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Abstract. In this paper we summarize some known facts on slice topol-
ogy in the quaternionic case, and we deepen some of them by proving
new results and discussing some examples. We then show, following Dou
et al. (A representation formula for slice regular functions over slice-
cones in several variables, arXiv:2011.13770, 2020), how this setting al-
lows us to generalize slice analysis to the general case of functions with
values in a real left alternative algebra, which includes the case of slice
monogenic functions with values in Clifford algebra. Moreover, we fur-
ther extend slice analysis, in one and several variables, to functions with
values in a Euclidean space of even dimension. In this framework, we
study the domains of slice regularity, we prove some extension properties
and the validity of a Taylor expansion for a slice regular function.

Mathematics Subject Classification. Primary 30G35; Secondary 32A30,
32D05.

Keywords. Domains of holomorphy, Slice regular functions,
Representation formula, Slice topology, Several variables.

1. Introduction

Quaternions are a kind of hypercomplex numbers first described by Hamil-
ton in 1843. With the development of the theory of holomorphic functions
in complex analysis and its generalizations to higher dimensional cases, sim-
ilar theories for quaternions were established. The most well-known function
theory in quaternionic analysis, was initiated by Moisil and Fueter [20] who,
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with his school, greatly contributed to the development of the theory. The
holomorphy in quaternionic analysis is defined via the so-called Cauchy–
Riemann–Fueter equation

∂f

∂x1
+ i

∂f

∂x2
+ j

∂f

∂x3
+ k

∂f

∂x4
= 0,

and has been widely studied, see e.g. [10,31,32,40].
Since the class of functions considered by Moisil and Fueter does not

contain neither the identity function nor any other monomial function f(q) =
qn, Cullen [15] considered another class, using the notion of intrinsic functions
introduced by Rinehart in [37]. Inspired by Cullen’s approach, in [25] Gentili
and Struppa started the study of a new theory of quaternionic functions which
are holomorphic in a suitable sense. This theory includes convergent power
series of the form

∑
n∈N

qnan and it is nowadays known as slice quaternionic
analysis; it has been widely studied in the past fifteen years, see [8,12,21] and
also the books [4,13,23]. Slice analysis has been extended to octonions [26],
Clifford algebras [11] and real alternative ∗-algebra [27,30]. The richness of
slice analysis in one variable makes it natural to look for generalization to
several variables and in fact the quaternonic case is considered in [14], the
case of Clifford algebras in [28], the one of octonions in [36] and finally, the
real alternative ∗-algebras case in [29]. The most general setting of Euclidean
spaces is treated in [18] and in this paper.

A fundamental role in slice quaternionic analysis is played by the so-
called representation formula, see [7,9]. The formula allows to extend many
known results in complex analysis to slice quaternionic analysis, e.g. the
quaternionic power series expansion [22,39], geometric function theory [34,
35,41,42], results in quaternionic Schur analysis [3] and in quaternionic oper-
ator theory [2,5,6]. However, the representation formula just works on axially
symmetric s-domains (see [7] for the definition). This causes difficulties while
considering more general, non necessarily axially symmetric, domains.

In the recent paper [17], we generalize the representation formula to
non-axially symmetric sets. To this end, a crucial tool is the use of a suitable
topology on H, finer than the Euclidean one, called slice topology and denoted
by τs. In this paper we deepen the study of the slice topology also proving
that it is not metrizable.

One can consider functions defined on open sets in this topology, hence
enlarging the class of slice regular functions. It is important to note that,
in this framework, the conditions under which analytic continuation for slice
regular functions is possible are weaker than the conditions in use with the
Euclidean topology. This fact makes it easier the study of analogues of the
Riemann domains (Riemann domains over (H, τs)) and generalized mani-
folds over (H, τs). In the slice topology the class of ‘domains of holomor-
phy’ includes the axially symmetric open sets and also the so-called hyper-
σ-polydiscs that we shall introduce in Sect. 7.

We then show how the notion of slice regularity can be given for func-
tions with values in a finite-dimensional left alternative algebra, see Sect. 4,
and also for functions with values in the Euclidean space R

2n. It is important
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to note that slice regularity in this paper is meant in the original sense of
Gentili and Struppa, see [25] (we shall refer to it as the weak slice regularity)
and not in the sense of Ghiloni and Perotti [29] (regularity in their sense may
also be called strong slice regularity). Moreover, we also consider the several
variables case thus giving rise to results of a more general validity than those
ones available in the literature. Our approach is rather new and it is spread
in various papers, see [17–19], and the main purpose of this work is to give
a unified overview of the main ideas, complemented with some other new
results and examples.

The paper is organized in seven sections, besides this introduction. In
Sect. 2 we introduce the slice topology in the quaternionic case and we prove
some of its properties among which the non-metrizability. In Sect. 3 we discuss
the definition of quaternionic slice regular functions, some main properties
and examples. In Sect. 4 we consider the generalization to the case of functions
with values in a left alternative algebra and defined on the quadratic cone
whereas in Sect. 5 we come to the case of functions with values in a real
Euclidean space, even dimensional, and defined on the so-called slice-cones.
In this extremely general setting we can prove, in Sect. 6, an extension result.
The domains of slice regularity are discussed in Sect. 7, while a Taylor formula
is proved in Sect. 8.

2. Slice Topology

In this section, we define the so called slice topology τs on H, originally intro-
duced in [17], we state some of its properties and we discuss some examples.
We shall show, in particular, that slice topology has some special features
near the real axis and this fact has important consequences when considering
connectedness.

We recall that the algebra of real quaternions H consists of elements of
the form q = x0 + x1i + x2j + x3k where the imaginary units i, j, k satisfy
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The set of imaginary units in H is defined by

S := {q ∈ H : q2 = −1}.

The slice topology that we introduce below is designed around the notion
of slice regularity, see Definition 3.1, and is based on the following:

Definition 2.1. A subset Ω of H is called slice-open, if

ΩI := Ω ∩ CI

is open in CI for any I ∈ S.

The following result is easily proved with classical arguments:

Lemma 2.2. The family

τs(H) := {Ω ⊂ H : Ω is slice-open}
defines a topology of H.
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Definition 2.3. We call τs(H) the slice topology on H. Open sets, connected
sets and paths in the slice topology are called slice-open sets, slice-connected
sets and slice-paths. A domain in the slice topology is called slice topology-
domain or, in short, st-domain.

A similar terminology will be used for all the other notions in the slice
topology. We made an exception and we do not use the term slice-domain to
denote a domain in the slice topology, since this notion is already used in the
literature to denote something different. In fact a set Ω in H is called classical
slice domain, in short s-domain, if it is a domain in the Euclidean topology
such that ΩR := Ω ∩ R �= ∅, and ΩI is a domain in CI for any I ∈ S.

It is immediate from the definition that for any I ∈ S, the subspace
topology τs(CI\R) of τs(H) coincides the Euclidean topology τ(CI\R). How-
ever, τs is quite different from Euclidean topology near R as Example 3.2 in
[17] shows.

The peculiarity of the topology τs near R appears, in particular, in the
notion of connectedness, so we need to introduce another useful notion.

Definition 2.4. Let Ω ⊂ H and let ΩR := Ω ∩ R. The set Ω is called real-
connected if ΩR �= ∅ and ΩR is connected in τ(R) or if ΩR = ∅.

For any q ∈ H\R, there is r ∈ R+ such that the ball BI(q, r) in CI does
not intersect R. Note that for such r > 0, BI(q, r) ∩ R = ∅ is connected in R.
It is then clear that the slice topology has a basis of real-connected sets at
any point outside R, and the following result implies that slice topology has
a real-connected basis also near R.

Proposition 2.5. For any slice-open set Ω in H and q ∈ Ω, there is a real-
connected st-domain U ⊂ Ω containing q.

It is useful to explain that such a U can be constructed as the slice-
connected component of the set

(Ω\ΩR) ∪ A

containing q. Here when q ∈ R, we take A to be the connected component of
ΩR containing q in R and when q �∈ R we set A := ∅.

Now we describe slice-connectedness of real-connected slice-domains by
using suitable slice-paths.

Definition 2.6. A path γ in (H, τ) is called on a slice, if γ ⊂ CI for some
I ∈ S.

One can prove, see [17, Proposition 3.6], that any path on a slice is a
slice-path. Moreover we have, see [17, Proposition 3.8]:

Proposition 2.7. For each real-connected st-domain U , the following asser-
tions hold:

(i) If UR = ∅, then U ⊂ CI for some I ∈ S.
(ii) If UR �= ∅, then for each q ∈ U and x ∈ UR, there is a path on a slice

from q to x.
(iii) UI is a domain in CI for each I ∈ S.
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(iv) For each p, q ∈ U , there are two paths on a slice γ1, γ2 in U such that
γ1(1) = γ2(0) and γ1γ2 is a slice-path from p to q.

By Propositions 2.5 and 2.7 (iv), we deduce the next important result:

Proposition 2.8. The topological space (H, τs) is connected, local path-connec-
ted and path-connected.

Corollary 2.9. A set Ω ⊂ H is an st-domain if ΩR �= ∅ and ΩI is a domain
in CI for any I ∈ S.

By Corollary 2.9, any s-domain is an st-domain. Therefore the notion of
st-domain is a generalization of the notion of s-domain. However, the converse
is not true since not every st-domain Ω is an s-domain, not even when Ω is
a domain in H, as Example 3.13 in [17] shows. In that example we consider
the set

Ω := B(0, 2) ∪ B(6, 2) ∪
{

q ∈ H : dist (q − I, [0, 6]) <
1
2

}

,

which is a domain in τ(H). Let us fix I ∈ S and let J ∈ S be such that J⊥I.
Then

ΩJ = BJ (0, 2) ∪ BJ (6, 2)

is not connected in τ(CJ ), and as a consequence, Ω is not an s-domain.
However, Ω is slice-connected, because any point in Ω can be connected to 0
or 6 by a path in a slice, and 0 can be connected to 6 by a path in CI . So Ω
is an st-domain since ΩJ is open in CJ for any J ∈ S.

We note that in the quaternionic case, besides the Euclidean and the
slice topology, we can also consider the topology introduced in [22] and based
on the so-called σ-distance which is defined by

σ(q, p) :=

{ |q − p|, ∃ I ∈ S s.t. p, q ∈ CI ,
√

(Re(q − p))2 + |Im(q)|2 + |Im(p)|2 otherwise.

The σ-balls centered at q ∈ H, namely the balls according to the σ-distance,
are defined by:

Σ(p, r) := {q ∈ H : σ(p, q) < r}.

