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Reconfigurable Optical Add/Drop Multiplexer (ROADM) nodes are evolving towards high-degree architec-
tures to support growing traffic and enable flexible network connectivity. Due to the complex composition
of high-degree ROADMs, soft failures may occur between both inter- and intra-node components, like
Wavelength Selective Switches (WSSs) and fiber spans. The intricate ROADM structure significantly
contributes to the challenge of localizing inter-/intra-node soft failures in ROADM-based optical networks.
Machine Learning (ML) has shown to be a promising solution to the problem of soft-failure localization,
enabling network operators to take accurate and swift measures to overcome such challenge. However, data
scarcity is a main hindrance when using ML for soft-failure localization, especially in the complex scenario
of inter- and intra-node soft failures. In this work, we propose a digital-twin-assisted meta-learning
framework to localize inter-/intra-node soft failures with limited samples. In our proposed framework,
we construct several mirror models using a digital-twin of the physical optical network and then gener-
ate multiple training tasks. These training tasks serve as pre-training data for the meta-learner. Then,
we use real data for fine-tuning and testing of the meta-learner. The proposed framework is compared
with Rule-based Reasoning method, Transfer-Learning-based method and Artificial Neural Networks
(ANNs)-based method with no-pre-training. Experimental results indicate that the proposed framework
improves localization accuracy by over 15%, 33% and 54%, on average, compared to benchmark approaches,
respectively.
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1. INTRODUCTION

In current optical networks, Reconfiguable Optical Add/Drop
Multiplexers (ROADMs) play a fundamental role in enabling
dynamic and flexible wavelength routing. As traffic continues to
grow, ROADMs are evolving towards high-degree architectures
to provide more flexible network connectivity [1, 2]. A higher-
degree ROADM implies a higher number of optical components
such as Wavelength Selective Switches (WSSs) and amplifiers
inside the ROADM node, i.e., in the intra-node network, and
between the ROADM nodes, i.e., in the inter-node network. Due
to the complex composition of ROADM-based optical networks,
soft failures1 may occur in various components and cause partial
degradation in performance [3, 4]. In the context of high-degree
ROADM-based optical networks, soft-failure localization im-
plies considering both inter- and intra-node networks, aiming to

1Unlike hard failures, which typically result in a complete loss, e.g., a fiber
break, soft failures might degrade network performance without causing total
outages, such as extra attenuation of WSSs and insufficient gain of amplifiers.

provide accurate predictions for the network operators who can
then take swift actions to minimize performance degradation.

Soft-failure localization is typically modeled as a multi-class
classification problem, where each class denotes a soft-failure
location, e.g., the location of a specific WSS within a ROADM.
Machine Learning (ML) has been shown to be a promising solu-
tion for soft-failure localization as it allows to map historical data
of some monitored features to the location of the soft failures [5].
Most of the existing literature on ML-based soft-failure localiza-
tion and identification assumes a vast availability of historical
data [6, 7]. In reality, data scarcity still represents one of the
main obstacles to practical deployment of ML-based approaches
for soft-failure localization and identification, as it is difficult to
collect sufficient soft-failure ground-truth data from high-degree
ROADM-based optical networks due to the lack of a widespread
deployment of Optical Performance Monitors (OPMs), and to
the fact that failure data is unlikely to comprehensively represent
all failure scenarios [8].
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Several alternatives can be adopted to address data scarcity in
the context of ML-based soft-failure localization. Recently, meta-
learning has demonstrated potential in modeling complex clas-
sification tasks with only a few samples thanks to its advanced
model updating procedure [9–11]. By leveraging meta-training
across many training tasks that encompass diverse problems
or domains, meta learning allows to obtain a pre-trained ML
model that can then be rapidly adapted to new situations by
fine-tuning it with a limited amount of additional samples.

