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Abstract— Ageing is a physiological phenomenon as-
sociated with cognitive and functional decline which, in
the long term, could hamper the execution of daily life
activities and threaten both social and independent life.
The onset of chronic diseases can intensify this process,
increasing the risk of hospitalisation and admission to long
term care. This represents a significant burden on public
health and reduces the quality of life of those affected.
Early detection of unhealthy decline is therefore key, but the
similarity to normal ageing hinders its prompt screening.
This study presents a first step towards the early screening
of unhealthy ageing, based on an innovative instrumented
ink pen to ecologically assess handwriting performance
in different age groups: 40-59 (Group 1), 60-69 (Group 2)
and 70+ (Group 3) years old. Raw handwriting data were
collected from 60 healthy subjects and used to extract
fourteen indicators related to gesture and tremor. The in-
dicators were then used to discriminate between subjects
of different age groups in three binary classification tasks,
using a selection of machine learning algorithms. This
approach produced remarkable results, particularly in the
task of greatest interest, identifying subjects at the very
beginning of the ageing process (Group 2) from elderly
subjects (Group 3), achieving an accuracy of 97.5%, an F1
score of 97.44% and a ROC-AUC of 95%. Explainability of
the model, facilitated by the analysis of the Shapley values
of the learned indicators, revealed age-dependent sensitiv-
ity of handwriting and tremor-related indicators. The pro-
posed method represents a promising solution for the early
detection of abnormal signs of ageing, and is designed for
the remote, non-invasive, unsupervised home monitoring,
to improve the care of older adults.

Index Terms— Ageing, Handwriting, Ecological Home
Monitoring, Smart Ink Pen, Machine Learning

I. INTRODUCTION

Healthy ageing is a physiological phenomenon associated
with a progressive structural, cognitive and functional decline.
A consistent concept in the literature is that ageing is a
complex and dynamic process. Complex because it involves
both physical and cognitive systems, and dynamic because
individuals tend to continuously progress in such a path [1].
Deterioration begins with low-level structural changes in var-
ious systems, such as a reduction in the volume of voluntary
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muscle tissue, asynchronous firing of motor units and slower
transmission of electrical information [2]. Instead, changes in
the region of the brain and in the sensory pathways alter the
ability to process sensory inputs [3]. At the cognitive level,
executive functions such as decision-making and planning are
also affected [4]. Overall, the ability to carry out everyday
activities is impaired as the whole system becomes less able
to respond to internal and external stimuli [3]: maintaining
posture, walking and manipulating objects become a chal-
lenge [2]. Reduced speed and accuracy in performing daily
tasks has a dramatic long-term impact on quality of life,
threatening both social and independent living [3].

In addition, the onset of various age-related pathological
conditions (e.g. frailty or neurodegenerative disorders) can
accelerate this decline, leading to an increased risk of hospi-
talisation and admission to long-term care, with a significant
impact on public care systems [5], [6] and a poor quality of
life for those directly affected and those around them [7], [8].

Early detection of unhealthy decline is therefore key to
slowing and preventing its development until it reaches the
severe, irreversible stage of pre-death [9].

Consequently, attention should be paid to people aged 65
years and older who are at risk of starting an unhealthy ageing
process [10]. However, the scarcity of medical resources and
the similarity with normal ageing often hinders a prompt
screening of such a condition. To avoid this risk, an emerging
solution consists of remote monitoring technologies used to
continuously track the health status of community-dwelling
seniors [11]. To detect early signs of decline, particular atten-
tion has been paid to the monitoring of daily activities [12].
Indeed, in older adults, any variation in the performance of
daily tasks may conceal meaningful information about de-
cline [13]. Among daily tasks, handwriting may be an optimal
candidate for remote monitoring because it is a high-level skill
that involves several cerebral and motor districts [14]: as a
consequence, it undergoes significant variations with physio-
logical or pathological age-related decline [15]. Indeed, the
quantitative analysis of handwriting has been observed to be
sensitive to several neuro-motor disorders, including Parkin-
son’s disease [16], dystonia [17], Huntington’s disease [18]
and essential tremor [19].

The limitations of home-based handwriting monitoring lie in
the devices currently available for data collection. Most studies
in the literature have used commercially available tablets and
digitising surfaces to study writing activities; however, the
diffuse technological illiteracy of older adults makes their

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3444497

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 07,2024 at 08:55:45 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

everyday use rather intrusive [15], [20], [21]. Furthermore,
previous research has mostly analysed handwriting in con-
trolled settings, i.e., using a standardised writing protocol [19],
although the home environment represents an uncontrolled
context in which the results of standard tests cannot be
assumed to be valid without supervision [22].

In a recent work of our research group [23], we presented
an instrumented ink pen for the automatic acquisition and
quantitative analysis of handwriting to allow the ecological
home monitoring of the writing activity [24]. The tool can
be used for everyday writing on paper without any further
interaction by the user, therefore meeting the requirements of
ecological validity. We have previously investigated the relia-
bility of handwriting and tremor indicators in healthy subjects
of different ages and demonstrated their ability to discriminate
age groups in semi-uncontrolled (i.e., the acquisitions were
supervised by an operator, while the content was left free to the
subjects) conditions using paper-and-pen, content-free writing
tasks [23].

In this work, we studied the ability of the handwriting
indicators in [23] in the classification of three age groups
of healthy subjects, performing two types of unconstrained
writing tasks: assigning a subject to their corresponding age
group through free handwriting analysis can be a powerful,
ecological screening tool for the early detection of abnormali-
ties associated with ageing [25]. Particularly for subjects in
the first years of ageing (i.e., in the sixth decade of life),
a potential affinity of their writing parameters with those
generally observed in a category of older individuals could
be a sign of a more pronounced age-related decline and be
interpreted as a prompt for further investigation. The paper
is structured as follows: Section II presents the instrument,
experimental protocols, data processing and classification al-
gorithms used in this work. Section III presents the results and
Section IV discusses them. Finally, Section V summarises the
main findings and suggests new avenues for research.