The slice topology is finer than the topology τσ induced by the σ-distance.
In fact, the relations between the topologies τ, τσ, τs is described in the next
result:

Proposition 2.10. The topologies τ, τσ, τs are such that

τ � τσ � τs.

Proof. The inclusion τ � τσ is immediate. It is also immediate to check that
τσ ⊂ τs. To prove that the second inclusion is strict, we need to show a set
Ω ∈ τs\τσ. To construct such a set we fix I ∈ S and we consider the slice-open
set Ω in H defined by

Ω :=
⋃

J∈S

ΩJ , (2.1)
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where

ΩJ :=

⎧
⎪⎨

⎪⎩

{x + yJ ∈ CJ : x2 +
y2

dist(J, CI)
< 1}, J �= ±I,

{x + yJ ∈ CJ : x2 + y2 < 1}, J = ±I,

and dist(J, CI) is the Euclidean distance in H from J to CI . The set Ω is
evidently a slice-open set. Since H\Ω ⊃ CJ\ΩJ , we have

σ(0, H\Ω) ≤ σ(0, CJ\ΩJ ) = distCJ
(0, CJ\ΩJ ), (2.2)

where distCJ
(0, CJ\ΩJ ) is the Euclidean distance between 0 and CJ\ΩJ in

CJ . Since

lim
J→I,J �=I

[distCJ
(0, CJ\ΩJ )] = 0, (2.3)

by (2.2) and (2.3), we have

σ(0, H\Ω) = 0.

Hence, 0 is not an interior point in Ω in the topology τσ. We deduce that Ω
is not open in τσ. �

Another peculiarity of the slice topology is described in the next propo-
sition:

Proposition 2.11. The topology τs is not a metrizable topology.

Proof. Suppose that τs is induced by a metric ds. Then the set

O := {q ∈ H : ds(q, 0) < 1}
is a slice-open set in τs. For any ε > 0 we introduce the set

Sε := {I ∈ S : BI(0, ε) ⊂ O}, (2.4)

and we denote by |Sε| its cardinality. We claim that |Sε| is finite. Assume the
contrary. Then there are J1, . . . , Jk, . . . ∈ Sε with Jı �= ±Jj. Set

U [I] =

{{
x + yJk : x2 + y2

(1/k2) < 1
}

, I = ±Jk, for some k ∈ N+,
{
x + yI : x2 + y2 < 1

}
, otherwise.

The set

U :=
⋃

I∈S

U [I]

is a slice-open set. However

ds(0, H\U) ≤ lim
k→+∞

ds(0, CJk
\U [Jk]) = lim

k→+∞
1
k

= 0,

so 0 is not an interior point of U in the slice topology, and U is not slice-open,
which is a contradiction. Hence |Sε| is finite.

On the other hand, for each I ∈ S,

distCI
(0, H\OI) > 0,
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since OI is open in CI . Then I ∈ S 1
n

for some n ∈ N+ and

S =
⋃

k∈N+

S 1
k
.

Since the cardinality of S 1
k

is finite, we deduce that S is a countable set, which
is absurd. Hence τs cannot be induced by any metric. �

3. Main Results and Examples

The definition of slice regular functions recalled below is well known since
[24], but the novelty here is that we work with the slice topology and the
functions are defined on slice-open sets in H. We present some results below,
whose proof is given in [17], and we discuss some examples that further clarify
how our approach with the slice topology gives a richer function theory and
allows more general situations.

Definition 3.1. Let Ω be a slice-open set in H. A function f : Ω → H is called
(left) slice regular, if fI := f |ΩI

is left holomorphic for any I ∈ S, i.e. if f is
real differentiable and satisfies

1
2

(
∂

∂x
+ I

∂

∂y

)

f(x + yI) = 0 on ΩI ,

where

ΩI := Ω ∩ CI .

The following result is known as Splitting Lemma and it is based on
writing the values of a quaternionic function by means of two complex-valued
functions, and for this reason the result holds also in this framework:

Lemma 3.2. (Splitting Lemma) Let Ω ∈ τs(H). A function f : Ω → H is
slice regular, if and only if for all I, J ∈ S with I⊥J , there are two CI-valued
holomorphic functions F,G : ΩI → CI such that fI = F + GJ .

A result which is classical for holomorphic functions is the identity prin-
ciple. This result holds also for slice regular functions defined on domains in
the Euclidean topology, but when considering the slice topology in H, its
proof is more delicate. We recall its statement here since it is crucial to prove
various results:

Theorem 3.3. (Identity Principle) Let Ω be an st-domain, namely a domain
in τs(H), and let f, g : Ω → H be slice regular. If f and g coincide on a subset
of ΩI with an accumulation point in ΩI for some I ∈ S, then f = g on Ω.

Another crucial result for slice regular functions is the so-called exten-
sion formula, see [7, Theorem 4.2], which is used to prove the general rep-
resentation formula [7, Theorem 3.2] in the class of axially symmetric slice
domains. In [17], we have extended this result to a more general setting and
we proved the following:
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Theorem 3.4. (Extension Theorem) Let I1, I2 ∈ S with I1 �= I2, U1 ∈ τ(CI1)
and U2 ∈ τ(CI2). If f : U1 ∪ U2 → H is a function such that f |U1 and f |U2

are holomorphic, then the function f |V + admits a slice regular extension f̃
to V +Δ ∈ τs(H).

Moreover, for each domain W in τs(H),

W ⊂ V +Δ, W ∩ V + �= ∅,

f̃ |W is slice and the unique slice regular extension on W of f |W∩V + , where

V + := (U1 ∪ C
+
I1

)
⊔

(U2 ∩ C
+
I2

)
⊔

(U1 ∩ U2 ∩ R),

V Δ := {x + yS : x + yI1 ∈ U1, x + yI2 ∈ U2, y ∈ R, y ≥ 0},

V +Δ := V + ∪ V Δ.

We note that if we consider a disc BI(q, r) ⊂ CI , I ∈ S, with center
q ∈ CI and radius r ∈ R+, and a holomorphic function f : BI(q, r) → H,
then f can be uniquely extended to be a slice regular function on the σ-ball
Σ(q, r).

Another approach to slice regular functions makes use of the notion of
slice functions. To recall this notion, we first introduce a notation: for any
Ω ⊂ H, define a set in C by

Ωs := {x + yi ∈ C : x, y ∈ R, ∃ J ∈ S | x + yJ ∈ Ω}.

Definition 3.5. Let Ω ⊂ H and function f : Ω → H; f is called slice function
if there is a F : Ωs → H

2×1 such that

f(x + yI) = (1, I)F (x + yi), (3.1)

for each x + yI ∈ Ω with x, y ∈ R and I ∈ S. We call F is a stem function of
f .

For any I ∈ S, there is an isomorphism
PI : C −−→ CI

x + yi �−−→ x + yI,

and for each path γ : [0, 1] → C, the corresponding path in CI is denoted by

γI := PI ◦ γ.

Let P(C) be the set of paths γ : [0, 1] −→ C with initial point γ(0) in
R. We define a subset of P(C) by setting

P(C+) := {γ ∈ P(C) : γ(0, 1] ⊂ C
+}.

Given Ω ⊂ H and γ ∈ P(C) we define

P(C,Ω) := {δ ∈ P(C) : ∃ I ∈ S, s.t. δI ⊂ Ω}
P(C+,Ω) := {δ ∈ P(C+) : ∃ I ∈ S, s.t. δI ⊂ Ω}

and

S(γ,Ω) := {I ∈ S : γI ⊂ Ω}.

We now generalize the definition of slice function:
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Definition 3.6. Let Ω ⊂ H. A function f : Ω → H is called path-slice if there
is a function F : P(C,Ω) → H

2×1 such that

f ◦ γI(1) = (1, I)F (γ),

for each γ ∈ P(C,Ω) and I ∈ S(γ,Ω). We call F is a path-slice stem function
of f .

Path-slice functions are characterised in the next result:

Proposition 3.7. Let Ω ⊂ H and f : Ω → H. Then following statements are
equivalent:

(i) f is a path-slice function.
(ii) For each γ ∈ P(C,Ω), there is an element qγ ∈ H

2×1 such that

f ◦ γI(1) = (1, I)qγ ∀ I ∈ S(γ,Ω).

(iii) For each γ ∈ P(C+,Ω), there is an element pγ ∈ H
2×1 such that for

each I ∈ S(γ,Ω),

f ◦ γI(1) = (1, I)pγ .

(iv) For each γ ∈ P(C,Ω) and I, J,K ∈ S(γ,Ω) with J �= K,

f ◦ γI = (1, I)
(

1 J
1 K

)−1(
f ◦ γJ

f ◦ γK

)

=
(

(J − K)−1J (K − J)−1K
(J − K)−1 (K − J)−1

)(
f ◦ γJ

f ◦ γK

)

.

(v) For each γ ∈ P(C) and I, J,K ∈ S(γ,Ω) with J �= K,

f ◦ γI = (J − K)−1(Jf ◦ γJ − Kf ◦ γK) + I(J − K)−1(f ◦ γJ − f ◦ γK).

The above definition is indeed a generalization of the notion of slice
functions, and in fact in [17] we proved:

Proposition 3.8. Every slice function defined on a subset of H is path-slice.

The class of path-slice functions also contains the class of slice regular
functions:

Theorem 3.9. Every slice regular function defined on an open set in τs(H) is
path-slice.

Note that a slice regular function is not necessarily a slice function,
unless one adds hypothesis on the open set of definition, for example that it
is an axially symmetric s-domain.

A cornerstone of the future development of slice quaternionic analysis
on slice-open sets is the following result, originally proved in [17]:

Theorem 3.10. (Representation Formula) Let Ω ∈ τs(H) and f : Ω → H be
slice regular. For each γ ∈ P(C,Ω) and I, J,K ∈ S(γ,Ω) with J �= K, we
have

f ◦ γI = (1, I)
(

1 J
1 K

)−1(
f ◦ γJ

f ◦ γK

)

.
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Another important concept is the one of domain of holomorphy for slice
regular functions, namely the notion of domain of slice regularity.

Definition 3.11. A slice-open set Ω ⊂ H is called a domain of slice regularity
if there are no slice-open sets Ω1 and Ω2 in H with the following properties.

(i) ∅ �= Ω1 ⊂ Ω2 ∩ Ω.
(ii) Ω2 is slice-connected and not contained in Ω.
(iii) For any slice regular function f on Ω, there is a slice regular function f̃

on Ω2 such that f = f̃ in Ω1.
Moreover, if there are slice-open sets Ω,Ω1,Ω2 satisfying (i)-(iii), then we call
(Ω,Ω1,Ω2) a slice-triple.