In this paper, we propose a digital-twin-assisted meta-
learning framework for soft-failure localization. The digital twin
builds several mirror models based on the collected parameters
from physical optical networks [12–14], and simulates different
virtual scenarios (e.g., various soft-failure types) to generate
many training tasks and samples. These samples are used to pre-
train the meta-learning model. Then, the pre-trained model is
fed with a portion of the real network data to fine-tune the meta-
learning model. Once the model is fine-tuned, its performance
is tested on previously unseen data.

In this study, we extend our preliminary analysis presented
in [15], and propose a digital-twin-assisted meta-learning frame-
work to localize inter-/intra-node soft failures with limited real
samples. The main novel contribution of this paper with respect
to [15] can be summarized as follows:

1) This paper extends the description of inter-/intra-node
soft failures and introduces a new discussion on their effects.
Moreover, we introduce a new soft-failure categorization to
investigate the effect of different soft failures to optical networks.

2) We introduce a new method to simulate different soft fail-
ures via digital-twin-enabled mirror models to be used to gener-
ate various training tasks.

3) The proposed framework is compared against a new base-
line, i.e., a rule-based reasoning method. Moreover, we evaluate
these methods using a larger dataset than in the previous work
[15] and present extensive numerical results.

The rest of this paper is organized as follows. Section 2
overviews related works regarding existing soft-failure local-
ization methods with few samples. Section 3 introduces the
considered network scenario and our proposed inter-/intra-
node failure categorization for soft-failure localization. Section
4 describes the proposed digital-twin-assisted meta learning
framework. In Section 5, the experimental setup and results are
provided and discussed. Finally, Section 6 concludes this paper
and discusses possible lines of future research.

2. RELATED WORKS

ML has been used extensively in the context of optical network
management to address problems such as traffic prediction [16],
Quality-of-Transmission estimation [17], and Soft-Failure man-
agement [18]. While the adoption of ML for optical-network
management is on the rise, it is well known that ML models
are only as good as the data they are trained on. Regarding
soft-failure localization, there have been several approaches de-
veloped in recent years that aim to address the issue of limited
training data. In the following, we describe some of the most
relevant works and highlight the differences to our proposed
approach. In particular, we describe the use of 1) Data Augmen-
tation, Generative Adversarial Networks and Active Learning, 2)
Semi-Supervised ML, 3) Fault Injection, and 4) Transfer Learning
to address the issue of data scarcity.

Data augmentation increases the diversity of a dataset by cre-
ating modified or synthetic versions of the existing data [19]. It

provides more varied training samples without collecting new
data. A data augmentation technique, based on variational au-
toencoders, was proposed for failure management with the aim
of both increasing the amount of data and enhancing their qual-
ity [20], including soft failures as filter tightening, filter shift
and attenuation. The authors presented significant performance
improvement of 37.56% and of 66.5% in terms of reduction in
ML training times for soft-failure detection and identification,
respectively. Ref. [21] proposed a data-augmented Bayesian
network for node failure prediction, obtaining good accuracies.

Generative Adversarial Network (GAN) is an another efficient
approach to address data scarcity, since it utilizes adversarial
training to generate synthetic data and helps augment limited
samples for more robust model training. While GANs have
shown to perform very well when dealing with image data [22],
the efficacy of GANs in the context of soft-failure management
is still under investigation. Ref. [23] proposed a GAN-based
framework to extend training samples for soft-failure detection
and identification. The GAN model was trained with several
normal samples for soft-failure detection, and few failure sam-
ples are included in soft-failure identification. The identification
of soft failures achieved an accuracy exceeding 95%. Unfortu-
nately, training GANs models is a time-consuming procedure
that also requires a substantial amount of training data. Besides,
Active Learning is well-suited for situations featuring abundant
data, aiming to identify which data are more informative. This
method significantly optimizes datasets by strategically prioritiz-
ing the acquisition of new data points that are most informative
or challenging for an ML model [19]. However, active learning
has been mainly studied for Quality-of-Transmission estimation
[24, 25].

