providing hints on further improve-
ments. A set of metrics for this purpose have been defined
in [10] and implemented in this component. A summary is
shown in Table I.

3) Sustainable Application Model: The Sustainable Ap-
plication Model translates the BPMN and all the metadata
obtained through the extended version into a structured XML
document and provides a Service Metadata Export interface.
The module extracts the relevant metadata about the sustain-
ability features of the application design into a structured
document in a specific format (e.g., JSON or XML). This

document can be used as input for the implementation, listing
the features to be included by the application developer in the
microservices.

The component also keeps the synergy between the applica-
tion model and its implementation. It allows the user to upload
both the BPMN model and the metadata extracted from the
actual implementation of the microservices and automatically
enriches the application model with them.

Finally, the Sustainable Application Model component is
in charge of the assessment of the metrics described in
Table I and shown by the Sustainability Feedback component,
obtained from the analysis of the expressed metadata.

B. Web Service Development Framework

The Web Service Development Framework subsystem de-
fines how to enrich the microservices composing the appli-
cation with the metadata expressed in the design. It also
enables the application designer and developer to exchange
sustainability information. We deliberately empower the appli-
cation developer as the expert in the detailed implementation
decisions to provide default sustainability information for
each microservice. The two components are defined regardless
of the specific tools and languages used to implement and
orchestrate.

1) Sustainability Metadata Definitions: It enables the ap-
plication developers to specify sustainability metadata within
the microservice implementation. The metadata are associated
with endpoints or specific functionalities of a web service. In
this way, the implementation of a microservice is enriched
with functional and non-functional properties expressed in the
SA features, can be labeled as optional, or can define several
endpoints as different versions of the same functionality. The
implementation of this component is technology-dependent, as
demonstrated in Section V. The component provides a Meta-
data Declarations interface for making the defined metadata
accessible.

2) Sustainability Interface Exporter: It manages the ex-
change of information with the Sustainable Application Design
subsystem. It collects the metadata from the Sustainability
Metadata Definitions component through the Metadata Decla-
rations interface. It translates them into a standard format that
can be processed by the Business Process Modeler component
(e.g., JSON). The application design can be fed with the imple-
mented sustainability features. This module is also responsible
for including the updates in the application design, exported
through the Service Metadata Export interface: the component
compares the metadata of the current implementation with
the ones extracted from the updated design. This information
is provided to the application that can implement the new
required features.

C. Sustainability-Aware Deployment System

SADP provides a methodology for improving and evalu-
ating the sustainability in the design of a cloud-native ap-
plication, enriching each component with additional details
and metadata. This information can impact the sustainability



TABLE I
APPLICATION SUSTAINABILITY LEVEL ASSESSMENT

Score Description Metric

SA score Sustainability Awareness Score – Assess the completeness of metadata on requirements, QoS, and energy usage Coverage (0–100 %)

MC score Microservice Classification Score – Assess the availability of annotations about relevance for each component Coverage (0–100 %)

ME score Microservice Enrichment Score – Assess the definition of alternative modalities of execution for each component Coverage (0–100 %)

of the application only if it is used at run-time properly,
driving the decisions on how to deploy and manage the
application. The Carbon-Aware Deployment System is the
connection point between the Infrastructure Provider, who is
in charge of deploying the application, and the Application
Designer and Developer, who designs the adaptive workflows.
This subsystem is out of the scope of this paper. However,
according to the SADA, it will have to provide two interfaces:
(i) a Sustainability Information interface, through which the
application designer can collect the information about the
actual environmental impact of the current implementation of
the application at run-time; (ii) a Service Metadata Interface
providing the functionalities through which the application
can be deployed. The sustainability metadata with which the
microservices have been enriched in the previous phases can
be exploited by this subsystem. For instance, the type of
instance expressed in the SA feature will be used to select
the type of VM to be used, as well as the non-functional
requirements that can be used to monitor the correct behavior
of the application. A sustainability-aware scheduler can take
advantage of the ME and MC features by adapting the set of
active microservices and their version according to the context
of execution and the availability of renewable resources.