Here the situation is different from complex analysis, since not every
slice-open set is a domain of slice regularity. It is true however that the
σ-balls and axially symmetric slice-open sets are particular domains of slice
regularity, see Proposition 9.5 and Proposition 9.6 in [17]. Below we illustrate
an example:

Example. The σ-ball Σ( I
2 , 1) is a domain of slice regularity for any I ∈ S.

The function f : Σ( I
2 , 1) → H defined by

f(q) =
∑

n∈N

(q − I/2)∗2n

,

does not extend to a slice regular function near any point of the boundary in
any slice CJ , J ∈ S.

This example shows that there exist slice regular functions defined on a
slice-open set which is not open in the Euclidean topology but it is open in
the τσ topology. Moreover, there are examples of functions defined on slice-
open sets which are neither open in the Euclidean topology nor in τσ, as the
Example 3 shows. The example is obtained by further elaborating Example 3
which comes from ideas in [17], Sect. 8.

Example. We consider a ray γs : [0, 1) −→ C, s ∈ [0, 1] fixed, by

γs(t) :=
i

2
+

t

1 − t
ei(π

4 +(sπ)/2).

The ray starts from i
2 to ∞ and the angle between the ray and the positive

real axis is π
4 + sπ

2 .
Given a continuous function

ϕ : S → [0, 1],

we define a continuous function F : S × [0, 1) → H by setting

F (I, s) = PI ◦ γϕ(I)(s).

The complement of the image of F is denoted by

Ωϕ := H\F (S × [0, 1)).

Fix J ∈ S. We now define

Ω̃ϕ := Ωϕ

⋃
γϕ[−J ]. (3.2)
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We proved in [17] that Ω̃ϕ is open in the Euclidean topology if ϕ is continuous.
However it may be not open if ϕ is not continuous. For example, let ϕ : S →
[0, 1] be the Dirichlet type function, i.e.

ϕ(I) =

{
1, |I − J | ∈ Q;
0, otherwise.

Let I ∈ S with I �= ±J and |I −J | ∈ Q, where J is fixed. Then ϕ(I) = 1 and
(
Ω̃ϕ

)
∩ C

+
I = C

+
I \ (PI ◦ γ1[0, 1]) and PI ◦ γ0(0, 1] ⊂

(
Ω̃ϕ

)

I
.

We choose a sequence {K�}+∞
�=1 ⊂ S\{±J}, such that |K� − J | /∈ Q and

lim
�→+∞

K� = I.

Notice that ϕ(K�) = 0 and

Ω̃ϕ ∩ C
+
K�

= C
+
K�

\(PK�
◦ γ0(0, 1]).

Notice that for each t ∈ (0, 1], we have

lim
�→+∞

PK�
◦ γ0(t) = PI ◦ γ0(t).

It is clear that PI ◦γ0(t) is not an interior point of Ω in the Euclidean topology
and Ω is not open in the Euclidean topology.

We now consider the function

Ψ(z) =
√

2z − J, ∀ z ∈ J

2
+ R+, (3.3)

where z is a complex variable. This function admits a unique holomorphic
extension Ψs on

CJ\(γs[J ] ∪ γs[−J ]),

where

γs[J ] := PJ ◦ γs([0, 1))

for any s ∈ [0, 1].
The function Ψϕ : Ωϕ → H defined by

Ψϕ(x + yI) :=
1 − IJ

2
Ψϕ(I)(x + yJ) +

1 + IJ

2
Ψϕ(I)(x − yJ), (3.4)

for y ≥ 0, is the unique slice regular extension of Ψ to Ωϕ. In particular,

(Ψϕ)J = Ψϕ(J).

Moreover, Ψ̃ϕ is a slice regular function defined on a non-open set and
it fails to be extended slice-regularly to a larger slice-open set (or open set)
in H. Note that Ω̃ϕ is open in τσ.

Example. Using the notations of the previous example, we now construct an
example of a set Ω̃ϕ of the form given in (3.2), such that Ω̃ϕ is not in τs while
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it is in τσ. We take a new curve γs, s ∈ (0, 1] which consist of three parts.
We define

γs(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − (3 − s)t
2

i, t ∈ [0, 1
3

]
,

3
[
2
3

− t

]
si

6
+ 3
[
t − 1

3

]
(i − 1), t ∈ ( 1

3 , 2
3

]
,

i

1 − t
− 2i − 1, t ∈ ( 2

3 , 1
)
.

We note that γs(t) is a line segment from i
2 to si

6 for t ∈ [0, 1
3 ], is a line

segment from si
6 to i − 1 when t ∈ ( 1

3 , 2
3 ] and, finally, it is a ray i − 1 when

t ∈ ( 2
3 , 1). Consider ϕ : S → [0, 1], defined by

ϕ(I) =

{
1, I = ±J,
|I−J|

2 , otherwise.

With this choice of ϕ, it is possible to prove that

σ
(
0, H\Ω̃ϕ

)
≤ lim

K→I,K �=±I
distCK

(0,PK ◦ γϕ(K)[0, 1)) = 0,

so that the point 0 is not an interior point in Ω̃ϕ in the topology τσ. The
function Ψ̃ϕ defined above is a slice regular function defined in a non-open
set and it could not be extended slice regularly to a larger slice-open set (or
open set or open set in τσ) in H.

Finally, we point out that by modifying the functions γs and Ψ, one can
construct many similar functions which are defined on sets in τs\τσ.

4. Slice Topology in Cones on Real Alternative Algebras

In [27], Ghiloni and Perotti introduced slice regular functions with values in
a real alternative algebra, finite dimensional and with a fixed anti-involution,
using stem functions. Stem functions were used in the literature also in re-
lation with the Fueter mapping theorem, see [16,20,37,38]. The slice regular
functions in [27] coincide with the class of slice regular functions over the
quaternions [24] and with the class of slice monogenic functions with values
in a Clifford algebra, see [11], on some special open sets.

In this section, following [18], we introduce a class of slice regular func-
tions on a finite-dimensional real alternative algebra A following the original
idea of Gentili and Struppa, i.e. following Definition 3.1. Thus the functions
slice regular in this sense do not coincide with those ones studied in [27] and
for this reason we sometimes called them weak slice regular and those ones
in [27] strong slice regular.

We recall that an algebra over the real numbers is said to be alternative
if for any pair of elements x, y in the algebra

x(xy) = x2y, (xy)y = xy2.

It is immediate that every associative algebra is alternative. The converse
does not hold, however every alternative algebra is power associative.
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A real algebra A is called left alternative, if for any x, y ∈ A,

x(xy) = (xx)y.

(See [1] for the notion of right alternative algebra, which can obviously
adapted to our case).

From now on we shall assume the following:

Assumption 4.1. Assume that A �= {0} is a finite-dimensional real unital left
alternative algebra with SA �= ∅, where

SA := {a ∈ A : a2 = −1}.

We then define a map L : A → EndR(A) by

L : a �→ La, (4.1)

where La : A → A is the right linear map given by the left multiplication by
a

La : x �→ ax.

Note that for any I ∈ SA, we have

(LI)2(x) = I(Ix) = −x,

thus LI is a complex structure on A.
Let I, J ∈ SA with I �= ±J . It is easy to check that

CI ∩ CJ = R.

4.1. Slice Topology

In this subsection, we discuss the slice topology whose definition, originally
given over the quaternions, can be extended to a suitable set QA that we call
the quadratic cone in the real alternative algebra A:

QA :=
⋃

I∈SA

CI .

Lemma 4.2. The set

τs(QA) := {Ω ⊂ QA : Ω is slice-open}
is a topology of QA.

Definition 4.3. We call τs(QA) the slice topology on QA. Open sets, con-
nected sets and paths in the slice topology are called slice-open sets, slice-
connected sets and slice-paths.

Since A is finite-dimensional real vector space of dimension, say, there
is a Euclidean topology on A identified with Euclidean space R

m. Since A
admits a complex structure, m is an even number and so m = 2n. The cone
QA, as a subset of A, also has a Euclidean topology (i.e. the subspace topology
induced by A).

As in the quaternionic case, we do not use the terminology slice-domain
to denote a domain in the slice topology, and we will use instead the term
slice topology-domain, in short, st-domain.



67 Page 14 of 36 X. Dou et al. Adv. Appl. Clifford Algebras

Definition 4.4. A set Ω in QA is called classical slice domain, in short s-
domain, if Ω is a domain in QA in the Euclidean topology,

ΩR := Ω ∩ R �= ∅,

and ΩI is a domain in CI for any I ∈ SA.

The slice topology on A has similar properties of the slice topology in
H and in particular:

Proposition 4.5. (QA, τs) is a Hausdorff space and τ ⊂ τs.

We remark that the slice topology τs is not always strictly finer than
the Euclidean topology τ as the following simple example shows.

Example. C is an algebra satisfying Assumption 4.1. The slice topology and
Euclidean topology coincide on C.

The terminology and the results in Sect. 3 can be stated in this more
general setting, so we do not repeat them and we refer the reader to [18]. We
only mention the following results:

Proposition 4.6. The topological space (QA, τs) is connected, local path-
connected and path-connected.

The notion of st-domain is also a generalization of the notion of s-
domain.

Corollary 4.7. A set Ω ⊂ QA is an st-domain if ΩR �= ∅ and ΩI is a domain
in CI for each I ∈ SA.

4.2. Main Results in Left Alternative Algebra

The slice regularity given in Definition 3.1 can be extended to the case of a
left alternative algebra satisfying Assumption 4.1, and in this subsection we
state some main results about this class of functions.

Definition 4.8. Let Ω ∈ τs(QA). A function f : Ω → A is called slice regular
if and only if for each I ∈ SA, fI := f |ΩI

is (left I-)holomorphic, i.e. fI is
real differentiable and

1
2

(
∂

∂x
+ I

∂

∂y

)

fI(x + yI) = 0, on ΩI .

Let A be a left alternative algebra and I ∈ SA. The set {θ1, . . . , θn} ⊂ A
is called an I-basis, if

{θ1, I(θ1), θ2, I(θ2), . . . , θn, I(θn)}
is a real basis of A. Since LJ (see (4.1)) is a complex structure on A, there is
a J-basis for all J ∈ SA.

Various results that we have stated in the quaternionic case, e.g. the
Splitting Lemma and the Identity Principle, hold also in this more general
case.

In the sequel, we need the following notations and definitions: for any
I ∈ SA we can define an isomorphism PI : C −→ CI such that PI(x + yi) =
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x + yI. For each path γ : [0, 1] → C, we define its corresponding path in C
d
I

by

γI := PI ◦ γ.