Semi-Supervised ML provides a new perspective to solve data
scarcity by efficiently jointly exploiting limited labeled data and
a vast amount of unlabeled data. Ref. [26] presented a value-
imputation and mask-estimation (VIME) based semi-supervised
ML framework for failure detection under limited labeled data.
This method improves the performance of failure detection by
using a large amount of unlabeled data, and achieved detection
F1 score and accuracy of 0.951 and 0.949, respectively. Ref. [27]
investigated failure detection based on semi-supervised anomaly
detection algorithm, which only used normal data in training
phase and used just few failure data (< 3%) during the validation
phase. The proposed solution obtained detection accuracy of
96.8% and F1 score of 0.9224. However, these solutions might
exhibit sensitivity to labeling errors, and the design and tuning
procedure proves to be challenging as well.

Fault Injection consists in intentionally introducing real faults
into networks to assess their resilience and collect failure data.
While fault injection is a valuable technique to address data
scarcity, it might encounter resistance from optical network op-
erators due to the unpredictable risks it introduces. There are
some research works about fault injection in edge computing
systems [28], network applications [29] and ML models [30].
However, fault injection remains scarcely utilized in practice in
optical networks.

Transfer Learning (TL) is an effective method to obtain highly-
accurate ML models with limited samples. The concept of TL
is to leverage knowledge gained from a source domain (e.g., a
network or a set of networks), which typically has abundant
data, and then transfer that knowledge to improve performance
on a target domain (e.g., a network with scarce data). Ref. [31]
studied domain adaptation and TL for failure detection and
identification across different lightpaths leveraging real optical
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Fig. 1. ROADM-based inter- and intra-node optical networks.

Table 1. Soft failures of inter-/intra-node components and corresponding effects.

Soft-Failure Types Soft-Failure Components Soft-Failure Effects

Amplification Inter-/intra-node Amplifiers Insufficient amplification (0% - 100% of normal amplification gains)

Attenuation Fiber spans, Splitters, WSSs, AWGs Extra attenuation (100% - 200% of normal attenuation values)

Launch Transponders Insufficient launch power (0% - 100% of normal launch powers)

SNR data from an optical testbed. Experimental results show
that 20% and 4% - 5% points of accuracy increase can be ob-
tained for failure detection and cause identification, respectively.
A similar approach has been adopted in Ref. [32], where TL
across different lightpaths is used for failure detection and lo-
calization. Moreover, TL is utilized to learn across tasks, i.e.,
transferring models from the soft-failure localization task to the
soft-failure identification task and vice-versa. Numerical results
show that cross-task failure detection and localization reaches
up to 12% or 25% improvement when considering failure local-
ization and detection, respectively. However, TL performance
significantly depends on correlation between source domain and
target domain, presenting a limitation to its scalability.

All these existing ML-based methods encountered limitations
such as susceptibility to domain shift, time-consuming training
procedure and unpredictable risks, etc. These limitations raise
concerns about the generalizability and reliability.

Meanwhile, we summarize several existing works of soft-
failure localization using methods other than Machine Learning.
Ref. [33] localized failures through the analysis of routing matri-
ces and alarm vectors based on monitoring data from coherent
transponders. Ref. [34] presented a fault propagation model
based on low-density check matrices to solve fault-location prob-
lems, and this model was validated in the communication net-
work of the China Southern Grid. Ref. [35] experimentally
demonstrated a soft-failure monitoring system, in which the
power features were monitored to localize soft failures. How-
ever, these strategies have the limited ability to adapt to evolving
optical systems and environments, as they rely on pre-defined
rules and heuristics.

3. NETWORK SCENARIO AND SOFT-FAILURES

Fig. 1 illustrates an example of a ROADM-based inter-/intra-
node optical network, wherein ROADM nodes are constructed
using a cost-effective broadcast and selected (B&S) architecture.