II. METHODS

A. The smart ink pen

We used the smart ink pen, shown in Figure 1, developed
in the European project MoveCare [12], [26], to collect
handwriting data. The device consists of a commercial ink
pen equipped with an inertial measurement unit (IMU) to
record movement and a miniaturised load cell connected to the
tip [26]. These sensors enable the acquisition of useful signals
for characterising the handwriting gesture. In particular, eight
time series are recorded during handwriting: timestamps, 3-
axis linear acceleration, 3-axis angular velocities and the
normal force applied on the pen tip. All signals are sampled
at 50 Hz. Such specifications allow successfully capturing the
highest frequency associated with human hand motion (12-
15 Hz) while providing sufficient frequency resolution for
tremor analysis (0.1 Hz with the proposed methodology). The
main advantage of this device is that it acquires quantitative
information while giving the typical feel of writing on paper.

The pen is designed to automatically record signals when
it is moved to write; the stored data can then be accessed

Fig. 1. A digital rendering of the smart ink pen with its internal
components and the IMU reference frame orientation.

via Bluetooth connection. All electronic components and the
data storage mechanism are hidden from the user to ensure
transparent use. This feature is particularly important when
interacting with older adults who may be reluctant to use new
technologies [21].

B. Participants and protocol

In order to be included in the study, participants had to be
over 40 years old and healthy. Thus, any diagnosis of neurolog-
ical, vascular or musculoskeletal disorders of the upper limbs
was an exclusion criterion. Subjects over 65 years of age were
included after verification of a Mini-Mental State Examination
(MMSE) [27] score greater than 25, to ensure their cognition
was preserved. During the recruitment phase, subjects were
enrolled according to the following criteria: i) definition of
three age groups to be studied, namely Group 1 (40-59 years
old) representing adult subjects who haven’t started the age
decline yet, Group 2 (60-69 years old) representing subjects
who are starting the age decline process and who would benefit
the most from the early screening of abnormal ageing, and
Group 3 (70+ years old), representing subjects for whom the
ageing process is in place since several years; ii) a sample size
of 20 subjects per group was defined in the protocol approved
in [23] by the Ethics Committee of the Politecnico di Milano
(n. 10/2018). One of the aim of the protocol was to assess
the reliability of the handwriting and tremor indicators and
such a sample was enough to demonstrate it in the different
age groups. Thus, a sample size of 20 subjects per group was
considered in the current work.

All subjects wrote a free text (Text, up to 7 lines) and a
shopping list (List, up to 8 words) using the smart ink pen.
The tasks had no specific constraints on the content to make
them very similar to everyday writing.

C. Calculation of handwriting and tremor indicators

A set of 14 indicators related to handwriting kinematics
and dynamics and to tremor were extracted from the raw data
collected during each of the two writing tasks. These indicators
were chosen because they have already demonstrated their
statistical reliability and sensitivity in discriminating between
subjects aged < 40, between 60 and 69, and over 70 years old
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in a previous study using a similar acquisition protocol involv-
ing a reduced number of participants [23]. The calculation was
implemented in Matlab® R2020b (Mathworks®, Natick, MA
USA). The following indicators were calculated (for a detailed
description, please refer to Appendix B):

• Temporal handwriting measures. Starting from the writ-
ing force signal, we divided handwriting into strokes,
defined as the writing segments where the pen tip was
in contact with the paper surface (non-zero force tracts).
We then considered the averaged stroke duration in
seconds within a writing task as the mean on-sheet time
(OnSheet). Similarly, we kept the averaged duration of
the non-writing segments (zero-force tracts) as the mean
in-air time (InAir). The in-air time intervals longer than
2 seconds were excluded as we treated them as pauses.
The ratio of the latter to the former was defined as the air-
sheet time ratio (AirSheetR). These temporal parameters
have been shown to grow with subjects’ age [28].

• Pen Tilt. The tilt angle of the pen was calculated using the
sensor fusion algorithm described in [23]. We retained the
mean (TiltMean), coefficient of variation (TiltCV ) and
variance (TiltV ar) of the tilt angle signal during writing
(pauses excluded). We considered an angle of 90◦ when
the pen was held in vertical position. Previous studies
have also included pen tilt to characterise handwriting in
different conditions [29], [30].

• Writing Force. Mean writing force (Force) was cal-
culated by averaging the force signal over all strokes
recorded during the writing task. The mean number of
force changes (NCF ), calculated as the average number
of local maxima and minima within a stroke, was also
retained as a measure of force variability. Force and
force variability have been shown to change with age
in handwriting [31].

• Writing Smoothness. We calculated the number of accel-
eration changes (NCA) as the average number of local
minima and maxima in the 3D acceleration signal over
all strokes. This quantity was observed to decrease with
age [16].

To extract tremor, the 3D linear acceleration signal from the
first to the last nonzero force value (i.e., from the beginning
to the end of the execution) was considered. Such a signal
was divided into nonoverlapping segments of 500 samples,
thus allowing a frequency resolution of 0.1Hz in the spectral
analysis [32]. We computed the power spectrum for each
segment using the Hilbert-Huang transform (HHT) [33], which
has been preferred in the literature for the study of tremor
during voluntary activities over the standard Fourier trans-
form [34], and we considered the first intrinsic mode function
as the tremor component. The following tremor indicators
were then calculated:

• Tremor frequency. We obtained the mean modal fre-
quency (Fmodal) by averaging the frequencies of the
highest peak in the power spectrum over all the seg-
ments [35].

• Tremor Amplitude. We calculated the root mean square
(RMS) of the tremor signal in each segment and averaged

it to retain the mean RMS.
• Tremor entropy. We considered the approximate entropy

measure (ApEn), as in our previous study [23]. The
entropy value (between 0 and 2) measures the unpre-
dictability of the acceleration signal, which is influenced
by the regularity of the tremor components. Entropy
has been measured to decrease with age and pathol-
ogy [36]. The entropy measure was computed on each
segment and then averaged.

• Nonlinear characteristics of tremor. We applied the re-
currence quantification analysis (RQA) to the 500 sample
tremor segments. As in [32], we retained the recurrence
ratio (RR) to measure the tendency of the tremor dynam-
ics to express repeated patterns in time and the percentage
of determinism (DET ) to estimate the predictability of
the oscillations during handwriting, averaging them over
the number of 500 sample segments.