V. VALIDATION

This section validates the proposed methodology and archi-
tecture, focusing on the Sustainable Application Design and
the Web Service Development Framework subsystems. The
goal of the validation is not to provide a complete and general
implementation of the architecture components but to prove
the feasibility of the approach and the existence of tools in
the state of the art to support the SADA.

Section V-A describes an instantiation of the SADA building
on top of the standards and elements noted in Section IV.
We apply the proposed approach to two different use cases:
a Flight Booking application (Section V-B) and the Online
Boutique application (Section V-C). All the source code used
for implementing the architecture components and the exper-
iments presented in this section is publicly available5.

A. Instantiation

The Web Service Development Framework subsystem en-
ables the specification of sustainability metadata in the web
service implementation. Annotations are integrated into the
design and implementation of endpoints and components.
They express the level of detail of the information defined

5https://vitali.faculty.polimi.it/sadp/

by the application developer and designer. Code annotations
or Domain-Specific Languages (DSLs), that are ”computer
programming language of limited expressiveness focused on a
particular domain” [49], are typical mechanisms to annotate
domain-knowledge information to implementations. We in-
stantiated the web service development framework integration
components into a DSL-based Apodini6 web service appli-
cation framework. Apodini is a declarative Swift framework
to express the interface, requirements, and functionalities
of web services in a single internal DSL independent of
any specific middleware, protocol, or Interface Description
Language (IDL) [50], [51]. This integration demonstrates the
capabilities of metadata definitions and annotations in a declar-
ative software development environment and builds on existing
integrations and extension points in the research project. The
provided integration uses the Apodini metadata system to
enable cloud-native developers to annotate microservices with
sustainability-related information [51]. Metadata definitions
in Apodini specify the scope and structure of metadata that
application developers can use to annotate the application
components. Domain-specific sustainability metadata defini-
tions enable developers to annotate Apodini web services with
the sustainability-related information added in SADP. The
description of the Flight Booking application with Apodini
is shown in Listing 1 while Listing 2 shows the Apodini
specification for one of the versions of the Flight Search com-
ponent. The metadata includes description, execution modality,
and functional (type of instance required) and non-functional
(maximum response time) requirements.

We instantiated several reusable and extensible tools to
facilitate the SADP building on the general components de-
fined in the SADA. The first tool instantiates the sustain-
able application design subsystem by providing a graphical
interface and functionalities to enrich the application design
with the described sustainability features. A view of the
tool is shown in Section V-B. The tool is integrated with a
BPMN modeler allowing the user to model and annotate the
application workflow. The prototype extends the off-the-shelf
BPMN.io7 tool with SADP features. The editor is enriched to
support SADP features: an additional dashed border represents
optional tasks introduced by the MC feature. A marker in the
bottom right represents multiple variants (ME feature) defined
for a component. The custom properties panel through which
the sustainability features can be edited is integrated into the
editor as demonstrated in Figure 2. It is also possible to specify

6https://github.com/Apodini
7https://github.com/bpmn-io

https://vitali.faculty.polimi.it/sadp/
https://github.com/bpmn-io


Fig. 2. User Interface of the Sustainable Application Design tool for the Flight Booking application. The user interface is displayed in a browser with the
BPMN modeler and the sustainability information components being integrated into the right detail inspector.

the service identifier for each displayed component, linking
it to its implementation. A component classification boolean
property can be expressed (optional or not), and different exe-
cution modalities can be specified. These classifications can be
linked with their implementation endpoints and requirements.
The application designer can start the annotation process from
scratch or upload an existing BPMN model in XML with the
Upload Model button. The Service Identifier property links the
task represented in the model with its implementation. This
association allows importing existing metadata directly from
the microservice implementation using the Fetch Metadata
button.

The defined service metadata is stored using custom at-
tributes and elements from the BPMN extension in the XML
representation of the application. The Download Model button
enables the export of the enriched design. The dashboard also
provides feedback on the sustainability level of the application
with three indicators, one for each dimension. Sustainability
scores are computed according to the metrics defined in
Table I. This information can be used to decide how to improve
the sustainability level of the application and to detect which
features require more attention.