In this architecture, splitter is used to broadcast incoming signals,
which reduces the number of required WSSs. In the intra-node
network, each ROADM node is composed of multiple compo-
nents: 1) Transponders are used to send and receive live traffic;
2) Arrayed Waveguide Gratings (AWGs) are responsible for
(de)multiplexing different wavelengths; 3) WSSs are responsible
for dynamically routing wavelengths to different ports or direc-
tions within the ROADM node; 4) Splitters are responsible for
dividing incoming optical signals into multiple output paths, al-
lowing for signal distribution to various degrees within the node;
5) Amplifiers within ROADMs serve to amplify optical signals to
compensate the losses due to other intra-node components. The
above components are connected via intra-node fiber links. In
the inter-node network, several inter-node fiber spans support
long distance transmission between different ROADM nodes,
and inter-node amplifiers maintain signal integrity. Based on
this network architecture, multiple service requests are routed
passing through different inter- and intra-node components. For
example, one service request is illustrated by blue dotted lines
in Fig. 1. In this network scenario, signal power values are mon-
itored via OPMs to localize soft failures. We consider both sides
of each component as candidate positions for placing OPMs. In
real deployment, several OPMs (indicated as yellow squares)
are typically deployed [36], but not necessarily all the candidate
locations are equipped with OPMs. The power features collected
at OPMs can be used to localize soft failures based on different
methods.

Soft failures within ROADM-based optical networks stem
from multiple factors, encompassing environmental conditions,
device aging and human activity. As shown in Table 1, all soft
failures are divided into three categories according to their ef-
fects. Amplification soft failures emerge when inter-/intra-node
amplifiers fail to maintain sufficient gains to compensate for the
losses of other components. These soft failures lead to actual
amplification levels that fluctuate between 0% and 100% of the
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anticipated normal amplification gains (i.e, 100 %). Attenuation
soft failures contribute to additional signal loss, affecting differ-
ent components like fiber spans, splitters, WSSs and AWGs. The
extra attenuation ranges from 100% to 200% of normal values
(i.e, 100%). Launch soft failures are due to transponder malfunc-
tioning, potentially providing insufficient launch power. The
transponder is deemed as a soft-failure component when its
launch power falls below the normal value expected. In this
work, OPMs are strategically deployed to monitor real-time net-
work status. We focus on single-failure localization as multiple
components are unlikely to fail simultaneously.

We model the soft-failure localization in ROADM-based opti-
cal networks as a supervised multi-classification problem, where
each class denotes a soft-failure location, e.g., one specific loca-
tion of an AWG. The optical powers collected from OPMs are
used as input features, while soft-failure locations are encoded
as output labels. In the next section, we propose a new frame-
work to find the mapping between many input features and
single soft failure-location with only few samples.

4. DIGITAL-TWIN-ASSISTED META LEARNING

This section details a digital-twin-assisted meta learning frame-
work to localize soft failures with only limited real samples. We
first describe how to obtain multiple training tasks and sam-
ples based on digital-twin-enabled mirror models. Then, meta
learner is pre-trained with multiple training tasks and samples.
Subsequently, the pre-trained meta learner will be fine-tuned
and tested based on the collected real samples.

A. Digital Twin for Generating Training Tasks
Traditional supervised learning typically focuses on a single
task, modeled using a fixed dataset, where training samples are
regarded as the fundamental units for model training. Instead,
as depicted in Section 1, in meta-learning, training tasks and
testing tasks (each comprising multiple samples) are regarded as
the basic units for the learning procedure. In this subsection, we
show how to obtain multiple training tasks and samples using a
digital twin. The detailed pseudocode is presented in Algorithm
1.

Digital twin is a new simulation technology to build models
that mirror physical optical networks, also referred to as mirror
models. Digital twins collect several physical parameters from a
physical optical network, and hence can simulate and predict dif-
ferent systems evolutions, providing crucial assistance for physi-
cal optical networks. In our work, we build several mirror mod-
els via the digital twin to simulate various virtual soft-failure
scenarios. Thus, these virtual failure scenarios can provide suf-
ficient training tasks and samples to train a meta learner, i.e.,
meta-learning models. We take several parameters as the inputs:
1) Physical parameters are collected from the physical optical
network, including launch power and capacity of transponders,
amplifier gains of inter-/intra-node amplifiers, as well as inser-
tion losses of AWGs, splitters, WSSs and fiber spans. 2) Set S
denotes the service requests, including source/destination pairs
and capacity demands. 3) Set P denotes different OPM deploy-
ments. 4) Set F denotes different combinations of soft-failure
types. 5) Set K denotes the training samples for each training
task. We first construct a general mirror model according to the
collected parameters as outlined in Line 1, ensuring the mirror
model without any service requests, OPMs and soft failures. The
next step involves generating various different mirror models to
simulate distinct network scenarios, expanding upon the foun-

Algorithm 1. Digital-twin-enabled mirror models to generate
training tasks and samples.