D. Classification tasks
From the collected data, three different datasets were

created: Text and List, each including the 14 handwriting and
tremor indicators, and Text + List, combining the two single
datasets. We collected data from healthy participants, evenly
divided into three age groups:

• Group 1: Subjects under the age of 60.
• Group 2: Subjects between 60 and 69 years old.
• Group 3: Subjects over 70 years of age.

The indicators were exploited to build algorithms able to per-
form binary age classifications between group pairs. Group 1
served as a baseline, consisting of adults with fully developed
handwriting skills and theoretically no signs of age-related
decline. Group 2 was selected for its central age of 65 years,
which typically marks the beginning of the elder age. Early
detection of abnormal ageing in this group would allow for
personalized intervention plans to slow the decline. Group 3
represents individuals whose general conditions are already
affected by the ageing process. Thus, if individuals in Group
2 exhibit handwriting characteristics similar to those of Group
3, they might be advised to undergo a comprehensive clinical
evaluation to check their physical and cognitive health. Our
primary interest was indeed the distinction between Group 2
and Group 3. However, testing the indicators sensitivity to the
first manifestations of ageing was also valuable. Therefore, this
classification challengethe classification between Group 1 and
2 was explored as well. Demonstrating that the handwriting
indicators can discriminate between the more distant groups
(Group 1 and Group 3) was also critical to prove that they
effectively capture the essential features of the ageing process.
This setup led to the definition of three binary classification
scenarios across all possible group combinations. For each
comparison, we labelled subjects from the younger age group
as 0 and those from the older group as 1. To address the
complexity and nonlinear dynamics of these analyses, we
employed several machine learning classification techniques.

Our analysis began with Logistic Regression, a simple yet
powerful linear classifier, which served as a crucial benchmark
for performance due to its simplicity and effectiveness in

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3444497

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 07,2024 at 08:55:45 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

binary classification tasks [37]. Support Vector Machines were
included in the analysis as they excel in high-dimensional
spaces by identifying the optimal hyperplane to separate differ-
ent classes, providing a more refined approach to classification
in scenarios with clear class boundaries [38]. We included
Random Forest, an ensemble method that uses multiple de-
cision trees to improve accuracy and robustness, effectively
managing the classification task without succumbing to the
overfitting common to individual decision trees [39]. AdaBoost
was also added to the algorithms investigated for group age
classification, due to its ability to focus on difficult-to-classify
instances and its iterative adaptation to improve the accuracy
of weak learners [40]. Finally, we included Catboost, which
stands out as a state-of-the-art boosting algorithm not only
for its adeptness in handling categorical data, but also for
its superior performance and efficiency compared to other
machine learning algorithms. Its gradient boosting framework
also effectively mitigates overfitting, making it a leading
choice for tackling a wide range of machine learning chal-
lenges [41]. Incorporating these algorithms into our analysis
not only exploited their unique strengths, but also provided a
comprehensive framework capable of moving from simple lin-
ear separations to complex, high-dimensional data landscapes.

E. Pipeline

The entire analysis pipeline is shown in Figure 2. The
first phase called Data Preparation includes the collection
of raw handwriting data and their elaboration, leading to
the extraction of indicators. Subsequently, the phase called
Best Model Selection aims to identify the best model for
solving the task under analysis, through an iterative procedure
including rigorous evaluation and extensive optimisation. In
details, to ensure robustness even with a limited number of
samples, the models were evaluated using the Leave One Out
(LOO) cross-validation technique, with the aim of achieving
an estimate with minimal bias. Each model incorporates the
early stopping mechanism, with a patience set at 20 epochs
with respect to the validation F1 Score. We chose this metric
because it successfully captures and balances the presence of
both false positive and false negative predictions. In addition,
preprocessing was used to facilitate the learning process of
the classifiers. It included a normalisation that adjusts all
indicators to the [0,1] interval, regardless of their original value
range. In this way, the models used in the analysis are not
subject to initial biases associated with the value scales of in-
dividual indicators. The normalisation was applied coherently
with the validation technique. To this end, at each iteration
of the LOO cross-validation loop, normalisation values were
computed with respect to the training set for that particular
iteration. These values were then used to normalise both the
training set and the validation sample. The performance thus
obtained is used to search for the optimal parameters by
means of a tuning process. This process, based on the Tree-
structured Parzen Estimator sampling algorithm [42], allows
the exploration of complex search spaces composed of the
combinations of the various hyper-parameters of the different

Fig. 2. The proposed experimental pipeline. Raw handwriting data are
collected and processed to extract indicators. Then, they are used to
build binary classification algorithms. After the best performer is found
through a leave-one-out cross-validation and optimisation loop, its clas-
sification metrics are computed and the key features are investigated via
SHAP analysis.

classification algorithms. For more information, please refer to
Appendix A. Once the next configuration has been identified,
a new model is built and evaluation via LOO cross-validation
can be performed. For each model and each classification task,
we let the parameters optimiser perform 50 iterations. After
this step, the best model is thus identified and its weights and
performance are stored. The final phase, called Final Training
and Explainability, aims to train the model with the best
parameters over the entire dataset. The model thus obtained
is used to calculate the ranking of the indicators by means of
explainability techniques, which are detailed in the following
sub-section.

We used SHAP [43], [44], a model explanation technique
based on game theory that computes the Shapley values [45]
of the features according to their impact on the model pre-
dictions. In a binary classification task, SHAP first computes
the baseline prediction value, i.e., the mean value predicted
by the model given the observed samples, and then assigns a
real number to weight each feature according to its average
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TABLE I
THE RESULTS OF THE EXPERIMENTS CARRIED OUT ON THE CLASSIFICATION OF GROUP 1 AND GROUP 2. FOR EACH VARIANT OF THE DATASETS,

I.E. TEXT, LIST AND TEXT + LIST, THE BEST RESULT FOR EACH METRIC IS HIGHLIGHTED IN LIGHT BLUE, YELLOW AND GREEN RESPECTIVELY.
FINALLY, THE BEST OVERALL RESULT FOR EACH METRIC IS SHOWN IN BOLD.