B. Flight Booking Use Case

We demonstrate the implementation of the architectural
components using a Flight Booking application shown in
Figure 3). The application consists of five microservices. The
Weather Information and the Rental Car Booking components
are optional (their execution can be skipped if needed), while

FLIGHT SEARCH

WEATHER 
INFORMATION

FLIGHT 
BOOKING

RENTAL CAR 
BOOKING

PAYMENT

Time sensitive

Security sensitive

Optional Task Multi-Version 
Task

Annotated 
TaskLEGEND

Fig. 3. Microservices of the Flight Booking application

for the Flight Search component, three versions have been
defined: i) a normal version, collecting updated data from flight
companies at each new request; ii) a low-power version using
cached and possibly outdated information in the preliminary
search phases to reduce energy waste; iii) a high-performance
version, using a recommender system to improve the results
presented to the customer and their order.

The screenshots and code snippets demonstrate the proto-
type functionalities and the ability of the solution to ensure
the synergy between the application design and development
phases through the set of tools described in Section V-A.
Figure 2 demonstrates the user interface of the sustainable
application design dashboard while Listing 1 and Listing 2



struct FlightBooking: WebService {
@OptionGroup
var options: SustainabilityDocumentExportOptions

var configuration: Configuration {
REST()
Sustainability(options)

}

var content: some Component {
FlightSearchService()

.serviceIdentifier("flight-search")
WeatherInformationService()

.serviceIdentifier("weather-info")
FlightBookingService()

.serviceIdentifier("flight-booking")
RentalCarBookingService()

.serviceIdentifier("rental-car-booking")
PaymentService()

.serviceIdentifier("payment")
}

}

Listing 1. Flight Booking application configuration using the Apodini
framework. The configuration details the different components of the
microservice architecture and the Sustainability interface exporter in
the configuration and related service identifiers that can be referenced
in the dashboard component.

struct FlightSearchComponent: Component {
struct RecommendationFlightSearch: Handler {

var metadata: Metadata {
ExecutionModality(.highPerformance)
ResponseTime(value: 100, unit: ’ms’)
InstanceType(.large)

}
}

var content: some Component {
Group("flight-search") {
Group("recommendation") {

RecommendationFlightSearch()
.description("Information ...")}

}
}

}

Listing 2. Annotation of the high-performance version of the Flight
Search component in the corresponding Apodini component. The metadata
annotations allow application developers to annotate all implementation-
related information in the code to provide a single source of truth for the
sustainability-related information.

show the Apodin-based metadata in the declarative web ser-
vice annotations.

The Sustainability Interface Exporter in Apodini exports the
metadata from the web service to a REST API at runtime. The
sustainability service metadata structure is shown in Listing 3
in JSON. The set of tools described enables an iterative
annotation process. Each time the model and its metadata
can be loaded in the tool, new annotations can be added and
exported to be included in the microservices implementation.
Every time new features are added, the sustainability scores
are automatically updated.

{
"services": [

{
"id": "flight-search",
"name": "Flight Search",
"optional": false,
"modalities": {
"highPerformance": {
"id": "0.0.0.0.1.0",
"name": "RecommendationFlightSearch",
"description": "Information ...",
"responseTime": {
"value": 100,
"unit": "ms"

},
"instanceType": "large"

}
}

}
]

}

Listing 3. Elements of the sustainability metadata of the Flight Search service
implementation in the JSON format exported by the Apodini sustainability
interface exporter.

C. Online Boutique Use Case

In this section, we used the prototype to model the Online
Boutique application8, a microservice-based application used
for demo and testing on the Google Cloud platform. This use
case shows the applicability of the proposed approach to more
complex and realistic applications. The application consists
of eight microservices implementing the functionalities of an
e-commerce platform. Based on the workflow described in
the documentation, the application has been represented in
BPMN as shown in Figure 4. The presented tools have been
subsequentially used to enrich the application with sustainabil-
ity features in the Sustainable Application Design tool. Two
tasks have been labeled as optional (i.e., Advertisement and
Product Recommendation). Additionally, two tasks have been
complemented with alternative versions: a low-power version
Product Catalog has been configured to show a limited set of
products during the navigation, the Product Recommendation
component recommends a reduced set of products using a
simpler algorithm. Each component is linked with its imple-
mentation through the service identifier, and metadata on the
functional and non-functional requirements can be edited in
the custom properties panel.