Input: 1) physical parameters; 2) set S of service requests; 3)
set P of possible OPM deployments; 4) set F of combinations of
failure types; 5) set K of training samples for each training task
Output: training tasks T and samples

1: build a general mirror model according to the collected phys-
ical parameters

2: for s ∈ S, p ∈ P and f ∈ F do
3: replicate the general mirror model as a virtual scenario,

i.e., training task Ti (Ti ∈ T )
4: deploy OPMs with percentage p into the virtual scenario

5: generate s service requests and route them into the vir-
tual scenario

6: for training sample kTi ∈ K do
7: randomly select a soft failure location with type of f ,

and the failure effect is based on Table 1
8: calculate monitoring values for each placed OPM
9: divide all training samples (kTi ∈ K) into support set and

query set
10: take support set and query set to get training task Ti

11: return training task T and corresponding samples

dation established by the general mirror model. In this step, we
make a copy of the general mirror model, and select s service
requests, a deployment of OPMs such that a percentage p of
the maximum number of OPM is deployed, and combination
f of failure types (shown in Line 2 and 3). We consider that a
combination includes single or multiple failure types, e.g., only
amplification failure, or attenuation and launch failures. These
OPMs will be deployed using the uniform strategy referenced in
Line 4. The uniform strategy arranges all candidate OPM posi-
tions into a sequence, and then selects certain positions at fixed
intervals from this sequence to deploy OPMs, where the interval
is calculated according to percentage p [36]. Service requests are
generated with random source/destination pairs and capacity
demands, and then routed into the copied mirror model gener-
ated in Line 5. Subsequently, |K| training samples are generated
for current mirror model (Line 6). Each training sample consists
of several input power values monitored by OPMs and one soft
failure location. Lines 7 and 8 show how to obtain them, i.e.,
following the soft-failure categorization presented in Table 1, we
randomly select a soft failure location with type f , and calculate
the monitoring value for each deployed OPM. In meta-learning,
the dataset of each training task is divided into a support set and
a query set, where the support set helps the meta learner gener-
alize learning across training tasks, and query set evaluates the
meta learning’s performance on unseen data. Thus, we equally
divide the dataset of each training task into a support set and a
query set to pre-train and update the meta learner, as depicted
in Line 9. The above procedure is repeated until we obtain total
training tasks and samples (shown in Line 10 and 11).

To simplify comprehension of Algorithm 1, we illustrate an
example of the mirror models for simulating soft failures in Fig.
2. Multiple parameters are used to build the general mirror
model, including launch power of −1 dBm and capacity of 10
Gbps for transponders, inter-/intra-node amplifier gains of 10
dB and 20 dB, and insertion losses of 5 dB, 6 dB, 3 dB and 0.2
dB/km for AWGs, WSSs, splitters and fiber spans, respectively.
Besides, one service request is routed (indicated as blue dashed
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Fig. 2. Example of the mirror models for simulating soft fail-
ures based on the collected parameters from optical networks.

line) and OPMs (e.g., in a percentage of 60%) are placed to moni-
tor signal powers. We calculate the monitored values according
to routing results. For example, the monitored values of OPM-1
and OPM-2 are 4 dBm and 0.22 dBm, respectively2. We assume
the combination of failure types is attenuation failure, i.e., includ-
ing fiber spans, splitters, WSSs and AWGs. Thus, a soft failure
is generated, e.g., WSS-3, and it results in extra attenuation of 4
dB. Thus, OPM-2 obtains a new value of (0.22 − 4) dBm. For the
OPMs that are not crossed by any service request, like OPM-3,
their monitoring values are set by default to −50 dBm.

