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Abstract. With the constant growth of objects in orbit, the monitoring and cataloging of space 
population is essential. Light curves obtained from ground stations support this point, providing 
valuable information about the observed objects. The idea of using them to identify an object 
through correlation with a catalogued reference takes hold from their wide availability. This article 
focuses on the development of a tool for the analysis and correlation of two light curves, ARIEL. 
This tool is built through neural networks and declined in three strategies, each with its own goal: 
ROGUE, LINDEN and SIERRA. The light curves were retrieved via the database managed by the 
Mini-MegaTORTORA observatory and filtered using the Savitzky-Golay filter. 
Introduction 
The near-Earth environment is getting more populated, as commercial applications become a 
substantial part of the space economy, increasing the risk of collisions and fragmentations [1]. To 
keep track of this expanding population and to assess the risk of in-orbit collision and 
fragmentation, space agencies deploy Space Surveillance and Tracking (SST) systems [2]. 
Ground-based stations allow to retrieve orbital data of human-made objects [3]. When dealing with 
optical telescopes, photometry analysis can be performed, and light curves are generated as a 
consequence. Light curves, which represent object brightness variations, provide information on 
orbit regime, tumbling motion, and spacecraft geometry, enabling characterization of observed 
objects. 

In general, traditional estimation-based methods, like the so-called Light Curve Inversion, have 
been extensively used for the identification of space objects [4]. However, complex models have 
to be considered and the resulting analysis is computationally time-consuming. Consequently, the 
state of the art is now drifting to the use of machine learning with bespoke Convolutional Neural 
Networks (CNN) or Recursive Neural Networks (RNN) ensuring up to 90% prediction accuracy 
[5][6].  

This project proposes a novel approach to light curve characterization through the Machine 
Learning based Light curve Analysis (ARIEL) tool. Raw light curves are recovered from the 
database managed by the Mini-MegaTORTORA (MMT-9) observatory [7] and then pre-
processed, before being fed into three different neural networks (NN): ROGUE, LINDEN, and 
SIERRA. 

Performance for these networks is then assessed using different datasets obtained by varying 
the number of spacecraft platforms. 
Theoretical background 
As mentioned above, light curves are recovered from shots acquired with optical telescopes. An 
example of the observatory is represented by MMT-9 system [6], which predisposes a constantly 
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updated database for human-made space objects. From that database, the main information 
recovered are the space object characteristics and corresponding light curves retrieved, each 
associated with a track ID and time-tag. The data are summarized in the following Table. 

 
Table 1 – Data recovery from MMT-9 database 

Data Number of objects 
Total number of objects recovered 6.314 
Total number of light curves available Over 150.000 
Objects per category  

Type of orbit LEO: 5.206; GEO: 174; Other: 934 
Attitude regime Periodic: 985; Aperiodic: 1550;  

Non variable: 3779 
Type of object Rocket bodies: 827; Debris: 839;  

Satellites: 4648 
 
Before entering the NN, however, these raw light curves are pre-processed using the Savitzky-

Golay filter [8], with smoothing properties particularly indicated for reducing high frequency 
noise. The outcome can be seen in Figure 1, where the grey signal is the raw light curve, while the 

red is the filtered one. 
To assess the performances of the 

ARIEL networks, the focus was mainly on 
objects belonging to LEO or Low-Medium 
Orbit (LMO) regions, with periodic or 
aperiodic tumbling motion. The 
corresponding light curves have been 
filtered and stored in datasets, accompanied 
by the name and the type of object 
considered, i.e. Rocket body, Debris or 
Satellite. To avoid any bias towards a 
specific spacecraft, different platforms for 
each type are  considered. For example, a 
dataset considers light curves belonging to 

Iridium and NOAA objects, but both labeled as “Satellites” – as stated in the MMT-9 database. 
Two different sets have therefore been considered. First, the Nominal dataset represent nominal 
conditions of operation of ARIEL, meaning a limited number of platforms a first version featuring 
periodic objects only, and a following one including aperiodic too. Then, a Variability test assesses 
the extent of ARIEL capabilities: different datasets are built considering an increasing number of 
platforms for each dataset, taking care that the three types data distribution is balanced out. All the 
objects considered have periodic or aperiodic attitude regime.  

Deep learning networks are a subset of Machine learning models. Different NN structures can 
also be employed such as CNN and RNN: CNNs are particularly indicated to retain the general 
features of the input, while, RNN, such as the Long-Short Term Memory (LSTM) cells, take into 
account the input’s time-dependence. After the NN setup, it needs to be trained and its performance 
assessed – mainly in terms of predictions’ Accuracy. Particular attention has to be given in the 
model structure and dataset provided to avoid over- or underfitting of the network. 

Siamese networks have a slightly different architecture [8]: the overall dataset is divided in 
Anchor, the reference, Positive and Negative, the closest and the farthest prediction from the 
reference. Then, an embedding model extracts features from the inputs and the network evaluates 

Figure 1 - Filtered light curve (cropped) 
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the distance Anchor-Positive and Anchor-Negative in order to bring the former closer and the latter 
farther. Thus a dedicated metrics, Similarity, is employed. 
Architectures 
Three different architectures are developed inside the ARIEL framework: ROGUE, LINDEN and 
SIERRA. 