This use case has demonstrated that the approach can be
successfully applied to existing applications. Without any need
to re-implement existing microservices, these can be enriched
and extended using the proposed methodology. The prototype
makes it easier for the application designer to understand the
current sustainability features implemented and suggests new
features to be added.

D. Results Discussion

The instantiation in Section V-A and the subsequent use
cases in Section V-B and Section V-C have demonstrated the

8https://github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo


Fig. 4. User Interface of the Sustainable Application Design tool for the Online Boutique application.

feasibility of using existing tools and extending them to sup-
port the defined sustainability features. All the code, including
the use cases implementation, is available and open source
to ensure the reproducibility of the results. We encourage
the research community to use and enrich the architectural
components.

At the current stage, it is impossible to quantify the benefits
of the proposed approach from an environmental sustainability
perspective. The actual reduction in energy and emissions
depend on several factors, including the involvement of all the
stakeholders. However, some preliminary tests have been exe-
cuted to compare the emissions generated by the applications
presented as examples under different execution modalities.
In a best-effort approach given the described constraints,
we compared the online Boutique application introduced in
Section V-C execution of the out-of-the-box application with
the execution of the same application with the optional and
low-power version of its tasks simulating a workload of 100
users. The results show a reduction of 27% in computational
resource demand.

Adopting the presented methodology and architecture can
improve IT sustainability with a focus on the application
perspective. It can reduce the environmental impact of ap-
plications (in terms of energy consumption and emissions)
while guaranteeing the required QoS and QoE levels. The
features identified to enrich the application design can be com-
plemented with additional aspects that might be identified in
the future. However, the presented sustainable design can only
affect the environmental impact of cloud-native applications

if the synergy between all the stakeholders is enacted and
appropriate actions are taken accordingly in their management
at runtime.

VI. CONCLUSION

This paper introduced a Sustainable Application Design Ar-
chitecture (SADA) to support sustainable applications design,
development, and deployment. The approach is based on the
SADP, which proposes an incremental process, defining levels
of sustainability for the design of cloud-native applications
and three features that can be exploited to improve the appli-
cation energy efficiency. The paper defines the architectural
components needed to support the methodology. A prototype
for its implementation is provided, showing the feasibility of
the approach, and it is tested on two use cases. The SADP
methodology is the first step towards energy-aware application
management and aims at engaging application owners in the
path towards sustainable IT. Thanks to the SADA presented in
this paper, the synergy between all the stakeholders involved
in the application management is ensured.

In future work, we will extend the current implementation
by defining an adaptive and context-aware scheduler to support
the sustainable workflow design introduced in this paper.
Additionally, we aim to explore the trade-off between carbon
footprint reduction, QoS, and QoE to integrate this informa-
tion in the deployment and execution decision system. We
will also consider an additional challenge: the microservices
deployment optimization in a heterogeneous fog environment
to minimize the energy footprint of applications.



ACKNOWLEDGMENT

This research was partly funded by the European Union
(TEADAL, 101070186). Views and opinions expressed are
however those of the author(s) only and do not necessarily
reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for
them. This research was partly funded by the Spoke 1 “Fu-
tureHPC & BigData” of the Italian Research Center on High-
Performance Computing, Big Data and Quantum Computing
(ICSC) funded by MUR Missione 4 - Next Generation EU
(NGEU).

REFERENCES

[1] G. Swan, “How green is my cloud?” CIO, 2011.
[2] J.-M. Pierson, G. Baudic, et al., “Datazero: Datacen-

ter with zero emission and robust management using
renewable energy,” IEEE Access, vol. 7, pp. 103 209–
103 230, 2019.

[3] M. Pedram, “Energy-efficient datacenters,” IEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 31, no. 10, pp. 1465–1484, 2012.

[4] W. Knight, AI Can Do Great Things — if It Doesn’t
Burn the Planet, https://www.wired.com/story/ai-great-
things-burn-planet, 2020.

[5] F. Lucivero, “Big data, big waste? a reflection on
the environmental sustainability of big data initiatives,”
Science and engineering ethics, vol. 26, no. 2, pp. 1009–
1030, 2020.