B. Meta Learning for Localizing Soft Failures
After generating multiple training tasks via digital twin, the
meta learner can undergo pre-training with the training tasks,
and subsequent fine-tuning and testing using the testing tasks.
Each testing task is further divided into a support set and a query
set to fine-tune and test the meta learner’s performance, respec-
tively. In this part, we detail the procedure of meta learning for
localizing soft failures with limited real samples.

2The initial default launch power of transponder is −1 dBm, and the normal
attenuation of AWG and gain of intra-amplifier are 5 dB and 10 dB. Thus, the
monitored value of OPM-1 is −1 − 5 + 10 = 4 dBm. In next component, splitter
results in the attenuation of 3 dB, and the power value becomes 1 dBm. Besides,
splitter will divide power values equally into three parts, and each of them is −3.78
dBm. Afterward, the WSS and intra-node amplifier will bring the attenuation of
6 dB and amplification of 10 dB, respectively. Therefore, the monitored value of
OPM-2 is 0.22 dBm.
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Fig. 3. (a) Pipeline of meta learning for failure localization; (b)
Updating procedure of meta learning.

Model Agnostic Meta Learning (MAML) is the most popular
meta-learning algorithm since it can be applied to any different
models regardless of its architecture or specific learning [37]. In
this work, we adopt MAML models and take ANNs as a meta
learner, which is denoted by a function fϕ with parameters ϕ.
Fig. 3(a) shows the pipeline of meta learning for soft-failure
localization and it consists of three steps. The first step is to pre-
train meta learner based on training tasks. As shown in Fig. 3(a),
digital twin is used to build multiple mirror models and then
provide training tasks and samples. In pre-training procedure,
we replicate the meta learner using function fθi , which corre-
sponds to training task Ti. Meta learning adapts to training task
Ti based on the corresponding support set, and updates model
parameters θi according to its loss function. The following Eq. (1)
presents the adaptation procedure of training task Ti:

θ
′

i = θi − α · ∇θiL
s
Ti
( fθi ) (1)

where θ
′

i denotes the updated model parameters, α is a learning
rate, Ls

Ti
denotes the cross-entropy loss function of the support

set in training task Ti. This procedure is detailed in step 1-1, as
illustrated in Fig. 3(a).

In next step 1-2, we calculate the gradient for fθ′i
based on

query set, and then update the meta learner fϕi−1 with same
gradient:

ϕi = ϕi−1 − β · ∇ϕi−1 ∑
Ti

Lq
Ti
( fθ′i

) (2)

where ϕi represents the updated model parameters of training
task Ti, β is a learning rate and Lq

Ti
is the cross-entropy loss of

query set in training task Ti.
Fig. 3(b) details the pre-training procedure of meta learning,

where ϕ0 denotes the initial model parameters. During each
iteration, e.g., for training task T1, model parameters ϕ0 are
replicated to θ1, and then updated to θ

′
1 based on support set 1.

Afterwards, meta learner ϕ0 undergoes an update to ϕ1 using
an identical gradient as θ

′
1. The procedure described above will

be replicated for every training task, and pre-trained model
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Fig. 4. Experimental testbed topology.

parameters ϕn are applied as the initial models in next fine-
tuning.

Following pre-training on the training tasks, we initialize
the fine-tuned meta learner using the pre-trained model fϕn as
depicted in step 2 of Fig. 3(a). In the next step 3, we collect a
testing task Tj from the physical network and use its support set
to update meta learner fϕn by Eq. (1). Meanwhile, the query set
is responsible for testing the fine-tuned meta learner, and testing
results are measured using localizing accuracy of soft failures.

5. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental setup, including the
testbed network, experimental procedure and parameters of the
proposed solutions. In addition, the experimental results are
shown and discussed.