Model Accuracy Precision Sensitivity F1 Score Specificity ROC-AUC
Logistic Regression (Text) 70.00 70.00 70.00 70.00 70.00 77.25
Support Vector Machines (Text) 82.50 78.26 90.00 83.72 75.00 76.75
Random Forest (Text) 67.50 64.00 80.00 71.11 55.00 65.25
Adaboost (Text) 70.00 72.22 65.00 68.42 75.00 70.00
Catboost (Text) 95.00 95.00 95.00 95.00 95.00 92.13
Logistic Regression (List) 62.50 61.90 65.00 63.41 60.00 60.25
Support Vector Machines (List) 80.00 71.43 100.0 83.33 60.00 83.13
Random Forest (List) 62.50 60.87 70.00 65.12 55.00 64.50
Adaboost (List) 65.00 63.64 70.00 66.67 60.00 64.25
Catboost (List) 95.00 100.0 90.00 94.74 100.0 94.25
Logistic Regression (Text + List) 62.50 61.90 65.00 63.41 60.00 63.75
Support Vector Machines (Text + List) 67.50 64.00 80.00 71.11 55.00 71.75
Random Forest (Text + List) 70.00 66.67 80.00 72.73 60.00 66.25
Adaboost (Text + List) 72.50 71.43 75.00 73.17 70.00 72.00
Catboost (Text + List) 95.00 95.00 95.00 95.00 95.00 92.75

TABLE II
THE RESULTS OF THE EXPERIMENTS CARRIED OUT ON THE CLASSIFICATION OF GROUP 2 AND GROUP 3. FOR EACH VARIANT OF THE DATASETS,

I.E. TEXT, LIST AND TEXT + LIST, THE BEST RESULT FOR EACH METRIC IS HIGHLIGHTED IN LIGHT BLUE, YELLOW AND GREEN RESPECTIVELY.
FINALLY, THE BEST OVERALL RESULT FOR EACH METRIC IS SHOWN IN BOLD.

Model Accuracy Precision Sensitivity F1 Score Specificity ROC-AUC
Logistic Regression (Text) 80.00 77.27 85.00 80.95 75.00 82.25
Support Vector Machines (Text) 82.50 78.26 90.00 83.72 75.00 84.25
Random Forest (Text) 77.50 73.91 85.00 79.07 70.00 83.25
Adaboost (Text) 82.50 84.21 80.00 82.05 85.00 82.50
Catboost (Text) 95.00 100.0 90.00 94.74 100.0 90.50
Logistic Regression (List) 80.00 83.33 75.00 78.95 85.00 83.25
Support Vector Machines (List) 82.50 84.21 80.00 82.05 85.00 83.50
Random Forest (List) 82.50 84.21 80.00 82.05 85.00 81.75
Adaboost (List) 80.00 80.00 80.00 80.00 80.00 73.25
Catboost (List) 97.50 100.0 95.00 97.44 100.0 95.00
Logistic Regression (Text + List) 75.00 72.73 80.00 76.19 70.00 83.25
Support Vector Machines (Text + List) 80.00 77.27 85.00 80.95 75.00 82.00
Random Forest (Text + List) 85.00 85.00 85.00 85.00 85.00 86.13
Adaboost (Text + List) 80.00 77.27 85.00 80.95 75.00 79.25
Catboost (Text + List) 95.00 95.00 95.00 95.00 95.00 95.50

TABLE III
THE RESULTS OF THE EXPERIMENTS CARRIED OUT ON THE CLASSIFICATION OF GROUP 1 AND GROUP 3. FOR EACH VARIANT OF THE DATASETS,

I.E. TEXT, LIST AND TEXT + LIST, THE BEST RESULT FOR EACH METRIC IS HIGHLIGHTED IN LIGHT BLUE, YELLOW AND GREEN RESPECTIVELY.
FINALLY, THE BEST OVERALL RESULT FOR EACH METRIC IS SHOWN IN BOLD.

Model Accuracy Precision Sensitivity F1 Score Specificity ROC-AUC
Logistic Regression (Text) 87.50 85.71 90.00 87.80 85.00 88.00
Support Vector Machines (Text) 90.00 90.00 90.00 90.00 90.00 88.00
Random Forest (Text) 90.00 90.00 90.00 90.00 90.00 90.75
Adaboost (Text) 87.50 85.71 90.00 87.80 85.00 89.00
Catboost (Text) 97.50 100.0 95.00 97.44 100.0 96.00
Logistic Regression (List) 90.00 90.00 90.00 90.00 90.00 95.25
Support Vector Machines (List) 85.00 88.89 80.00 84.21 90.00 88.50
Random Forest (List) 82.50 80.95 85.00 82.93 80.00 89.25
Adaboost (List) 82.50 84.21 80.00 82.05 85.00 83.13
Catboost (List) 100.0 100.0 100.0 100.0 100.0 100.0
Logistic Regression (Text + List) 85.00 85.00 85.00 85.00 85.00 90.75
Support Vector Machines (Text + List) 90.00 100.0 80.00 88.89 100.0 93.50
Random Forest (Text + List) 90.00 90.00 90.00 90.00 90.00 94.25
Adaboost (Text + List) 85.00 85.00 85.00 85.00 85.00 92.00
Catboost (Text + List) 100.0 100.0 100.0 100.0 100.0 100.0
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Group 1 vs Group 2
(Text + List)

Group 2 vs Group 3
(List)

Group 1 vs Group 3
(List)

a)

b)

c)

d)

Fig. 3. Classification performance and model explanation plots for the Group 1 vs Group 2, Group 2 vs Group 3 and Group 1 vs Group 3 tasks.
The ROC curves of the best models are shown in row a); the corresponding confusion matrices are shown in row b); rows c) and d) show the
absolute average Shapley values and the Shapley values of the indicators for each sample, respectively.
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contribution in feature coalitions, i.e., its Shapley value. It
is then possible to explore the role of each feature in the
classification of individual samples, independent of the fact
that the model has learned them during the training step.
The sample prediction represents the sum of the feature
contribution starting from the baseline. If a feature has a
positive influence, it influences the prediction in favour of class
1 and vice versa. This step was useful to understand, for each
sample and age group, how much each indicator leads the
model to predict class 0 (younger group) or 1 (older group).