[6] E. Masanet and A. e. a. Shehabi, “Recalibrating global
data center energy-use estimates,” Science, vol. 367,
no. 6481, pp. 984–986, 2020.

[7] N. Kratzke and P.-C. Quint, “Understanding cloud-
native applications after 10 years of cloud computing-
a systematic mapping study,” Journal of Systems and
Software, vol. 126, pp. 1–16, 2017.

[8] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native
applications,” IEEE Cloud Computing, vol. 4, no. 5,
pp. 16–21, 2017.

[9] CNCF, “Cloud Native Computing Foundation Annual
Survey 2021,” CNCF, Tech. Rep., 2022. [Online].
Available: https : / /www.cncf . io /wp- content /uploads /
2022/02/CNCF- %20AR%5C FINAL- edits- 15.2.21.
pdf.

[10] M. Vitali, “Towards greener applications: Enabling
sustainable-aware cloud native applications design,” in
International Conference on Advanced Information Sys-
tems Engineering, Springer, 2022, pp. 93–108.

[11] V. Andrikopoulos and P. Lago, “Software Sustainability
in the Age of Everything as a Service,” in Next-Gen
Digital Services, ser. Lecture Notes in Computer Sci-
ence, Springer International Publishing, 2021, pp. 35–
47, ISBN: 978-3-030-73203-5. DOI: 10 . 1007 / 978 - 3 -
030-73203-5 3. [Online]. Available: https://doi.org/10.
1007/978-3-030-73203-5 3 (visited on 03/22/2023).

[12] Z. Liu, Y. Chen, et al., “Renewable and cooling aware
workload management for sustainable data centers,” in
Proc. of the 12th International Conference on Mea-
surement and Modeling of Computer Systems, 2012,
pp. 175–186.

[13] Í. Goiri, W. Katsak, et al., “Parasol and greenswitch:
Managing datacenters powered by renewable energy,”
ACM SIGPLAN Notices, vol. 48, no. 4, pp. 51–64, 2013.

[14] H. Garrett-Peltier, “Green versus brown: Comparing the
employment impacts of energy efficiency, renewable
energy, and fossil fuels using an input-output model,”
Economic Modelling, vol. 61, pp. 439–447, 2017.

[15] S. S. Gill and R. Buyya, “A Taxonomy and Future
Directions for Sustainable Cloud Computing: 360 De-
gree View,” ACM Computing Surveys, vol. 51, no. 5,
104:1–104:33, Dec. 18, 2018, ISSN: 0360-0300. DOI:
10.1145/3241038. [Online]. Available: https://doi.org/
10.1145/3241038 (visited on 03/22/2023).

[16] M.-T. Thi, J.-M. Pierson, and G. Da Costa, “Game-
based negotiation between power demand and supply
in green datacenters,” in 2020 IEEE International Con-
ference on Big Data and Cloud Computing (BdCloud),
IEEE, 2020, pp. 690–697.

[17] X. Hu, P. Li, and Y. Sun, “Minimizing energy cost for
green data center by exploring heterogeneous energy
resource,” Journal of Modern Power Systems and Clean
Energy, vol. 9, no. 1, pp. 148–159, 2021.

[18] N. Gholipour, E. Arianyan, and R. Buyya, “A novel
energy-aware resource management technique using
joint vm and container consolidation approach for green
computing in cloud data centers,” Simulation Modelling
Practice and Theory, vol. 104, p. 102 127, 2020.

[19] A. Benoit, L. Lefevre, et al., “Reducing the energy
consumption of large-scale computing systems through
combined shutdown policies with multiple constraints,”
Int. Journal of High Performance Computing Applica-
tions, vol. 32, no. 1, pp. 176–188, 2018.

[20] M. Acton et al., “2018 Best Practice Guidelines for
the EU Code of Conduct on Data Centre Energy Ef-
ficiency,” Publications Office of the European Union,
Luxembourg, Tech. Report. EUR 29103 EN, 2018, 2017.

[21] H. Singh et al., “Data center maturity model,” Techn.
Ber. The Green Grid, 2011.