The Rocket bodies Light curves Identification (ROGUE) network aims at recognizing Rocket 
bodies among light curves of different types. The structure is a combination of CNN and LSTM 
cells. This test is conceived to verify the capability of the NN to identify a defined category of 
spacecraft. 

The Light curve Identification and Correlation 
(LINDEN) NN compares two light curves and 
determines the correlation degree among the twos. 
Two models have to be therefore developed as shown 
in Figure 2: 

- the Feature extraction part analyses the light 
curves and predicts the objects’ type 

- the Correlation evaluation block which, given 
the above-mentioned predictions, evaluates the 
distance between them. 

The Feature extraction model is an improved 
version of the ROGUE model and the output gives a 
prediction vector over the class labels. 

After having trained the Feature extraction part, it 
is inserted in the overall LINDEN Correlation block 
where the correlation between the prediction vectors is performed, thanks to a normalized dot 
product. As the Feature extraction model is frozen within the Correlation block, this allows to 
compute a correlation degree without being influenced by uncertainties in the model. 

Siamese Network for Light curves Correlation (SIERRA) is a Siamese Network, which 
encompasses the above-mentioned Feature extraction block as embedding model.  
Results 

Hereafter the results for ARIEL networks are 
summarized, obtained considering the above-
mentioned datasets. The training has been performed 
using Google Colaboratory, where due to the limited 
GPU time availability, it has been divided in sessions 
from 100 to 200 epochs. The results are analyzed 
through confusion matrices, which compare predicted 
with actual labels. The more intense the color of the 
cell, the higher the prediction accuracy. An example 
can be shown in Figure 3 – where the results for 
LINDEN Feature Extraction for the second Nominal 
dataset are shown. 

ROGUE: The results show around 97% accuracy 
for Nominal datasets while a drop can be observed for 
Variability sets – ranging from 95% to around 70% 

accuracy for increasing number of platforms. All in all, ROGUE can best differentiate the Rocket 
body type among up to 20 different platforms. However Nominal datasets do not present 
overfitting as Variability sets do.  

Figure 2 - LINDEN Structure 

Figure 3 - Confusion matrix for LINDEN 
Feature extraction 
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LINDEN: As previously mentioned, the Feature extraction block is trained separately and then 
inserted in the overall Correlation block. 

Feature extraction block: The results display over 95% accuracy in differentiating the type of 
objects inputted, for Nominal sets. Variability datasets still reach over 90% accuracy for lower 
numbers of satellite platforms, while severe overfitting can be noticed with increasing variety, with 
accuracy dropping down to 50% in the best-performing model. Moreover, the Debris type is 
completely missing among output predictions, which enforces the idea that they are more difficult 
to categorize due to their nature.  

Correlation block: The performances observed prove that, as the levels reached in the Feature 
extraction block leave room for uncertainty, the results obtained in the Correlation block are quite 
scarce, in particular for the Variability datasets. Overfitting is observed also in Nominal conditions 
becoming even more relevant for the Variability datasets. However, the confusion observed is still 
below the 10% bound. 

All in all, LINDEN proves its capabilities by granting an accurate type recognition, which 
allows correlation between the two inputs to be established properly. However only up to 20 
platforms can be considered at the same time in order to obtain accurate results. 

SIERRA: As expected, the overfitting present in the Feature extraction block propagates to the 
NN. The Similarity obtained in the different datasets is roughly giving a 10 % gap, therefore the 
Positive and Negative outcomes are properly distinguished. While using the Variability dataset 
with the lowest number of platforms – around 20 –, a remarkable confusion was observed. This 
was maybe due to Anchor and Negative having common characteristics not considered during the 
Feature extraction block. 
Conclusions 
ARIEL provides a strategy to identify objects according to their type and to establish a degree of 
correlation between the unknown object and a catalogued one. This is done by the analysis of light 
curves through a deep learning model combining CNN and LSTM layers that grasp general and 
time-dependent features at the same time. Three architectures are thus proposed, each focusing on 
a different aspect of the problem at hand: ROGUE, LINDEN and SIERRA. 

The light curves are obtained from the MMT-9 database and have been pre-processed, in 
particular filtered with the Savitzky-Golay smoothing filter. 

After extensive training using different datasets, the performances have been assessed, 
showcasing a resulting accuracy of around 90% in most test cases. The significant gap observed 
for the similarity in SIERRA proves these networks predict the type of object with little confusion. 
However these NN are limited by datasets including diverse platforms, where accurate type 
recognition is hampered, thus preventing the correlation to be performed. Moreover, overfitting is 
omnipresent: in some cases it becomes substantial, therefore impacting the accuracy of the 
predictions done. 

Some options can hence be proposed to improve ARIEL, e.g. consider a smaller number of 
different platforms or restrict the problem to the recognition of platforms among a same type, or a 
same attitude regime (i.e. periodic, aperiodic or non variable), or even focus on the problem of the 
Debris type recognition. In fact it is the most mistaken type, as some of these objects are unused 
satellites or intact rocket body parts. Therefore, a dedicated analysis among Debris may be needed 
if those objects are involved. 
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