III. RESULTS

In this study, 60 healthy participants were recruited, evenly
divided into three age groups: Group 1, comprising 12 males
and 8 females with an average age of 57.70 ± 6.28 years;
Group 2, including 10 males and 10 females with a mean age
of 65.45 ± 2.20 years; Group 3, 6 males and 14 females with an
average age of 80.2 ± 7.00 years. Thus, in each classification
task, the List and Text datasets were made up of 20 samples
per group. The Text + List dataset included 40 samples per
group. Subjects were compliant with the instructions they were
provided with in terms of numbers of written lines in the text
(Group 1 = 7 ± 0, Group 2 = 6.80 ± 1.08, Group 3 = 6.43 ±
0.79) and items in written in the list task (Group 1 = 8 ± 0,
Group 2 = 7.87 ± 0.35, Group 3 = 7.86 ± 0.38). In the list
task, the global trend was that of writing a single word per
item (Group 1 = 1.01 ± 0.04, Group 2 = 1.06 ± 0.19 , Group
3 = 1 ± 0). The adopted writing style was either uppercase or
cursive. The cursive allograph was adopted in 13 (65%), 16
(80%) and 15 (75%) of the cases in the text task by Group
1, Group 2 and Group 3, respectively. As for the list, the
occurrence of cursive was 5 (25%) for Group 1, 12 (60%) for
Group 2 and 13 (65%) for Group 3.

The performance metrics of each classification model em-
ployed for Group 1 vs Group 2, Group 2 vs Group 3, and
Group 1 vs Group 3 are detailed in Table I, Table II, and
Table III, respectively.

Within each table, accuracy, precision, sensitivity, F1 score,
specificity and ROC-AUC are reported for the best model
of each classification algorithm according to the evaluation
metrics (F1 score), considering each dataset. Figure 3 details
the overall best performing model for each classification
task, which always resulted based on the Catboost algorithm,
regardless of the employed dataset. The first column shows the
results for the best model obtained in the Group 1 vs Group 2
classification task, while the second and third columns show
the best models for the Group 2 vs Group 3 and Group 1 vs
Group 3 tasks, respectively. Row (a) shows plots comparing
the True Positive Rate and the False Positive Rate, with the
results calculated as ROC-AUC. Row (b) shows the associated
confusion matrices to give another perspective and a deeper
understanding of the predictive ability of the models with
respect to unseen data. Row (c) shows the indicator ranking
of the final models trained on the full available dataset and
tuned via LOO cross-validation. This ranking is designed to
show only the magnitude of the indicator influence, which is
therefore shown in absolute value. Finally, row (d) expands

the results of the previous row, by explaining how the learned
samples were predicted based on their Shapley value. Specifi-
cally, each point represents the Shapley value of the indicator
for a given sample. The blue-red colour scale indicates the
value of the indicator (low to high): negative Shapley values
pushed the prediction towards class 0 (the younger group),
while positive values favoured the classification of the subject
in class 1 (the older group).

IV. DISCUSSION

In this paper we have demonstrated the capability of the
quantitative analysis of handwriting to discriminate between
healthy subjects of different age groups. We used a novel smart
ink pen to collect handwriting data during tasks that mimicked
everyday writing. In fact, participants were asked to write a
short free text and a shopping list without any constraints on
content or writing modality. This particular setting was chosen
to maximise ecological validity, with the ultimate goal of using
our findings to develop, in the future, home-based solutions
dedicated to the early detection of unhealthy decline in seniors.
Therefore, particular attention was paid to the classification of
the individual’s age: in the real use of the developed classifiers,
the association of one’s handwriting characteristics with those
of an older age group could be interpreted as a clinically
relevant anomaly [46].

Five different machine learning algorithms, namely Lo-
gistic Regression, Support Vector Machine, Random Forest,
Adaboost and Catboost, were used to carry on three different
binary classification tasks, based on the set of handwriting
indicators we computed from the raw free text and shopping
list data. The indicators described the execution from different
points of view, including the temporal characteristics, the pen
inclination in the horizontal plane, the force exerted on the
writing surface, and the movement smoothness. Tremor was
analysed as well, considering its amplitude and frequency
properties, together with its regularity and nonlinear charac-
teristics.

In the analysis, we considered all the possible binary
classification problems (i.e., Group 1 vs Group 2, Group 2
vs Group 3 and Group 1 vs Group 3). The aim of the first two
tasks was to test the sensitivity of the models to the variations
in handwriting performance that might be expected between
healthy individuals with small age differences [47]. Excellent
performance was obtained with the Catboost classifier in both
tasks (accuracy between 95.00% and 97.50%, precision from
95.00% to 100%, recall from 90.00% to 95.00%, F1 score
from 94.74% to 97.44%, specificity from 95.00% to 100%
and ROC-AUC from 90.50% to 95.50%), considering all three
datasets composed by the indicators calculated from the Text,
List and combined Text + List data. The Catboost model
outperformed the other algorithms in the classifications be-
tween adjacent age groups, in all considered datasets. Indeed,
the performance obtained by the other models ranged from
62.50% to 85.00% accuracy, 60.87% to 85.00% precision,
65.00% to 100% sensitivity, 63.41% to 85.00% F1 score,
55.00% to 85.00% specificity and 60.25% to 86.13% ROC-
AUC.. Therefore, we could expect a high sensitivity to the
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changes in handwriting indicators due to an abnormal or
pathological ageing decline [47].

In the third task, we looked instead at the classifica-
tion between nonadjacent age groups. As expected, scores
were higher in this task, as the differences in handwriting were
likely more pronounced. Once again, the Catboost classifier
produced the best overall result, achieving 100% in all metrics
when considering the List and the Text+List dataset. This
result, that we want to stress is obtained using the Leave One
Out cross-validation method, suggests, on the one hand, the
existence of non-linear separating hyperplanes that are able
to correctly classify individuals into two different groups. On
the other hand, it shows that the information provided by the
indicators is sufficient for the Catboost algorithm to effectively
approximate these separating hyperplanes. As the two age
groups are more distant from each other, and therefore have
more different writing features, such behaviour was expected,
or at least conceivable. When the Text dataset was used, all
the metrics were above 95.00%, with precision and specificity
equal to 100%. Interestingly, the differences between Catboost
classifiers and the other models were less pronounced with
respect to the first two classification tasks. Considering all
models and all datasets, all metrics resulted greater than
80.00%. Overall, these findings suggest that the extracted
handwriting indicators are able to successfully capture the
intrinsic and evident differences in the gesture between adult
and elderly healthy individuals, thus making the classification
problem almost trivial.