Finally, for any Ω ⊂ QA and γ ∈ P(C) we set

P(C,Ω) := {δ ∈ P(C) : ∃ I ∈ SA, s.t. δI ⊂ Ω}
and

SA(γ,Ω) := {I ∈ SA : γI ⊂ Ω}.

Mimicking Definition 3.6, given Ω ⊂ QA, we say that a function f : Ω → A
is path-slice if there is a function F : P(C,Ω) → A2×1 such that

f ◦ γI(1) = (1, LI)F (γ),

for each γ ∈ P(C,Ω) and I ∈ SA(γ,Ω).
We have the following results:

Theorem 4.9. Let Ω ∈ τs(QA) and f : Ω → A be slice regular. Then f is
path-slice.

Let J,K ∈ SA, we have

LJ (LJ − LK) = −1 − LJLK = LKLK − LJLK = (LK − LJ)LK .

If LJ − LK is invertible, then

(LJ − LK)−1LJ = −LK(LJ − LK)−1.

One can easily verify that
(

1 LJ

1 LK

)−1

=
(

(LJ − LK)−1LJ −(LJ − LK)−1LK

(LJ − LK)−1 −(LJ − LK)−1

)

. (4.2)

Proposition 4.10. (Standard path-representation Formula) Let Ω be a slice-
open set in W1

A, f : Ω → A be a weak slice regular function, γ ∈ P(C1,Ω)
and I, J1, J2 ∈ SA(γ,Ω) with LJ1 − LJ2 invertible. Then

f ◦ γI = (1, LI)
(

1 LJ1

1 LJ2

)−1(
f ◦ γJ1

f ◦ γJ2

)

, (4.3)

where
(

1 LJ1

1 LJ2

)−1

satisfies (4.2) and SA(γ,Ω) := {I ∈ SA : Ran(γI) ⊂ Ω}.

4.3. Slice Monogenic Functions

We now consider the special case in which A = Rn, the real Clifford algebra
over n imaginary units e1, . . . , en satisfying eıej + ejeı = −2δı,j, where

δıj =

{
0, ı �= j,

−1, ı = j.

We recall that the slice regular functions over a real Clifford algebra are also
called slice monogenic functions, and they were firstly introduced in [11].
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Example. In [11], the class of slice monogenic functions is defined on

Rn+1 :=
⋃

I∈S◦
Rn

CI ,

where

S
◦
Rn

:= {x1e1 + · · · xnen : x2
1 + · · · + x2

n = 1}.

The cone Rn+1 is a n + 1-dimensional real vector space, i.e.

Rn+1 = R〈1, e1, . . . , en〉 ∼= R
n+1

However, as observed in [27], slice monogenic functions can be defined on a
larger set, namely the quadratic cone of Rn:

QRn
:=

⋃

I∈SRn

CI

where

SRn
:= {I ∈ Rn : I2 = −1}.

The slice monogenic functions in [27] are defined on symmetric open sets in
QRn

. Since a Clifford algebra is a special case of an alternative algebra, we
can consider the more general case of slice monogenic functions defined on
a slice-open set in QRn

where the definition of slice monogenic is given by
adapting Definition 4.8 to the present case. Thus all the results in Sect. 4 are
valid in this case.

5. Weak Slice Regular Functions Over Slice-Cones

Some results in [18] are given in a greater generality: in fact the weak slice
regular functions can be considered in the case of functions which are R

2n-
valued and defined on open sets in the topological space (Wd

C , τs), where Wd
C

is a suitable weak slice cone in [End(R2n)]d. In [18] we proved various results
for these functions, among which a representation formula, and we recall some
of them in this section.

We denote by Cn the set of complex structures on R
2n, i.e.

Cn :=
{
T ∈ End

(
R

2n
)

: T 2 = −1
}

,

where the identity map idR2n on R
2n is denoted by 1.

Let C ⊂ Cn with C = −C. We call

Wd
C :=

⋃

I∈C
C

d
I

the d-dimensional weak slice-cone of C, where

C
d
I := (R + RI)d

.

The slice topology on Wd
C is defined by

τs

(Wd
C
)

:=
{
Ω ⊂ Wd

C : ΩI ∈ τ(Cd
I), ∀ I ∈ C} ,
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where

ΩI := Ω ∩ C
d
I .

Convention: Let Ω ⊂ Wd
C . Denote by τs(Ω) the subspace topology in-

duced by τs

(Wd
C
)
. Open sets, domains, connected sets and paths in τs(Ω)

are called slice-open sets, slice-domains, slice-connected sets and slice-paths
in Ω, respectively. We write x + yI ∈ Ω short for x + yI ∈ Ω with x, y ∈ R

d

and I ∈ C.

Definition 5.1. Let Ω ∈ τs(Wd
C). A function f : Ω → R

2n is called weak slice
regular if and only if for each I ∈ C, fI := f |ΩI

is (left I-)holomorphic, i.e.
fI is real differentiable and for each � = 1, 2, . . . , d,

1
2

(
∂

∂x�
+ I

∂

∂y�

)

fI(x + yI) = 0, on ΩI .

For any I ∈ C, the set {ξ1, . . . , ξn} ⊂ R
2n is called an I-basis of R

2n if

{ξ1, . . . , ξn, I(ξ1), . . . , I(ξn)}
is a basis of R

2n as a real vector space.

Lemma 5.2. (Splitting Lemma) Let Ω ∈ τs

(Wd
C
)
. A function f : Ω → R

2n is
weak slice regular if and only if for any I ∈ C and I-basis {ξ1, . . . , ξn}, there
are n holomorphic functions F1, . . . , Fn : ΩI ⊂ C

d
I → CI , such that

fI =
n∑

�=1

(F�ξ�).

Theorem 5.3. (Identity Principle) Let Ω be a slice-domain in Wd
C and f, g :

Ω → R
2n be weak slice regular. Then the following statements holds.

(i) If f = g on a non-empty open subset U of ΩR, then f = g on Ω.
(ii) If f = g on a non-empty open subset U of ΩI for some I ∈ C, then

f = g on Ω.

For any I ∈ C, let us choose a fixed I-basis of R
2n which is denoted by

θI :=
{
θI
1 , . . . , θI

n

}
, (5.1)

and let us consider the 2n × 2n real matrix DI given by

DI :=
(
θI
1 · · · θI

n IθI
1 · · · IθI

n

)
. (5.2)

By [18, Proposition 2.3], we can define the Moore–Penrose inverse of
J ∈ End

(
R

2n
)k×�.

Definition 5.4. For each J ∈ End
(
R

2n
)k×�, define by J+ the unique matrix

in End
(
R

2n
)�×k that satisfies the Moore–Penrose conditions:

(i) JJ+J = J .
(ii) J+JJ+ = J+.
(iii) (JJ+)∗ = JJ+.
(iv) (J+J)∗ = J+J .
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Here J∗ is the adjoint matrix of J , i.e. the unique matrix such that

〈x, Jy〉 = 〈J∗x, y〉, ∀ x ∈ (R2n
)k

, y ∈ (R2n
)�

.

We call J+ the Moore–Penrose inverse of J .

Let J = (J1, . . . , Jk)T ∈ Ck. We denote

DJ :=

⎛

⎜
⎝

DJ1

. . .
DJk

⎞

⎟
⎠ and ζ(J) :=

⎛

⎜
⎝

1 J1

...
...

1 Jk

⎞

⎟
⎠ ,

where DJ�
is defined by (5.2).

We set

ζ+(J) := [�−1
DJ

· ζ(J)]+�−1
DJ

and we call it the J-slice inverse of ζ(J), where �−1
DJ

:= �−1(DJ ) is the
unique End

(
R

2n
)
-valued k × k matrix such that

�−1
DJ

(a) = DJa, ∀ a ∈ (R2n
)k

= R
2nk.

Let γ : [0, 1] → C
d and I ∈ C. We define the image path of γ in C

d
I by

γI := ΨI
i ◦ γ,

where ΨI
i : C

d → C
d
I , x + yi �→ x + yI is an isomorphism. As we already did

in the preceding sections, we define:

P(Cd) := {γ : [0, 1] → C
d, γ is a path s.t. γ(0) ∈ R

d};

for any Ω ⊂ Wd
C and for an arbitrary, but fixed γ ∈ P

(
C

d
)

we define

P
(
C

d,Ω
)

:=
{
δ ∈ P

(
C

d
)

: ∃ I ∈ C, s.t. Ran(δI) ⊂ Ω
}

;

C(Ω, γ) :=
{
I ∈ C : Ran(γI) ⊂ Ω

}
,

where Ran(·) denotes the range.
Let J = (J1, . . . , Jk)T ∈ Ck, Ω ⊂ Wd

C and γ ∈ P(Cd,Ω). We define

Cker(J) :=

{

I ∈ C : ker(1, I) ⊃ ker[ζ(J)] =
k⋂

�=1

ker(1, J�)

}

, (5.3)

and

C(Ω, γ, J) := C(Ω, γ) ∩ Cker(J),

where ker(·) is the kernel of a map, and ker(1, J�) stands for ker((1, J�)).
The results below were originally proved in [18], Sect. 5:

Lemma 5.5. Let Ω ⊂ Wd
C , γ ∈ P

(
C

d,Ω
)

and J = (J1, . . . , Jk)T ∈ [C(Ω, γ)]k.
Then there is a domain U in C

d containing γ([0, 1]) such that

ΨJ�
i (U) ⊂ Ω, � = 1, . . . , k.
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Lemma 5.6. (Extension Lemma) Let U ∈ τ(Cd), I ∈ C and J = (J1, . . . , Jk)T

in Ck. If g� : ΨJ�
i (U) → R

2n, � = 1, . . . , k are holomorphic, then the function
g[I] : ΨI

i (U) → R
2n defined by

g[I](x + yI) = (1, I)ζ+(J)g(x + yJ), ∀ x + yi ∈ U,

where

g(x + yJ) =

⎛

⎜
⎝

g1(x + yJ1)
...

gk(x + yJk)

⎞

⎟
⎠

is holomorphic.
Moreover, if UR := U ∩ R

d �= ∅, g1 = · · · = gk on UR and I ∈ Cker(J),
then

g[I] = g1 = · · · = gk on UR. (5.4)

We now present the so-called path-representation formula, see Theorem
6.1 in [18], which is a crucial result in this function theory.