A. Experimental Setup
We evaluate the proposed solution in the 9-node topology shown
in Fig. 4. For mirror models, we consider that each node con-
tains three transponders, and for each of them the launch power
is −1 dBm. To compensate the attenuation of other components,
the gains of inter-/intra-node amplifiers are 15 dB and 20 dB,
respectively. The insertion losses of each WSS, splitter and AWG
are set as 6 dB, 2 dB and 6 dB, respectively. Fiber spans range
from 20 km to 60 km, with 0.2 dB/km attenuation. Besides, we
ignore the loss incurred by connectors and intra-node fibers due
to their typically minimal impact on the overall attenuation. In
our work, these mirror models provide different training tasks,
where the number of service requests ranges from 20 to 100 (step
by 20), percentage of OPMs varies from 20% to 100% (step by
20%), and combination of failure types consists of 7 distinct ele-
ments, i.e., amplification (Amp.), attenuation (Att.), launch (Lau.),
Amp.&Att., Amp.&Lau., Att.&Lau. and Amp.&Att.&Lau.. There-
fore, the total number of mirror models is 175 (i.e., 5× 5× 7), and
each of them corresponds to a training task. Testing tasks are
collected from a testbed shown in Fig. 5, where traffic generator
and analysis (TGA) equipment is connected with transponders
to inject live traffic, variable optical attenuator (VOA) simulates
different soft failures, and OPM cards monitor network status
(i.e., optical power). In our work, the locations of soft failures
are randomly selected and their effects are based on the failure
categorization in Table 1.

The proposed meta learner is composed of ANN models with
324 × 300 × 216 neuron architectures, and the learning rates α
and β are configured to be 0.001. We consider following three
benchmark methods: 1) Rule-based Reasoning method iterates
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Fig. 5. Experimental testbed and procedure.
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through the entire routing results of service requests, and finds
the initial occurrence of an abnormal OPM among total abnormal
OPMs. The component nearest to the abnormal OPM is the
likely failure location. 2) Transfer Learning method is pre-trained
using the same training-tasks data and then retrains all neural
layers based on the testing-tasks data [32]. Subsequently, the
retrained model is tested to show localization accuracy. 3) No-
Pretraining method consists of training only using testing tasks
data. In addition, other parameters in all ML-based benchmarks
remain consistent with the meta learner, including learning rates
and neuron architectures. We pre-train, fine-tune and test all
approaches on a personal computer (equipped with AMD Ryzen-
7 5800H CPU, and 16-GB RAM). Under this setting, meta learner
requires about 5 minutes for pre-training, and 1-2 minutes for
fine-tuning. The testing phase of meta learner requires a limited
time, i.e., about 1 millisecond for a single sample.

B. Experimental Results and Discussions

In this subsection, we present the numerical results under differ-
ent settings and discuss the impact of different system parame-
ters on soft-failure localization.

B.1. Testing Accuracy under Different Percentages of OPMs

Fig. 6 reports testing accuracy of the proposed meta-learning
approach, compared to the three baselines, under different per-
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centages of OPMs. OPMs are deployed as described in Section.
3, each training task includes 50 training samples, the number
of service requests is 90, and failure types contain amplification,
attenuation and launch failures (Amp. & Att. & Lau.).

Experimental results confirm that the proposed meta learning
approach achieves higher localization accuracy for all the val-
ues of percentages of OPMs, where the horizontal dotted lines
denote average accuracies of different methods. More precisely,
meta learning improves accuracy of 13.5%, 24.2% and 45.1% on
average compared to rule-based reasoning, transfer learning
and no-pretraining, respectively. Note that rule-based reasoning
method achieves higher accuracy than other benchmarks. The
reason is that all ML-based methods are fine-tuned (or trained)
only using limited real samples. In addition, we can observe that
adding OPMs improves testing accuracy in localizing soft fail-
ures, in all the four methods, as more OPMs enable more precise
monitoring. However, this also leads to an increase in CapEx
for network operators. Another significant trend emerging from
these results is the rapid increase in localization accuracy as the
percentage of OPMs shifts from 50% to 60%. This trend suggests
that deploying OPMs at levels exceeding 50% is a favorable
choice for monitoring network status, but further investigation
is needed to determine the optimal deployment of OPMs.