When looking at the discriminative power of the different
datasets for the Catboost model, the List one turned out to
be the best overall. For the classification between Groups
1 and 2, the List dataset was the one on which the model
performed best in terms of precision, recall, and ROC-
AUC. The trend was even more evident in the classification
between Group 2 and 3, where the List obtained the best
results in all metrics but ROC-AUC, which however reached
95.00%. Lastly, List and Text + List did not make any
misclassifications when examining Group 1 vs Group 3, as
already mentioned. As a whole, we would have predicted a
greater discriminative power associated with the Text dataset.
Indeed, writing a free text requires a higher cognitive de-
mand, which should have a greater impact on the handwriting
characteristics as age increases. Firstly, the instructions per
se made the text exercise longer than the list. Secondly, both
the semantic and the orthographic content are more complex
in a text: the written product should convey a meaningful
message (semantic), which requires the sapient combination of
different grammatical components (nouns, verbs, articles and
prepositions). In a shopping list, semantic remains important
but is restricted to a narrower range, while the written items
are likely to be nouns in most of the cases. A possible reason
behind the obtained results could lie in the writing dynamics of
the two exercises. Indeed, each item in the list was written
in a new line, thus making the execution more segmented
with respect to the text, with possible greater effects on older
subjects’ execution. The adopted allograph could also have
had an impact, particularly in the classification tasks involving
Group 1: in writing the list, these subjects preferred the

uppercase style, while cursive was predominant in the other
two groups. Given the relatively small number of samples,
chance factors could not be excluded and further research on
this topic is warranted. Nevertheless, it is worth noting that the
differences in the results were small, suggesting that both data
collection methods are valid and contain intrinsic age-related
information.

We further analysed our experiments using the SHAP
model explanation technique to understand the impact and
the behavior of each handwriting indicator in the different
classification tasks. In this paper we detail the results and
analysis of three classifications tasks, always considering
Catboost based models. In particular, the dataset showing the
best F1 score is represented, as it was the optimization metric
during the algorithm training.

In the first classification task, the groups aged 40 to 59 and
60 to 69 years old (Group 1 and Group 2) were considered.
These two groups represent, respectively, a population of
healthy subjects in which the effects of age decline should
be absent, and a population in which a decline in physical or
cognitive functionality may be at an early stage [10], [48].
As shown in Figure 3 first column, row (b), the Catboost
model trained on the Text+List dataset was able to correctly
classify 38 subjects over 40, with only 1 misclassified subject
per group. Our results confirm previous findings in the lit-
erature, where it has been observed that handwriting varies
significantly in middle and older adults [49]. The model
explanation (Figure 3, lines c and d) showed that the tilt of the
pen (TiltMean list) was the most important indicator in this
classification with Group 2 demonstrating lower values (i.e.,
the pen was held more horizontally). According to Marzinotto
et al. [49], a greater pen inclination is typical in middle-
aged adults (Group 2). The approximate entropy (ApEn list
and ApEn text) also played a significant role, indicating
a lower predictability of the handwriting time series of the
younger class. This result is in line with the findings of our
previous work [23], where, using similar experimental settings,
significant differences between age groups were found. The
trend of decreasing entropy with age was consistent with
previous literature studying resting and postural tremor in
younger and older adults [35], [36], [50]. As for the other
nonlinear characteristics of tremor, higher values of the per-
centage of determinism (DET list) were correctly associated
with older ages [32]. The more predictable tremor patterns
in Group 2 were also coupled with increased tremor ampli-
tude (RMS text). Although its variation was not statistically
significant between different age groups in Lunardini et al.
[26], in the current study writing force (Force text) emerged
as the fourth most predictive indicator. The predictions were
shifted towards the older group (Group 2) when the force
values were lower. This was in line with the study by Engel
Yeger et al. [3] in 2012, Caligiuri [51] in 2014 and Marzinotto
et al. [49] in 2016.

The effect of the temporal indicators was revealed only
by 2 indicators (AirSheetR list and OnSheet text). The
former confirmed the tendency of the older class to have
more prolonged non-writing moments with respect to the on-
sheet time, found in our previous work [23], and others [28],
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[52]. As a whole, these results seem to suggest that the first
signs of ageing are subtle and hidden in characteristics which
are difficult to detect by the naked eye [1]. These insights
were also useful to understand why the two misclassifications
happened. The false positive (i.e., a subject belonging to
Group 1 and classified as Group 2), exhibited low values in
TiltMean list and Force text indicators, which are associ-
ated by the model with the older age group. On the other hand,
the false negative subject showed high values of approximate
entropy (both in List and Text dataset) and reduced tremor
amplitude (RMS text), thus being separated from Group 2
trend.

The second classification, between the groups aged 60
to 69 and 70+ years old (Groups 2 and 3), was the most
relevant for investigating the suitability of our approach in
the scenario of early detection of decline. In the normal
ageing process, physical or cognitive decline is expected to
be more consistent in the older group [10], [48]. Therefore,
whenever an individual in the younger group is associated with
the older one, it could be interpreted as a sign of abnormal
decline. Our results showed that the classifier trained on the
List dataset may be suitable for the monitoring of decline
due to its high F1 score of 97.44%. Only 1 subject out
of 40 was wrongly classified as younger, while the false
negatives were 0 (Figure 3, second column, row (b)). The
model explanation (Figure 3, second column, row (c) and
(d)) showed that the in-air time parameter (InAir) was much
more influential in the classification than all the others (twice
as much as the second most important indicator in absolute
value): higher InAir were associated with individuals of the
older class, highlighting a slower execution, as in [4]. Such
an outcome has a two-fold interpretation. The oldest subjects
can be facing decline both from the motor output perspective,
slowing down movement execution, and the cognitive perspec-
tive, affecting the high-level executive functions associated
with memory, motor planning and attention. Recurrence rate
was the second indicator of importance and confirmed the
trend of increasing tremor regularity with age emerged in the
first classification task. On the other hand, RMS exhibited
an opposite behaviour, with lower values associated with
older participants. However, the reduced amplitude of the
oscillations could also be indicative of decreased movement
speed in general. Lastly, gesture fluency, measured by NCA,
did not reveal a clear trend, as Group 2 subjects were evenly
split between very high and very low values. Thus, in this
classification task, the SHAP analysis depicts older subjects’
handwriting performance as inefficient in terms of speed and
standardised in terms of tremor manifestation. This was not
true for the misclassified subject, a 73 year old man whose List
performance was characterised by reduced time spent with the
pen in the air (InAir), stochastic (RR) and strong (RMS)
involuntary oscillations.