Theorem 5.7. (Path-representation Formula) Let Ω be a slice-open set in Wd
C ,

γ ∈ P(Cd,Ω), J = (J1, J2, . . . , Jk)T ∈ [C(Ω, γ)]k and I ∈ C(Ω, γ, J). If
f : Ω → R

2n is weak slice regular, then

f ◦ γI = (1, I)ζ+(J)(f ◦ γJ ),

where

f ◦ γJ :=

⎛

⎜
⎝

f ◦ γJ1

...
f ◦ γJk

⎞

⎟
⎠ . (5.5)

Definition 5.8. Let C′ ⊂ C and J ∈ (C′)k. We say that J is a slice-solution of
C′ if

C′ ⊆ Cker(J).

Example. Let Ω ⊂ Wd
C , γ ∈ P(Cd,Ω) and J ∈ [C(Ω, γ)]k. J is a slice-solution

of C(Ω, γ) if and only if

C(Ω, γ) = C(Ω, γ, J).

Remark 5.9. Note that for any I ∈ C,
(

1 I
1 −I

)−1

=
1
2

(
1 1

−I I

)

and

ker
(
ζ
(
(I,−I)T

))
= ker

(
1 I
1 −I

)

= 0.

It is easy to check that, by definition (see (5.3)), J ∈ Ck is a slice-solution of
C if and only if

k⋂

�=1

ker(1, J�) = {0}.
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In another words, if J is not a slice-solution, we can take a non-zero element

a =
(

a1

a2

)

∈
k⋂

�=1

ker(1, J�) ⊂ (R2n
)2

.

Then for each K ∈ Cker(J), we have (1,K)a = 0.

Proposition 5.10. Let C′ ⊂ C. Then there is at least one slice-solution J ∈
(C′)k of C′ for some k ∈ N+.

Proof. This proposition follows the reasoning in [18, Proposition 6.4]. �

As a consequence we deduce the following:

Corollary 5.11. Let Ω ∈ τs(Wd
C), γ ∈ P(Cd,Ω), and J ∈ [C(Ω, γ)]k be a

slice-solution of C(Ω, γ). If f : Ω → R
2n is weak slice regular, then

f ◦ γI = (1, I)ζ+(J)(f ◦ γJ), ∀ I ∈ C(Ω, γ),

where f ◦ γJ is defined by (5.5).

Next definition gives the terminology to mention a result, originally
proved in [19, Corollary 6.9], which shows that also in this more general
setting a slice regular function is path-slice.

Definition 5.12. A function f : Ω → R
2n with Ω ⊂ Wd

C is called path-slice, if
for any γ ∈ P

(
C

d,Ω
)
, there is a function Fγ : [0, 1] → (

R
2n
)2×1 such that

f ◦ γI = (1, I)Fγ , ∀ I ∈ C(Ω, γ).

We call {Fγ}γ∈P (C) a (path-)stem system of the path-slice function f .

Proposition 5.13. Each slice regular function f : Ω → R
2n with Ω ∈ τs

(Wd
C
)

is path-slice.

Proposition 5.14. Let J = (J1, . . . , Jk)T ∈ Ck. Then

Ran
[
id(R2n)2×1 − ζ+(J)ζ(J)

]
= ker[ζ(J)] =

k⋂

�=1

ker(1, J�). (5.6)

6. Extension Theorem

In this section, we give an extension theorem for slice regular functions. This
result provides a tool for extending slice regular functions to larger definition
domains. We also prove a general Path-representation Formula.

Proposition 6.1. (General path-representation Formula) Let Ω ⊂ Wd
C , γ ∈

P(Cd,Ω), and J = (J1, . . . , Jk)T ∈ [C(Ω, γ)]k. If f : Ω → R
2n is path-slice,

then for each I ∈ C(Ω, γ) and t ∈ [0, 1],

f ◦ γI(t) ∈ (1, I)
[
ζ+(J)(f ◦ γJ (t)) + Ran(id(R2n)2×1 − ζ+(J)ζ(J))

]
,

(6.1)

where f ◦ γJ is defined by (5.5).
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Proof. Let K ∈ [C(Ω, γ)]m be a slice-solution of C(Ω, γ). Fix I ∈ C(Ω, γ).
According to Corollary 5.11,

f ◦ γI = (1, I)ζ+(K)(f ◦ γK), (6.2)

and

f ◦ γJ = ζ(J)ζ+(K)(f ◦ γK). (6.3)

Note that J1, . . . , Jk ∈ C(Ω, γ, J). By Path-representation Formula 5.7,

f ◦ γJ = ζ(J)ζ+(J)(f ◦ γJ ). (6.4)

By (6.3)−(6.4), we have

ζ+(K)(f ◦ γK) − ζ+(J)(f ◦ γJ ) ⊂ ker[ζ(J)]
= Ran

[
id(R2n)2×1 − ζ+(J)ζ(J)

]
. (6.5)

It is clear that (6.1) holds by (6.2) and (6.5). �

For each Ω ⊂ Wd
C , we define

Ωs := {x + yi ∈ C
d : x + yI ∈ Ω}.

Definition 6.2. A function f : Ω → R
2n with Ω ⊂ Wd

C is called slice, if there
is a function F : Ωs → (

R
2n
)2×1 such that

f(x + yI) = (1, I)F (x + yi), ∀ x + yI ∈ Ω.

We call F a stem function of the slice function f .

Definition 6.3. A set Ω ⊂ Wd
C is called axially symmetric, if for each x+yI ∈

Ω, then x + yC ⊂ Ω.

Proposition 6.4. Let Ω be an axially symmetric slice-domain in Wd
C . Then ΩI

is a domain in C
d
I for each I ∈ C. Moreover, if Ω is non-empty, then ΩR �= ∅.

Proof. The proof follows the reasoning in [17, Remark 7.7]. �

Proposition 6.5. Let Ω ⊂ Wd
C be an axially symmetric slice-domain and f :

Ω → R
2n be path-slice (or slice regular). Then f is a slice function.

Proof. Since slice regular function are path-slice, we can assume that f is
path-slice.

For each z = x + yi ∈ Ωs. We choose a fixed complex structure Kz ∈ C.
By definition, the point q := x + yKz belongs to Ω. Since ΩKz

is a domain
in C

d
Kz

and ΩR �= ∅. We can choose a fixed path γz ∈ P
(
C

d,Ω
)

such that
(γz)Kz is a path in ΩKz

⊂ C
d
Kz

from a point in ΩR to q. As Ω is an axially
symmetric slice-domain, it follows from definition that C(Ω, γz) = C. Since f
is path-slice, there is a function Gγx+yi

: [0, 1] → (R2n)2×1 such that

f(γI
x+yi) = (1, I)Gγx+yi

, ∀ I ∈ C.

It implies that

f(x + yI) = f(γI
x+yi(1)) = (1, I)Gγx+yi

(1), ∀ I ∈ C.
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It is clear that f is a slice function with its stem function F : Ωs → (R2n)2×1

defined by

F (x + yi) := ζ+(J)Gγx+yi
(1). �

For any J = (J1, . . . , Jk)T ∈ Ck, we set

τ [J ] := {(U1, . . . , Uk)T : U� ∈ τ
(
C

d
J�

)
, � = 1, . . . , k}.

We define a set

Ck
∗ :=

{
(J1, . . . , Jk)T ∈ Ck : Jı �= ±Jj, ∀ ı �= j

}

Definition 6.6. Let J = (J1, . . . , Jk)T ∈ Ck
∗ . A subset C+ of C is called a

slice-half subset of C with respect to J , if J1, . . . , Jk ∈ C+ and

C =
(−C+

)⊔ C+.

Convention. For each J ∈ Ck
∗ . We fix a slice-half subset C+

J of C with respect
to J .

Associated with J ∈ Ck
∗ and U ∈ τ [J ], we introduce the following sets:

UC := {x + yi ∈ C
d : x + yJ� ∈ U�, � = 1, . . . , k}

U∗
C

:= {x + yi ∈ C
d : x ± yJ� ∈ U�, � = 1, . . . , k}

UΔ :=
⋃

x+yi∈UC

x + yCker(J), U+
Δ :=

⋃

x+yi∈UC

x + yC+
J

and

U∗
Δ :=

⋃

x+yi∈U∗
R

x + yC,

where U∗
R

is the union of the connected components of U∗
C

intersecting R
d.

Finally, we define

U�
Δ :=

⎧
⎨

⎩

U+
Δ

⋃(⋃k
�=1 U�\R

d
)

, if J is a slice solution,

UΔ

⋃
U∗

Δ

⋃(⋃k
�=1 U�\R

d
)

, otherwise.

By definition, it is easy to check that U∗
Δ is an axially symmetric slice-

open set and

UΔ ∩ R
d = U+

Δ ∩ R
d = U∗

Δ ∩ R
d =

{
x ∈ R

d : x ∈ U�, � = 1, . . . , k
}

.

Example. Let Ω be an axially symmetric slice-open set and I ∈ C. Choose
J = (I) and U = (ΩI). Then

U∼
Δ = U∗

Δ = Ω.

Proposition 6.7. Let J = (J1, . . . , Jk)T ∈ Ck
∗ and U ∈ τ [J ]. Then U�

Δ is a
slice-open set in Wd

C and for each � ∈ {1, 2, . . . , k},
U∗

Δ ∩ C
d
J�

⊂ UΔ ∩ C
d
J�

. (6.6)
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Moreover, if J is not a slice-solution of C, then

U�
Δ ∩ C

d
I =

⎧
⎪⎨

⎪⎩

(U�\R
d) ∪ (UΔ)

R
, I = ±J�, for some �,

ΨI
i (UC), I ∈ Cker(J)\{±J1, . . . ,±Jk},

ΨI
i (U

∗
C
), otherwise.

(6.7)

Otherwise, J is a slice-solution of C, then

U�
Δ ∩ C

d
I =

⎧
⎪⎨

⎪⎩

(U�\R
d) ∪ (UΔ)

R
, I = ±J�, for some �,

ΨI
i (UC), I ∈ C+

J \{±J1, . . . ,±Jk},

Ψ−I
i (UC), otherwise.

(6.8)

Proof. (6.6), (6.7) and (6.8) hold directly by definition. Note that (U�\R
d) ∪

(UΔ)
R

(if I = ±J�), ΨI
i (UC) and ΨI

i (U
∗
C
) are open in C

d
I for each I ∈ C.

Therefore by (6.7) and (6.8), U�
Δ ∩ C

d
I is open in C

d
I for each I ∈ C. By

definition, U�
Δ is a slice-open set. �

Theorem 6.8. (Extension Theorem) Let J = (J1, . . . , Jk)T ∈ Ck
∗ , and U =

(U1, . . . , Uk)T ∈ τ [J ]. Assume that f :
⋃k

�=1 U� → R
2n is a function such that

for each � ∈ {1, . . . , k}, f |U�
is holomorphic. Then f |(⋃k

�=1 U�\Rd)∪(UΔ)
R

can

be extended to a slice regular function f̃ : U�
Δ → R

2n.