[22] Amazon Web Service, “AWS Well-Architected Frame-
work,” AWS, Tech. Rep., 2023. [Online]. Available:
https : / / docs . aws . amazon . com / pdfs / wellarchitected /
latest/framework/wellarchitected-framework.pdf.

[23] S. Vos, P. Lago, et al., “Architectural tactics to optimize
software for energy efficiency in the public cloud,”
in 2022 International Conference on ICT for Sustain-
ability (ICT4S), Jun. 2022, pp. 77–87. DOI: 10.1109/
ICT4S55073.2022.00019.

[24] O. O. Ajibola, T. E. El-Gorashi, and J. M. Elmirghani,
“Energy efficient placement of workloads in compos-
able data center networks,” Journal of Lightwave Tech-
nology, vol. 39, no. 10, pp. 3037–3063, 2021.

https://www.wired.com/story/ai-great-things-burn-planet
https://www.wired.com/story/ai-great-things-burn-planet
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-%20AR%5C_FINAL-edits-15.2.21.pdf
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-%20AR%5C_FINAL-edits-15.2.21.pdf
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-%20AR%5C_FINAL-edits-15.2.21.pdf
https://doi.org/10.1007/978-3-030-73203-5_3
https://doi.org/10.1007/978-3-030-73203-5_3
https://doi.org/10.1007/978-3-030-73203-5_3
https://doi.org/10.1007/978-3-030-73203-5_3
https://doi.org/10.1145/3241038
https://doi.org/10.1145/3241038
https://doi.org/10.1145/3241038
https://docs.aws.amazon.com/pdfs/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/pdfs/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://doi.org/10.1109/ICT4S55073.2022.00019
https://doi.org/10.1109/ICT4S55073.2022.00019


[25] H. Valera, M. Dalmau, et al., “DRACeo: A smart
simulator to deploy energy saving methods in microser-
vices based networks,” in IEEE Int. Conference on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2020, pp. 94–99.

[26] A. Radovanovic, R. Koningstein, et al., “Carbon-
aware computing for datacenters,” arXiv preprint
arXiv:2106.11750, 2021.

[27] A. Radovanovic, B. Chen, et al., “Power modeling
for effective datacenter planning and compute manage-
ment,” IEEE Transactions on Smart Grid, vol. 13, no. 2,
pp. 1611–1621, 2021.

[28] A. Nowak, T. Binz, et al., “Pattern-driven green adap-
tation of process-based applications and their runtime
infrastructure,” Computing, vol. 94, no. 6, pp. 463–487,
2012.

[29] C. Cappiello, M. Fugini, et al., “Business process co-
design for energy-aware adaptation,” in ICCP, IEEE,
2011, pp. 463–470.

[30] J. vom Brocke, R. T. Watson, et al., “Green Information
Systems: Directives for the IS discipline,” Communica-
tions of the Assoc. for Information Systems, vol. 33,
no. 1, p. 30, 2013.

[31] P. Loos, W. Nebel, et al., “Green it: A matter of
business and information systems engineering?” Busi-
ness & Information Systems Engineering, vol. 3, no. 4,
pp. 245–252, 2011.

[32] Microsoft Azure, Azure Emissions Impact Dashboard,
https : / / www . microsoft . com / en - us / sustainability /
emissions-impact-dashboard, 2023.

[33] Google Cloud Platform, Google Carbon Footprint Con-
sole, https://cloud.google.com/carbon-footprint, 2023.

[34] Amazon Web Service, AWS Customer Carbon Footprint
Tool, https://aws.amazon.com/aws-cost-management/
aws-customer-carbon-footprint-tool, 2023.

[35] K. Lottick, S. Susai, et al., “Energy usage reports:
Environmental awareness as part of algorithmic ac-
countability,” arXiv:1911.08354, 2019.

[36] Thoughtworks Inc., Cloud Carbon Footprint Tool, https:
//www.cloudcarbonfootprint.org, 2023.

[37] R. Brondolin and M. D. Santambrogio, “A black-box
monitoring approach to measure microservices runtime
performance,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 17, no. 4, pp. 1–26,
2020.

[38] T. Béziers la Fosse, M. Tisi, et al., “Annotating exe-
cutable dsls with energy estimation formulas,” in Proc.
of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, 2020, pp. 22–38.