The third classification was between Group 1 and Group
3, with handwriting performance expected to be markedly
different. As a consequence, the ability of the model in
discriminating between these classes increased. When training
the Catboost algorithm with the List dataset, all the subjects
were correctly classified. The model explanation (Figure 3,

third column, rows (c) and (d)) showed that the two most
important indicators were the same, although reversed in
order, found in the first classification task (Group 1 vs Group
2). Indeed, tremor approximate entropy (ApEn) revealed
the highest differentiation power, with clearly distinguishable
values between the groups: high for the youngest and low
for the oldest. The angle of the pen with respect to the
normal to the writing surface (TiltMean) dropped from the
first position in the classification Group 1 vs Group 2 to
the second position in the third classification in the impact
ranking, while still keeping the same behaviour, revealing a
higher degree of inclination in older subjects. Additionally,
Group 3 was characterised by a lower variability in pen angle
(TiltCV ), possibly indicating a rigid manipulation of the
writing tool. Besides these three indicators, only RMS and
NCF had a meaningful impact on the model prediction. No
clear trends were revealed, although it is worth noting that their
contribution was one order of magnitude lower compared to
the first three indicators. These results confirmed the findings
of the classification between Group 1 and 2: with respect to
people undergoing age-related modifications, either in early
or advanced phases, adult subjects exhibit more stochastic
tremor patterns [35] and hold the pen more vertically while
writing [49].

Interestingly, the combination of List and Text datasets
in the classification between Group 1 and 2 revealed ten
relevant indicators for the model prediction, equally distributed
between the two handwriting exercises. Among these, only
the approximate entropy was present for both datasets. On the
other hand, when considering the List alone (second and third
classification tasks in Figure 3), only five indicators happened
to have a marked impact on the model reasoning. This finding
suggests the utility of both List and Text for age character-
ization: when considered together, they can enhance the un-
derstanding of age-related handwriting differences, providing
non overlapped details on the various inspected domains.

The model explanation revealed that the impact of the
handwriting indicators was task dependent, i.e., it changed ac-
cording to the age ranges we considered in the classifications.
These differences in the indicators importance highlighted the
complexity of the age-driven decline in handwriting. However,
the behaviour of the indicators in the different age intervals
was consistent with the previous findings in literature in
populations of healthy subjects. This result helped in the
interpretability of the models, giving the possibility to under-
stand their decisions, as they relied on known handwriting
quantities. Such an aspect is critical for the potential adoption
of the proposed models in real practice and would allow to
understand the domain where handwriting impairments due to
ageing occur, if any.

It is possible to point out certain limitations of the present
work. The limited number of participants recruited in the
study implied the use of Leave One Out cross-validation
without the addition of a test set of sufficient size to provide a
consistent estimate. This provided optimal validation results,
but an additional dataset could have been used to assess
further aspects of the models’ performance. No distinctions
were made in terms of the allograph used. Future research
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should deepen this topic by providing more specific insights
into possible allograph-dependent writing disorders that occur
with ageing.

V. CONCLUSIONS

In conclusion, this work showed the quantitative analysis
of handwriting to classify healthy individuals belonging to
different age groups. The developed classifiers may offer a
novel and non-invasive instrument for the domestic monitoring
of handwriting in elderly individuals. The interest in our
findings is enhanced by the innovative tool employed to collect
the subject’s writing data, allowing the ecological acquisition
of daily-life handwriting.

The results support the use of handwriting to detect age-
related anomalies: an abnormal decline could be highlighted
in individuals classified as belonging to an older age group,
thus prompting a thorough clinical investigation of their con-
ditions by the general practitioner or a specialist. Moreover,
precise information about the nature of the decline could be
achieved by investigating pathological handwriting changes, as
Parkinson’s disease and dementia, in diagnosed patients and
developing illness-specific classifiers.

REFERENCES

[1] D. E. Vaillancourt and K. M. Newell, “Changing complexity in human
behavior and physiology through aging and disease,” Neurobiology of
aging, vol. 23, no. 1, pp. 1–11, 2002.

[2] S. Morrison, K. Newell et al., “Aging, neuromuscular decline, and
the change in physiological and behavioral complexity of upper-limb
movement dynamics,” Journal of aging research, vol. 2012, 2012.

[3] B. Engel-Yeger, S. Hus, and S. Rosenblum, “Age effects on sensory-
processing abilities and their impact on handwriting,” Canadian journal
of occupational therapy. Revue canadienne d’ergothérapie, vol. 79, pp.
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APPENDIX A
This section provides an overview of the search spaces used

to tune the machine learning models used in the experimental

TABLE IV
SEARCH SPACES FOR THE PROPOSED ALGORITHMS

Algorithm Search Space

Logistic Regression C: loguniform(1e-3, 1e3)
Penalty: [’l1’, ’l2’, ’none’]
Solver: [’newton-cg’, ’lbfgs’, ’liblinear’,
’sag’, ’saga’]
Max Iter: 1000

Support Vector Machines C: loguniform(1e-3, 1e3)
Kernel: [’linear’, ’poly’, ’rbf’, ’sigmoid’]
Max Iter: 1000
Probability: true
Degree: integer(2, 5)
Gamma: loguniform(1e-4, 1e1)
Coef0: uniform(-1, 1)

Random Forest N estimators: integer(10, 200)
Max Depth: integer(2, 8)
Max Features: [’sqrt’, ’log2’, None]
Criterion: [’gini’, ’entropy’]

AdaBoost N estimators: integer(10, 200)
Learning Rate: float(0.01, 1.0)
Max Depth: integer(2, 8)
Max Features: [’sqrt’, ’log2’, None]
Algorithm: [’SAMME’, ’SAMME.R’]
Criterion: [’gini’, ’entropy’]

CatBoost Iterations: 1000
Depth: integer(2, 8)
Learning Rate: float(0.01, 0.3)
L2 Leaf Reg: loguniform(1, 10)
Bagging Temperature: float(0, 10)
Border Count: integer(128, 256)
Loss Function: ’CrossEntropy’
Evaluation Metric: ’F1’
Bootstrap Type: ’Bayesian’

part of this study. All values are summarised in Table IV. The
optimisation framework used is Optuna [53], which incorpo-
rates a Tree-structured Parzen Estimator sampling method [42]
alongside a Hyperband pruning mechanism [54]. For each op-
timised model, a series of 50 search iterations were performed
with the objective of maximising F1 score in order to identify
its optimal parameters.