Proof. According to Lemma 5.6, for each I ∈ Cker(J), we can define a holo-
morphic function g[I] : ΨI

i (UC) → R
2n by

g[I](x + yI) = (1, I)ζ+(J)f(x + yJ), ∀ x + yi ∈ UC.

Similarly, we note that K := (J1,−J1)T ∈ C2
∗ and V := (U1, U1)T ∈ τ [K].

Note that K is a slice-solution of C, and then Cker(K) = C. Again by
Lemma 5.6, for each I ∈ C, we can define a holomorphic function h[I] :
ΨI

i (U
∗
C
) → R

2n by

h[I](x + yI) = (1, I)ζ+(K)f(x + yK), ∀ x + yi ∈ U∗
C
.

Moreover, by definition and (5.4), for each L1 ∈ Cker(J) and L2 ∈ C,

f = g[L1] = h[L2], on (U�
Δ )

R
.

If J is not a slice-solution. We define a function f̃ : U�
Δ → R

2n by

f̃(q) :=

⎧
⎪⎨

⎪⎩

f(q), q ∈ C
d
J�

, for some � ∈ {1, . . . , k},

g[I](q), q ∈ C
d
I\R

d, for some I ∈ Cker(J)\{±J1, . . . ,±Jk},

h[I](q), q ∈ C
d
I\R

d, for some I ∈ C+
J \Cker(J).

(6.9)

By definition, f̃ |U�
Δ ∩Cd

I
is holomorphic for all I ∈ C. It implies that f̃ is slice

regular. Since
⋃k

�=1 U� ⊂ ⋃k
�=1 C

d
� , it follows from (6.9) that

f̃ = f, on U�
Δ ∩

(
k⋃

�=1

U�

)

=

(
k⋃

�=1

U�\R

)

∪ (UΔ)
R

.
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Otherwise, J is a slice-solution. We define a function f̃ : U�
Δ → R

2n by

f̃(q) :=

{
f(q), q ∈ C

d
J�

, for some � ∈ {1, . . . , k},

g[I](q), q ∈ C
d
I\R

d, for some I ∈ C+
J \{±J1, . . . ,±Jk}.

Similarly, f̃ is slice regular, and

f̃ = f, on U�
Δ ∩

(
k⋃

�=1

U�

)

. �

7. Domains of Slice Regularity

In this section, we consider domains of slice regularity for slice regular func-
tions. These are the counterparts in this framework of the domains of holo-
morphy in several complex variables. Using the methods in [18, Section 7] we
generalize some results proved in [17, Section 9] from the case of quaternions
to a general case of LSCS algebras, which includes the case of alternative
algebras. For example, for several variables, an axially symmetric slice-open
set Ω is a domain of slice regularity if and only if one of its slice ΩI , I ∈ C
is a domain of holomorphy in C

d
I . We also define a generalization of σ-balls,

called hyper-σ-polydiscs and we give a property of domains of slice regularity,
see Proposition 7.10. This proposition extends [17, Proposition 9.7]

Definition 7.1. A slice-open set Ω ⊂ Wd
C is called a domain of slice regularity

if there are no slice-open sets Ω1 and Ω2 in Wd
C with the following properties.

(i) ∅ �= Ω1 ⊂ Ω2 ∩ Ω.
(ii) Ω2 is slice-connected and not contained in Ω.
(iii) For any slice regular function f on Ω, there is a slice regular function f̃

on Ω2 such that f = f̃ in Ω1.

Moreover, if there are slice-open sets Ω,Ω1,Ω2 satisfying (i)-(iii), then we call
(Ω,Ω1,Ω2) a slice-triple.

In a similar way, we give the following definition:

Definition 7.2. Let Ω ⊂ Wd
C be a slice-open set, I ∈ C and U1, U2 be open

sets in C
d
I . (Ω, U1, U2) is called an I-triple if

(i) ∅ �= U1 ⊂ U2 ∩ ΩI .
(ii) U2 is connected in C

d
I and not contained in ΩI .

(iii) For any slice regular function f on Ω, there is a holomorphic function
f̃ : U2 → R

2n such that f = f̃ in U1.

Lemma 7.3. Let U be a non-empty slice-open set and Ω be a slice-domain
with U � Ω. Then Ω ∩ ∂IUI �= ∅ for some I ∈ C, where ∂IUI is the boundary
of UI in C

d
I .

Proof. This proof is similar with the proof of [17, Theorem 9.3].
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Suppose that Ω∩∂IUI = ∅ for each I ∈ C. Since ΩI and C
d
I\(∂IUI ∪UI)

are open in C
d
I , so is

[
Ω ∩ (Wd

C\U
)]

I
= ΩI ∩ (Cd

I\UI

)
= ΩI\(ΩI ∩ UI)

= ΩI\[ΩI ∩ (∂IUI ∪ UI)] = ΩI ∩ [Cd
I\(∂IUI ∪ UI)

]
.

By definition, Ω ∩ (Wd
C\U) is slice-open. Hence Ω is the disjoint union of the

nonempty slice-open sets Ω ∩ (Wd
C\U) and Ω ∩ U . It implies that Ω is not

slice-connected, a contradiction. �

Proposition 7.4. A slice-open set Ω ⊂ Wd
C is a domain of slice regularity if

and only if for any I ∈ C there are no open sets U1 and U2 in C
d
I such that

(Ω, U1, U2) is an I-triple.

Proof. “⇒” Let Ω be a domain of slice regularity and let us suppose, by
absurd, that there is an I-triple (Ω, V1, V2) for some I ∈ C with V1 ∩ R

d = ∅.
Let f : Ω → R

2n be a slice regular function. By Extension Theorem 6.8,
where we take J := (I) and U := (V2), we deduce that f |V1 can extend
to a slice regular function f̃ on a slice-open set U�

Δ ⊃ V2 ⊃ V1. Let W1

be a connected component of V1 in C
d
I . And let W2 be a slice-connected

component of U�
Δ containing W1. Since V2 ⊃ W1 is connected in C

d
I , we have

W2 ⊃ V2. It follows from V2 � ΩI that (W2)I � ΩI and then W2 � Ω. Thus
∅ �= W1 ⊂ W2 ∩ Ω, W2 is slice-connected and not contained in Ω. Moreover,
for any slice regular function f : Ω → R

2n, there is a slice regular function
f̃ |W2 on W2 such that f = f̃ |W2 on V2.

We conclude that (Ω,W1,W2) is a slice-triple, and Ω is not a domain of
slice regularity, a contradiction.

“⇐” Now we prove the converse, i.e. a slice-open set Ω is a domain of
slice regularity if for each I ∈ C there are no open sets V1 and V2 in C

d
I such

that (Ω, V1, V2) is an I-triple. So we suppose that Ω is not a domain of slice
regularity. Then there are slice-open sets W1, W2 such that (Ω,W1,W2) is a
slice-triple. Let U be a slice connected component of Ω∩W2 with U ∩W1 �= ∅.
By the Identity Principle 5.3, (Ω, U,W2) is also a slice-triple.

We claim that for any I ∈ C, UI is a union of some connected compo-
nents of ΩI ∩ (W2)I in C

d
I . (This follows from the general fact that if Σ is

a slice-open set and U is a slice-connected component of Σ. Then for each
I ∈ C, UI is a union of some connected components of ΣI). Then for any
I ∈ C,

∂IUI ⊂ ∂I((W2)I ∩ ΩI) ⊂ ∂I((W2)I) ∪ ∂I(ΩI).

Since (W2)I ∩ ∂I((W2)I) = ∅, we have

(W2)I ∩ ∂IUI ⊂ ∂IΩI . (7.1)

By Lemma 7.3, (W2)J ∩∂JUJ �= ∅ for some J ∈ C. Let p ∈ (W2)J ∩∂JUJ .
By (7.1), we have p ∈ ∂JΩJ , and then p /∈ ΩJ . Let W3 be the connected
component of (W2)J containing p in C

d
J , and U ′ := UJ ∩W3. Since p ∈ ∂JUJ

and p is an interior point of W3 in C
d
J , we have p ∈ ∂JU ′ and then U ′ �= ∅.

Hence
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(i) ∅ �= U ′ ⊂ W3 ∩ ΩJ .
(ii) W3 is connected in C

d
J and not contained in ΩJ (by p ∈ W3 and p /∈ ΩJ ).

(iii) Since (Ω, U,W2) is a slice-triple, for any slice regular function f on Ω,
there is a slice regular function f ′ : W2 → R

2n such that f = f ′ in U .
Since W3 ⊂ W2 and U ′ ⊂ U , we have f ′|W3 is a holomorphic function
such that f = f ′|W3 on U ′.

It implies that (Ω, U ′,W3) is a J-triple, a contradiction and the assertion
follows. �

Proposition 7.5. Any axially symmetric slice-open set Ω is a domain of slice
regularity, if and only if ΩI is a domain of holomorphy in C

d
I for some I ∈ C.

Proof. “⇐” Suppose that an axially symmetric slice-open set Ω is not a
domain of slice regularity. By Proposition 7.4, there is an I-triple (Ω, V1, V2)
for some I ∈ C. Recall θI

1 ∈ R
2n is fixed in (5.1). Using the fact that Ω is

axially symmetric, and the Extension Theorem 6.8 where we set J = (I), U =
(Ω), we deduce that any holomorphic function f := FθI

1 : ΩI → CIθ
I
1 ⊂ R

2n

can extend to a slice regular function f̃ defined on Ω = U�
Δ (see Example 6),

where F : ΩI → CI is a holomorphic function in several complex analysis.
Since (Ω, V1, V2) is an I-triple, the function f |V1 = f̃ |V1 can extend to

a holomorphic function f̆ : V2 → R
2n. Note that f |V1 = F |V1θ

I
1 . According

to Splitting Lemma 5.2 and Identity Principle in several complex analysis,
we have f̆ = F̆ θI

1 for some holomorphic functions F̆ : V2 ⊂ C
d
I → CI with

F̆ = F on V1.
In summary, for any holomorphic function F : ΩI → CI , there is a

holomorphic function F̆ : V2 → CI such that F = F̆ on V1. Thus (ΩI , V1, V2)
is a triple for several complex analysis, and then ΩI is not a domain of
holomorphy in C

d
I .