B.2. Testing Accuracy under Different Combinations of Failure Types

We now analyze the testing accuracy across various combina-
tions of failure types, while maintaining a constant number of
training samples as detailed in Section 5.B.1. In this scenario,
there are 90 service requests and with a percentage of OPMs
equal to 80%.

Fig. 7 shows the testing results under a single failure type, i.e.,
only attenuation failure, amplification failure or launch failures.
The results indicate that meta learning improves accuracy of
9.7%, 16.7% and 54% on average compared to rule-based reason-
ing, transfer learning and no-pretraining methods, respectively.
The failure type does not greatly affect localization accuracy,
as different soft failures all result in abnormal monitoring val-
ues. Meanwhile, Fig. 8 shows the localization accuracy under
various combinations of multiple failure types. There are four
failure combinations: 1) attenuation failure and amplification
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Fig. 9. Pre-training loss values under different number of train-
ing epochs.

failure, i.e., Att.&Amp., 2) attenuation failure and launch failure,
i.e., Att.&Lau., 3) amplification failure and launch failure, i.e.,
Amp.&Lau., and 4) attenuation failure, amplification failure and
launch failure, i.e., Att.&Amp.&Lau. The results indicate that,
in comparison to a single failure type, meta learning obtains
similar localizing accuracy, while the benchmarks experience
a decrease in localizing accuracy. For example, localization ac-
curacy of no-pretraining decreases 9% when comparing single
failure type to scenarios involving multiple failure types. The
above results demonstrate that the proposed meta learning has
a strong adaptability for different soft failures.

B.3. Pre-training Loss under Different Training Epochs

In this subsection, we visualize the pre-training procedure and il-
lustrate the impact of different sample sizes within each training
task on experimental results. Fig. 9 compares the pre-training
loss of transfer learning vs. the proposed meta learning ap-
proach, for varying numbers of training epochs. Each training
epoch comprises 175 distinct training tasks, as detailed in Section
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5.A.
The trend indicates a rapid decrease in pre-training loss val-

ues, followed by convergence to stable values after surpassing
200 training epochs. Furthermore, the pre-training loss values
are plotted for increasing sample sizes (from 10 to 90) within
each training task. It can be observed that a higher number
of samples contributes to the decrease of the pre-training loss,
since a larger sample size enables the ML models to capture
more features of soft failures. In addition, meta learning is less
stable than transfer learning. The reason is that transfer learning
primarily aims to minimize loss values across all training tasks,
whereas meta learning prioritizes enhancing adaptability and
swift learning capabilities for novel tasks.

6. CONCLUSION

In this study, we investigated the problem of soft-failure local-
ization, within inter-/intra-node components of ROADM-based
optical networks, in case of limited availability of training sam-
ples. We categorized some potential soft failures between inter-
and intra-node components and devised a failure categoriza-
tion to facilitate our investigation. Meanwhile, a digital-twin-
assisted meta-learning framework is proposed to achieve soft-
failure localization. This framework leverages digital twins to
construct mirror models and provide multiple training tasks.
Subsequently, meta learning is trained to effectively localize soft
failures. The proposed framework is evaluated in an 9-node
testbed network, and extensive experimental results show that
the proposed meta learning improves localization accuracy by
approximately 15%, 33% and 54% on average compared to rule-
based reasoning, transfer learning and no-pretraining methods,
respectively. The proposed approach can accurately locate soft
failures with limited samples.

Considering soft failures localization in ROADM-based op-
tical networks, there are several crucial challenges that require
to be further investigated. For instance, when the telemetry
interval is large, multiple components may fail simultaneously,
especially as the degree of ROADMs increases significantly. On
the other hand, soft-failure localization depends on extensive
network telemetry, requiring intricate design for network or-
chestration and management. In the future, we plan to study
multi-soft-failure localization approaches and design the de-
tailed control procedure.
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