[39] A. Souza, N. Bashir, et al., “Ecovisor: A virtual energy
system for carbon-efficient applications,” arXiv preprint
arXiv:2210.04951, 2022.

[40] J. Schneider, M. Basalla, and S. Seidel, “Principles of
green data mining,” in Proceedings of the 52nd Hawaii
International Conference on System Sciences, 2019,
pp. 1–10.

[41] I. F. De Nardin and R. o. da Rosa Righi, “On revisiting
energy and performance in microservices applications:
A cloud elasticity-driven approach,” Parallel Comput-
ing, vol. 108, p. 102 858, 2021.

[42] A. Ali and M. M. Iqbal, “A cost and energy effi-
cient task scheduling technique to offload microservices
based applications in mobile cloud computing,” IEEE
Access, vol. 10, pp. 46 633–46 651, 2022.

[43] A. Saboor, A. K. Mahmood, et al., “Enabling rank-
based distribution of microservices among containers
for green cloud computing environment,” Peer-to-Peer
Networking and Applications, vol. 15, no. 1, pp. 77–91,
2022.

[44] A. Papadopoulos, J. Krzywda, et al., “Power-aware
cloud brownout: Response time and power consumption
control,” in 2017 IEEE 56th Annual Conference on De-
cision and Control (CDC), Dec. 2017, pp. 2686–2691.
DOI: 10.1109/CDC.2017.8264049.

[45] I. Gerostathopoulos, C. Raibulet, and P. Lago, “Ex-
pressing the adaptation intent as a sustainability goal,”
in Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: New Ideas and
Emerging Results, ser. ICSE-NIER ’22, New York, NY,
USA: Association for Computing Machinery, Oct. 17,
2022, pp. 36–40, ISBN: 978-1-4503-9224-2. DOI: 10 .
1145 / 3510455 . 3512776. [Online]. Available: https : / /
dl.acm.org/doi/10.1145/3510455.3512776 (visited on
03/22/2023).

[46] P. Valderas, V. Torres, and V. Pelechano, “A microser-
vice composition approach based on the choreography
of bpmn fragments,” Information and Software Technol-
ogy, vol. 127, p. 106 370, 2020.

[47] B. Bruegge and A. H. Dutoit, Object Oriented Software
Engineering Using UML, Patterns, and Java, 3rd. Pren-
tice Hall, 2010, ISBN: 9780136061250.

[48] OMG, “Business Process Model and Notation (BPMN),
Version 2.0,” Object Management Group, Tech. Rep.,
2011. [Online]. Available: http://www.omg.org/spec/
BPMN/2.0.

[49] M. Fowler, Domain-Specific Languages (Addison-
Wesley Signature Series). Pearson Education, 2010,
ISBN: 9780132107549.

[50] P. Schmiedmayer, “Apodini: An internal domain spe-
cific language to design web services,” in Proc. of
the 21st International Middleware Conference Doctoral
Symposium, ser. Middleware’20 Doctoral Symposium,
New York, NY, USA: ACM, 2020, pp. 47–49.

[51] P. Schmiedmayer, “Designing evolvable web services,”
Ph.D. dissertation, Technische Universität München,
2022.

https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard
https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard
https://cloud.google.com/carbon-footprint
https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool
https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool
https://www.cloudcarbonfootprint.org
https://www.cloudcarbonfootprint.org
https://doi.org/10.1109/CDC.2017.8264049
https://doi.org/10.1145/3510455.3512776
https://doi.org/10.1145/3510455.3512776
https://dl.acm.org/doi/10.1145/3510455.3512776
https://dl.acm.org/doi/10.1145/3510455.3512776
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

	Introduction
	State of the Art
	Sustainability Approach
	A Sustainable Application Design Architecture (SADA)
	Sustainable Application Design
	Business Process Modeler
	Sustainability Feedback
	Sustainable Application Model

	Web Service Development Framework
	Sustainability Metadata Definitions
	Sustainability Interface Exporter

	Sustainability-Aware Deployment System

	Validation
	Instantiation
	Flight Booking Use Case
	Online Boutique Use Case
	Results Discussion

	Conclusion