“⇒” On the contrary, suppose that Ω is an axially symmetric slice-open
set such that for some I ∈ C, ΩI is not a domain of holomorphy in C

d
I . Then

there are domains V1, V2 in C
d
I such that (ΩI , V1, V2) is a triple for several

complex analysis, i.e. the following (i), (ii) and (iii) hold. Then we deduce
that (iv) also holds.

(i) ∅ �= V1 ⊂ V2 ∩ ΩI .
(ii) V2 is connected in C

d
I and not contained in ΩI .

(iii) For any holomorphic function g : Ω → CI , there is a holomorphic func-
tion g′ : V2 → CI such that g = g′ in V1.

(iv) For any slice regular function f : Ω → R
2n, it follows from Splitting

Lemma 5.2, Identity Principle in several complex analysis and (iii) that
there is a holomorphic function f ′ : V2 → R

2n such that f ′ = f on V1.

By (i), (ii) and (iv), (Ω, V1, V2) is an I-triple. And then by Proposition 7.4,
Ω is not a domain of slice regularity. �

Definition 7.6. Let J = (J1, . . . , Jk)T ∈ Ck. We say that J is a hyper-
solution of C. If J is not a slice-solution of C and for each I ∈ C\Cker(J),
(J1, . . . , Jk, I)T is a slice-solution of C.
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Example. Let A be the algebra of quaternions H ∼= R
4 or octonions O ∼= R

8,
and

CA := {LI : I ∈ A, I2 = −1}.

Then for each K ∈ CA, (K) is a hyper-solution of CA.

Definition 7.7. Let q = x + yJ1 ∈ Wd
C , J = (J1, J2, . . . , Jm)T be a hyper-

solution of C and r ∈ R
d
+. We call

Σ(q, r, J) :=

{
⋃

K∈C
ΨK

i [P (z, r) ∩ P (z, r)]

}
⋃
⎧
⎨

⎩

⋃

K∈Cker(J)

ΨK
i [P (z, r)]

⎫
⎬

⎭

hyper-σ-polydisc with hyper-solution J , center q and radius r. Here P (z, r)
is a polydisc in C

d with center z = x + yi and radius r.

Example. The σ-ball in H (∼= L(H)) and O (∼= L(O)) are hyper-σ-polydiscs.

Remark 7.8. Let Σ(p, r, J) be a hyper-σ-polydisc with hyper-solution J =
(J1, . . . , Jm)T ∈ Cm

∗ , center q ∈ C
d
J1

and radius r ∈ R
d
+. Take

U = (ΨJ1
i [P (z, r)] , . . . ,ΨJm

i [P (z, r)])T .

It is easy to check by definition that

Σ(q, r, J) = U∼
Δ .

Therefore if we can define a function f :
⋃m

�=1 ΨJ�
i [P (z, r)] → R

2n such
that fJ�

, � = 1, . . . , m are holomorphic, then f can extend to a slice regular
function f̃ : Σ(q, r, J) → R

2n.

Proposition 7.9. Any hyper-σ-polydisc is a domain of slice regularity.

Proof. Let Σ(p, r, I) be a hyper-σ-polydisc with I = (I1, . . . , Im)T ∈ Ck
∗ ,

center p = x0+y0I1 ∈ C
d
I1

and radius r = (r1, . . . , rd)T ∈ R
d
+. By Remark 5.9,

we can take a non-zero element

a =
(

a1

a2

)

∈
k⋂

�=1

ker(1, I�) ⊂ (R2n
)2

. (7.2)

It is easy to check from (1, I1)a = 0 that a1, a2 �= 0.
Consider the function g1 : Σ(p, r, I) ∩ C

d
I1

→ R
2n defined by

g1(q) =

⎡

⎣
d∑

�=1

∑

j∈N

(
q� − p�

r�

)2j
⎤

⎦ a2.

We know that from Splitting Lemma 5.2 (by taking ξ1 = a2) and classical
complex analysis arguments, we have that g1 does not extend to a holomor-
phic function near any point of the boundary of ΣI1(p, r, I) := Σ(p, r, I)∩CI1 .

Obviously, there are two function F,G : D(x0 + y0i, r) → R such that

F (x + yi) + G(x + yi)I1 =
d∑

�=1

∑

j∈N

(
q� − p�

r�

)2j

.
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By (7.2), we have

g1(x + yI1) = [F (x + yi) + G(x + yi)I1]a2

= F (x + yi)a2 − G(x + yi)a1 + G(x + yi)(1, I1)a

= F (x + yi)a2 − G(x + yi)a1.

Similarly, we can define holomorphic function g� : [Σ(p, r, I)]I�
→ R

2n,
� = 1, . . . , m by

g�(x + yI�) = F (x + yi)a2 − G(x + yi)a1.

Then we take a function h :
⋃m

�=1 [Σ(p, r, I)]I�
→ R

2n such that h|Σ(p,r,I)I�
=

g�, � = 1, . . . , m. By Remark 7.8, h can extend to a slice regular function
f : Σ(p, r, I) → R

2n. It is easy to check that for each K ∈ Cker(I),

fK(x + yK) = F (x + yi)a2 − G(x + yi)a1.

Thence fK also does not extend to a holomorphic function near any point of
the boundary of ΣK(p, r, I).

If Σ(p, r, I) is not a domain of slice regularity, then by Proposition 7.4,
there a K0-triple (Σ(p, r, I), V1, V2) for some K0 ∈ C. Let V ′

1 be a connected
component of Σ(p, r, I)∩V2 in C

d
K0

with V ′
1 ∩V1 �= ∅. Then (Σ(p, r, J), V ′

1 , V2)
is also a K0-triple. By the same method for (7.1) we have

V2

⋂
∂K0V

′
1 ⊂ ∂K0 (ΣK0(p, r, I)) .

If K0 ∈ ±Cker(I), then the holomorphic function fK0 : ΣK0(p, r) →
R

2n can extend to a holomorphic function near a point of the boundary of
ΣK0(p, r, I), a contradiction.

Otherwise, K0 /∈ ±Cker(I). Take z = x′ + y′L ∈ V2 ∩ ∂K0V
′
1 with L ∈

{±K0} such that

x′ + y′I1 ∈ ΣI1(p, r, I) and x′ − y′I1 ∈ ∂I1(ΣI1(p, r, I)).

There is r′ ∈ R+ such that

BL(x′ + y′L, r′) ⊂ V2 and BI�
(x′ + y′I�, r

′) ⊂ ΣI�
(p, r, I), � = 1, . . . , m.

Since I is a hyper-solution of C and L /∈ Cker(I), it follows by definition
that (I1, . . . , Im, L)T ∈ Cm+1

∗ is a slice-solution. Using Extension Lemma 5.6
where we set

J :=(I1, . . . , Im, L)T and U :=[P (x′+y′i, r)∩P (x′−y′i, r)]∪B(x′ + y′i, r′),

it follows by −I1 ∈ Cker(J) = C that there is a holomorphic function f ′ :
Ψ−I1

i (U) → R
2n with f ′ = f on Σ(p, r, I)∩R

d. Therefore we conclude that the
holomorphic function fI1 : ΣI1(p, r) → R

2n can extend to a holomorphic func-
tion on BI1(x−yI1, r1)∪ΣI1(p, r, I) near the point x−yI ∈ ∂I1(ΣI1(p, r, I)),
a contradiction. It implies that Σ(p, r, I) is a domain of slice regularity. �

Proposition 7.10. Let Ω be a domain of slice regularity. If γ ∈ P(Cd,Ω) and
J ∈ Cm

∗ with γJ� ⊂ Ω, then γI ⊂ Ω for any I ∈ Cker(J).
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Proof. We shall prove this by contradiction. Suppose that γI �⊂ Ω for some
I ∈ Cker(J). By Lemma 5.5, there is a domain U in C

d containing γ([0, 1])
such that

ΨJ�
i (U) ⊂ Ω, � = 1, . . . , k.

Since I ∈ Cker(J), it follows by Extension Lemma 5.6 that there is a holo-
morphic function g[I] : ΨI

i (U) → R
2n defined by

g[I](x + yI) = (1, I)ζ+(J)f(x + yJ), ∀ x + yi ∈ U,

such that g[I] = f on UR. For each fixed w ∈ UR, it follows from Splitting
Lemma 5.2 that the Taylor series of holomorphic functions g[I]I and fI at
the point w are the same. Therefore there is sufficiently small r ∈ R+ such
that BI(w, r) ⊂ ΨI

i (U) ∩ ΩI and

g[I] = f, on BI(w, r).

It is easy to check that (Ω, BI(w, r),ΨI
i (U)) is an I-triple. It implies by

Proposition 7.4 that Ω is not a domain of slice regularity, a contradiction.
Therefore γI ⊂ Ω for each I ∈ Cker(J). �

8. Taylor Series

When dealing with slice regular functions an important concept is that one
of slice derivative. In this section, we define this concept in the very general
case of functions with values in the Euclidean space R

2n and then we prove
that there is a Taylor series for weak slice regular functions over slice-cones.

8.1. Slice Derivatives

In this subsection, we generalize the slice derivative to weak slice regular func-
tions over slice-cones. We use the notations and definitions given in Sect. 5.

Definition 8.1. Let I ∈ C, U be an open set in C
d
I , � ∈ {1, . . . , d} and f :

U → R
2n be real differentiable. The (I, �)-derivative ∂I,�f : U → R

2n of f is
defined by

∂I,�f(x + yI) :=
1
2

(
∂

∂x�
− I

∂

∂y�

)

fI(x + yI).

Moreover, if f is α-th real differentiable for α = (α1, . . . , αd) ∈ N
d, then the

(I, α)-derivative f (I,α) : U → R
2n is defined by

f (I,α) := (∂I,1)α1 · · · (∂I,d)αdf.

Proposition 8.2. Let I ∈ C, U ∈ τ
(
C

d
I

)
, and f : U → R

2n be real differen-
tiable. Then

∂I,�f = ∂−I,�f, ∀ � ∈ {1, . . . , d}.

Moreover, if f is a holomorphic map, � = 1, . . . , d, then

∂I,�f =
∂

∂x�
f, ∀ � ∈ {1, . . . , d}. (8.1)
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Proof. (i) By direct calculation, for any � ∈ {1, . . . , d} and any x+yI ∈ U ,

∂I,�f(x + yI) =
1
2

(
∂

∂x�
− I

∂

∂y�

)

f(x + yI)

=
1
2

(
∂

∂x�
− (−I)

∂

∂(−y�)

)

f(x + (−y)(−I))

= ∂−I,�f(x + yI).

(ii) Suppose that f is holomorphic. Then for any � ∈ {1, . . . , d} and x+yI ∈
U ,

1
2

(
∂

∂x�
+ I

∂

∂y�

)

f(x + yI) = 0.