APPENDIX B

This section explains how the indicators used in the paper
are computed in MATLAB R2020b. We define:

• fs the sampling frequency of the smart ink pen IMU,
load cell and timestamp;

• t the timestamp time series measured in seconds;
• F the force signal time series measured in arbitrary unit;
• Ax, Ay and Az [mm/s2] the linear acceleration time

series along the x, y and z axis respectively;
• AVx, AVy and AVz [deg/s] the angular velocity time

series along the x, y and z axis respectively;

STROKE SEGMENTATION

Strokes are defined as segments where the pen tip is in con-
tact with the paper. The single acquisition is characterized by
an arbitrary number of strokes (defined as Nstrokes) depending
on the written content and the subject’s personal handwriting

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3444497

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 07,2024 at 08:55:45 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

style. The instant of beginning and end of each stroke were
identified as follows:

tstart = ti|Fti−1
= 0 ∧ Fti > 0;

tstop = ti|Fti > 0 ∧ Fti+1
= 0

The signals associated to the i-th stroke are defined as:

ti-th
stroke = t(ti-th

start, t
i-th
stop);

F i-th
stroke = F (ti-th

start, t
i-th
stop);

Ai-th
xyz stroke = Axyz (ti-th

start, t
i-th
stop);

AV i-th
xyz stroke = AVxyz (ti-th

start, t
i-th
stop);

TEMPORAL HANDWRITING MEASURES

Temporal handwriting indicators are computed as:

OnSheet (s) =

∑Nstrokes
i=1 (tistop − tistart)

Nstrokes
;

InAir [s] =

∑Nstrokes−1
i=1 (ti+1

start − tistop)

Nstrokes
;

AirSheetR [] =
InAir

OnSheet
;

PEN TILT

For Tilt computation the following steps were followed for
each stroke:

• Az (the linear acceleration component directed as the
longitudinal axis of the pen) was low pass filtered with
cutoff frequency set to 10Hz.

• A first approximation was computed as: θapprox =

sin−1
(

Azi
stroke

9.81

)
• Defined constant k1 = 1.5 and k2 = 0.4 the Tilt was

updated using the angular velocity tilt estimation as:

θ(t) = θ(t− 1) + k1 (θapprox(t− 1)− θ(t− 1))

+ k2
(
AV xi

stroke(t− 1) +AV yistroke(t− 1)
)

• Finally the following Tilt features were extracted:

TiltMean[deg] =
∑i=Nstrokes

i=1 θi
Nstrokes

;

TiltCV[] =
std(θi)

TiltMean
;

TiltVar[] = var(θi);

WRITING FORCE

The mean force applied in each stroke was computed as:

Force [arbitrary] =

∑Nstrokes
i=1

(∫ tistop
tistart

F i
stroke dt

)
ti-th
start−ti-th

stop

Nstrokes

For the NCF computation we firstly summed the number
of F signal maxima and minima within each stroke to obtain
NCFi then we extracted:

NCF [#] =

∑Nstrokes
i=1

NCFi

ti-th
start−ti-th

stop

Nstrokes

WRITING SMOOTHNESS

The 3D acceleration was computed. The number of A3D

maxima and minima was summed up within each stroke to
obtain NCAi to then average it over Nstrokes:

A3D =
√
Ax2 +Ay2 +Az2;

NCA[#] =

∑Nstrokes
i=1

NCAi

ti-th
start−ti-th

stop

Nstrokes
.

TREMOR INDICATORS

Firstly the A3D signal was divided into windows (Wi) of
500 samples each without distinguishing between on-sheet and
in-air tracts: Wi = A3D(ti, ti + 500). We define Nwindows the
number of windows found in the raw data. The empirical mode
decomposition was applied to each Wi to extract the window
intrinsic mode functions (imfi). This was done through the
MATLAB® routine emd: imfi = emd(Wi). The first imf
(imfi1) was considered as tremor. The Hilbert spectra of
imfi were obtained by applying the MATLAB® routine hht:
hsi,f(t) = hht(imfi, fs).

Tremor Frequency

In each Wi, we defined FrPeaki1 the frequency (f ) of
imfi1 for which:

hsi1[FrPeaki1] ≥ hsi1[f ] ∀f

Finally, we obtained:

Fmodal[Hz] =

∑Nwindows
i=1 FrPeaki1

Nwindows

Tremor Amplitude

In each Wi, we computed the RMS (RMSi1) and then we
averaged them over the number of windows.

RMSi1 = rms(imfi1); RMS[mm/s2] =

∑Nwindows
i=1 RMSi1

Nwindows

Tremor Entropy

The tremor approximate entropy was com-
puted on each Wi using the MATLAB®

routine approximateEntropy: ApEni =
approximateEntropy(Wi, ’Dimension’, 2, ’Radius’, 0.2 ∗
std(Wi)). Finally, we obtained:

ApEn[] =

∑Nwindows
i=1 ApEni

Nwindows
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Nonlinear Characteristics of Tremor
We applied RQA analysis on each Wi following these steps:
1) Delay (Di) estimation using the mutual information

algorithm in MATLAB® (link):

Di = MutualInformation(imfi1, imfi1)

2) Embedding dimension (EDi) estimation with the false
nearest neighbor chaotic algorithm in MATLAB® (link):

EDi = embeddingDIM(imfi1, Di)

3) RQA analysis in MATLAB® (link):

RPimfi = MathworksRPplot(imfi1, EDi, Di);

RRi, DETi = MathworksRPplot(RPimfi , EDi, Di)

Finally, we obtained the overall recurrence rate (RR%) and
determinism (DET%) as follows:

RR% =

∑Nwindows
i=1 RRi

Nwindows
; DET% =

∑Nwindows
i=1 DETi

Nwindows
.
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