As a consequence we have

∂I,�f(x + yI) =
∂

∂x�
f(x + yI) − 1

2

(
∂

∂x�
+ I

∂

∂y�

)

f(x + yI) =
∂

∂x�
f(x + yI)

and the assertion follows. �

We now introduce some terminology: the real part and imaginary parts
of Wd

C are defined by Re
(Wd

C
)

= R
d and

Im
(Wd

C
)

=
{

(t1I, . . . , tdI)T ∈ End
(
R

2n
)d

: t = (t1, . . . , td)T ∈ R
d, I ∈ C

}
,

By its definition, it is clear that Im
(Wd

C
)

is a cone in
[
End

(
R

2n
)]d, moreover

Wd
C = Re

(Wd
C
)⊕ Im

(Wd
C
)
.

For Ω ⊂ Wd
C and q ∈ Im(Wd

C) let us set

Ω[q] := Ω ∩ [Re
(Wd

C
)⊕ {q}] .

If q ∈ C
d
I for some I ∈ C, then Re

(Wd
C
)⊕ {q} is a d-dimensional real vector

subspace of C
d
I . If Ω is slice-open then, by definition, the set

Ω[q] = ΩI ∩ [Re
(Wd

C
)⊕ {q}]

is an open set in Re
(Wd

C
)⊕ {q}.

Definition 8.3. Let Ω ∈ τs(Wd
C). A function f : Ω → R

2n is called α-th
(resp. infinitely) real-slice differentiable, if for each q ∈ Ω, f |Ω[q] is α-th (resp.
infinitely) real differentiable, where α ∈ N

d.

Obviously, every weak slice regular functions defined on a slice-open set
in Wd

C is also infinitely real-slice differentiable.

Definition 8.4. (Slice derivatives) Let Ω ∈ τs

(Wd
C
)
, � ∈ {1, . . . , d} and f :

Ω → R
2n be a weak slice regular function. The �-slice derivative ∂�f : Ω →

R
2n of f is defined by

∂�f(x + w) :=
∂

∂x�
f |Ω[w](x),
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where x = (x1, . . . , xd)T ∈ R
d and w ∈ Im

(Wd
C
)
. Let α = (α1, . . . , αd) ∈ N

d.
The α-th slice derivative f (α) : Ω → R

2n is defined by

f (α) := (∂1)α1 · · · (∂d)αdf.

Proposition 8.5. Let Ω ⊂ Wd
C , f : Ω → R

2n be weak slice regular and α ∈ N
d.

Then f (α) is weak slice regular and(
f (α)

)

I
= (fI)

(I,α)
, ∀ I ∈ C. (8.2)

Proof. The proof is by induction. Since f (0) = f is weak slice regular, then
(8.2) holds when α = 0. Suppose that f (β) is weak slice regular and (8.2)
holds when α = β. We shall prove that for each � ∈ {1, . . . , d}, f (β+θ�) is
weak slice regular and (8.2) holds when α = β + θ�, where

θ� =
(
01×(�−1), 1, 0, . . . , 0

)
.

Let � ∈ {1, . . . , d} and I ∈ C. Since f (β) is weak slice regular,
(
f (β)

)
I

is
holomorphic. By induction hypothesis and recalling the notation (8.1), the
function(

f (β+θ�)
)

I
=
(

∂

∂x�
f (β)

)

=
(

∂

∂x�
(fI)(I,β)

)

= (fI)(I,β+θ�)

is holomorphic. Since the choice of I is arbitrary, it follows that f (β+θ�) is
weak slice regular and (8.2) holds when α = β + θ�.

By induction, for any α ∈ N
d, f (α) is weak slice regular and (8.2) holds.

�
8.2. Taylor Series

In this subsection, we shall prove a Taylor expansion on σ-polydiscs for weak
slice regular functions. To this end, we consider I ∈ C and r = (r1, . . . , rd) ∈
R

d
+ = (0,+∞]d. For any z = (z1, . . . , zd)T ∈ C

d
I , we denote the polydisc with

center z and radius r by
PI(z, r) :=

{
w = (w1, . . . , wd)T ∈ C

d
I : |zı − wı| ≤ rı, ı = 1, . . . , n

}
,

and we set
P̃I(z, r) := {x + yJ ∈ Wd

C : J ∈ C, and x ± yI ∈ PI(z, r) for some I ∈ C}.

It is easy to check that if z ∈ C
d
I ∩ C

d
J , for some I, J ∈ C, then

P̃I(z, r) = P̃J(z, r).

Hence, we can write P̃ (z, r) instead of P̃I(z, r), without ambiguity. We call
P̃ (z, r) the σ-polydisc with center z and radius r.

Proposition 8.6. Let I ∈ C, U be an open set in C
d
I and f : U → R

2d be
holomorphic. Then for any z0 ∈ U and r ∈ R

d
+ with PI(z0, r) ⊂ U , we have

f(z) =
∑

α∈Nd

(z − z0)αf (I,α)(z0), ∀ z ∈ DI(z0, r).

Proof. The statement can be proved using the Splitting Lemma 5.2 and the
Taylor expansion in several complex variables. �

Let us define a (partial) order relation on R
d as follows: given α =

(α1, . . . , αd) and β = (β1, . . . , βd) in R
d we say that α < β if
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α� < β�, ∀ � = 1, . . . , d.

Let α ∈ N
d and p ∈ Wd

C and let us define the map

(id − p)∗α : Wd
C −−−−−→ End

(
R

2n
)
,

q �−−−−−→
∑

0≤β≤α

[(
α
β

)

Lβ
q Lα−β

p

]

,

where
(

α
β

)

:=
(

α1

β1

)

· · ·
(

αd

βd

)

is the binomial coefficient and

Lβ
q :=

d∏

�=1

(Lq�
)β� = (Lq1)

β1 · · · (Lqd
)βd .

For simplicity, below we shall write (q − q0)∗α instead of (id − p)∗α(q) and
(q − p)∗αa instead of [(q − p)∗α](a). Moreover note that | · | denotes a real
linear norm in R

2n, i.e. |λa| = |λ||a| for each λ ∈ R and a ∈ R
2n.

Proposition 8.7. Let p ∈ Wd
C and a ∈ R

2n. The function defined by

f : Wd
C −−−−−→ R

2n,

q �−−−−−→ (q − p)∗αa,

is a weak slice regular function. Moreover, if p ∈ C
d
I and q = x0 + y0J ∈ C

d
J

for some I, J ∈ C, then

|(q − p)∗αa| ≤ (|J ||I| + 1) max
r=x0±y0I

∣
∣(r − p)∗αa

∣
∣. (8.3)

Proof. (i) Let K ∈ C and z = x + yK ∈ C
d
K . For each β ∈ N

d, b ∈ R
2n and

� = {1, . . . , d}, we have

1
2

(
∂

∂x�
+ K

∂

∂y�

)

(Lβ
z b)

=
[
1
2

(
∂

∂x�
+ LK

∂

∂y�

)

(x� + y�Lk)β�

]
⎛

⎝
∏

j�=�

(Lzj
)βjb

⎞

⎠ = 0.

It implies that, for each � ∈ {1, . . . , d},

1
2

(
∂

∂x�
+ K

∂

∂y�

)

fK(z)

=
1
2

(
∂

∂x�
+ K

∂

∂y�

)

(z − p)∗αa

=
∑

0≤β≤α

[
1
2

(
∂

∂x�
+ LK

∂

∂y�

)(
α
β

)

Lβ
z

(
Lα−β

p a
)
]

= 0.

Since the choice of z and K is arbitrary, fK is holomorphic and then f
is weak slice regular.
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(ii) Set M := maxr=x0±y0I

∣
∣(r − p)∗αa

∣
∣. Since f is weak slice regular and

Wd
C is axially symmetric, it follows from Proposition 6.5 that f is slice.

Hence

(q − p)∗αa = f(q) = f(x + yJ) = s + JIr,

where {
s = 1

2 [f(x + yI) + f(x − yI)] ,
r = − 1

2 [f(x + yI) − f(x − yI)].

It is easy to check that |r|, |s| ≤ M and

|JIr| ≤ |J ||Ir| ≤ |J ||I||r| ≤ |J ||I|M,

so (8.3) holds. �

Theorem 8.8. (Taylor series) Let Ω ∈ τs

(Wd
C
)

and f : Ω → R
2n be weak slice

regular. Then for each q0 ∈ Ω and r ∈ R
d
+ with P̃ (q0, r) ⊂ Ω, we have

f(q) =
∑

α∈Nd

(q − q0)∗αf (α)(q0), q ∈ P̃ (q0, r). (8.4)

Proof. Let q = x + yJ ∈ P̃ (z0, r). By (8.3), for each α ∈ N
d,∣

∣
∣(q − q0)∗αf (α)(q0)

∣
∣
∣

≤ (|J ||I| + 1)
(∣
∣
∣(qI − q0)∗αf (α)(q0)

∣
∣
∣+
∣
∣
∣(q−I − q0)∗αf (α)(q0)

∣
∣
∣
)

= (|J ||I| + 1)
(∣
∣
∣(qI − q0)αf (I,α)(q0)

∣
∣
∣+
∣
∣
∣(q−I − q0)αf (I,α)(q0)

∣
∣
∣
)

,

(8.5)

where qI = x + yI and q−I = x − yI. Since
∑

α∈Nd

∣
∣
∣(qI − q0)αf (I,α)(q0)

∣
∣
∣ and

∑

α∈Nd

∣
∣
∣(q−I − q0)αf (I,α)(q0)

∣
∣
∣

are convergent, it follows from (8.5) that
∑

α∈Nd

∣
∣
∣(q − q0)∗αf (α)(q0)

∣
∣
∣ and

∑

α∈Nd

(q − q0)∗αf (α)(q0)

are also convergent.
By Proposition 8.7, the function g : P̃ (q0, r) → R

2n defined by

g(q) :=
∑

α∈Nd

(q − q0)∗αf (α)(q0)

is a weak slice regular function. Note that f(q) and g(q) are weak slice regular
and

f = g, on PI(q0, r),

thus, by the Identity Principle 5.3 we deduce f = g, i.e. (8.4) holds. �
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tions, vol. 274. Birkhäuser/Springer, Cham (2019)

[6] Colombo, F., Gantner, J., Kimsey, D.P.: Spectral Theory on the S-spectrum
for Quaternionic Operators, Operator Theory: Advances and Applications, vol.
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Verlag, Basel, Trends Math. (2009)

[10] Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Sys-
tems and Computational Algebra, Progress in Mathematical Physics, vol. 39.
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