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Abstract—Because of the air-cored and toothless structure, 

ACRIMs usually have coils with flat cross-sections and need 3-

D inductance evaluation. Since the precision in geometry 

modeling is vital to the inductance-estimation accuracy, a 

combined geometry modeling and inductance calculation 

method is proposed. The coil geometry construction process can 

handle non-circular cross-section and complex coil shapes, it 

generates a single- or multi-filament model ready for analytic 

inductance calculation and coordinates information for 3-D 

FEA modeling. Based on the closed-form solutions for the 

mutual inductance of two straight segments placed at any 

orientation in 3-D, the filament-level, conductor-level, coil-level 

and winding-level inductances can be calculated, the entire 

calculation procedure is fast, accurate and avoids numerical 

singularities so is suitable to be incorporated into an 

optimization program. Good correlation is confirmed in 

validation against 3-D FEA results on an air-cored resonant 

induction machine design. 

Keywords—3-D inductance evaluation, air-cored machines, 

complex coil geometry construction, closed-form expressions, 

multi-filament method.  

I. INTRODUCTION 

Air-cored resonant induction machines (ACRIMs) remove 
the magnetic core and offer many favorable features like 
reduced mass, eliminating saturation issues thus no iron 
losses, good overload capability, low inertia, no cogging 
torque, and the potential to operate under a square-wave 
modulation. They are promising for high-speed and high-
power-density applications. Though the magnetic loading 
usually drops in air-cored induction machines (IMs), the 
capacitors in ACRIMs can partially or totally cancel out the 
machine reactance in an operating range and allow ACRIM 
windings to carry more current, so the electric loading is 
boosted and the torque capability is improved [1]. Also, for a 
required torque and speed demand, the supply voltage is 
reduced compared to pure air-cored IMs [2]. Several capacitor 
tuning criteria of ACRIMs have been investigated but the 

design aspect of ACRIM has not been fully studied especially 
for its winding inductance estimation. A 2-D current-sheet 
model of ACRIMs ignoring the excitation thickness is 
constructed in [1], a 2-D model assuming infinite-long 
conductors with round cross-sections is built in [3], and 2-D 
finite element analyses (FEA) are used in [4] and [5], none of 
them captures the important 3-D feature of air-cored windings. 
In air-cored machines, the magnetic field is inherently 3-D, 
and requires 3D analysis.  

3-D FEA can be a way to numerically evaluate 3-D 
inductances, but it has two main issues, especially when 
incorporating into a design optimization program, one is the 
high computational costs and the other is the detailed 
geometry modeling, particularly for the end-winding parts. 3-
D FEA was used to calculate the inductance and was 
embedded into an optimisation program for designing an 
ironless axial-flux permanent-magnet machine (AFPM) in [6], 
the genetic algorithm is applied for quicker convergence thus 
fewer number of evaluations are needed and the time reported 
to find the optimal design on a high-performance workstation 
is 29 hours. Another multi-objective optimization for 
designing a coreless AFPM was carried out in [7]; though a 
two-level algorithm is implemented to substantially reducing 
the number of evaluations, 120 3-D FEA simulations was still 
needed to plot the Pareto front. It can be seen that the 
computational costs of 3-D FEA are very high and usually 
make it inefficient for an optimization procedure. Also, the 
geometry of windings needs to be updated automatically from 
design to design in the optimization, so the entire 3-D winding 
shape needs to be defined in a parametric routine. Unlike the 
concentrated or “tooth”-wound coils used in [6] and [7], 
conductor clashing can happen in 3-D geometry generation for 
complex winding shapes like hand-wound lap windings. This 
prevents the definition of individual coils so is not tolerated in 
3-D FEA.  

Apart from FEA methods, there are other analytic methods 
to calculate 3-D inductances. Expressions to calculate the 3-D 



magnetic field produced by a bulk conductor with rectangular 
cross-section in free space are derived in [8], however, it 
involves numerical evaluation of Jacobi elliptic functions and 
the field solution still needs to be integrated to derive the 
inductance value, which adds to the computational burden. 
Neumann integrals are applied in [9] to calculate the end-
winding reactance of an IM, and one coil end is represented 
by one filament locating at its center, but direct 
implementation of Neumann integrals brings two issues: there 
is a trade-off between element size and the solution accuracy; 
and a weak numerical singularity arises when two segments 
intersect. Closed-form solutions based on Neumann integrals 
are derived in [10] and [11] for inductances of two segments 
placed at different orientations and of coils in special shapes, 
these expressions help to resolve singularity issues caused by 
numerical quadrature, however, coils are still represented by 
their central filaments, which works well for conductors with 
round cross-sections, but is not so accurate for adjacent 
conductors with non-circular such as flat cross-sections.  

This paper presents a 3-D geometric modeling method and 
a 3-D winding inductance calculation method for ACRIMs. A 
general geometry construction method for complex coil 
shapes is presented first; the coil is characterized by a 
sequence of cross-sections, which can be calculated directly 
or drawn by geometry transformations, then vertices of 
filaments are located using local coordinate systems attached 
to these cross-sections. Connecting corresponding vertices 
forms a filament and multiple filaments can be arranged inside 
the coil to reflect the shape and change in cross-sections and 
the twisting and bending in coils. Second, the calculation for 
mutual inductance of two segments placed at any orientation 
using closed-form solutions of Neumann integrals is 
explained, and segment-level inductances are then collected to 
calculated the filament-level, conductor-level, coil-level and 
winding level inductances. Finally, the proposed method 
combining geometry modeling and inductance calculation is 
validated by a 3-D FEA.   

II. A GENERAL COIL GEOMETRY MODELING METHOD 

A. Coil Geometry Construction  

  1)  Building Cross-Sections  

A coil is firstly characterized by a sequence of its cross-
sections. For each cross-section, it is seen as a closed 2-D 
polygon and is described by the positions of its vertices in the 
form of a matrix, MCs. For example, a cross-section with nCsv 
vertices is written in the form of an nCsv-by-3 matrix in which 
every row stores the coordinates of one vertex, so the number 
of rows is equal to the number of vertices, and the three 
columns correspond to the x, y, z coordinates of the vertex. 
There can be variations in the cross-section shape along the 
coil, so the size of the cross-section matrix, i.e., the number of 
rows in MCs, can also be varied. Cross-sections with nCsv1 and 
nCsv2 vertices respectively are written in the matrix form in 
MCs,1 and MCs,2 as shown in Fig. 1.  

For a straight conductor with unvarying cross-section, it 
can be simply represented by two cross-sections at both ends. 
For a conductor with bending or twisting however, it needs to 
be approximated by multiple cross-sections at different 
positions along the coil spine. Cross-sections can be drawn by 
direct calculation and by 3-D geometric transformations. The 
direct calculation refers to calculating the cross-section 
vertices directly using measurable machine geometry 
parameters, it is usually applied to cross-sections parallel to 

the xy or yz or xz plane when the calculation reduces to a 2-D 
problem and the vertices are easier to calculate, it is useful in 
defining the initial cross-section shape and the axial-winding 
cross-sections. However, for conductors involving twisting 
and bending such as the coil ends, 3-D geometric 
transformations are often invoked: based on an existing cross-
section, operations like translation along a 3-D spine and 
rotation around an arbitrary 3-D axis can quickly put the cross-
section in place. Also, operations like reflection over a plane 
can conveniently complete the coil if symmetry exists. All of 
these operations are essentially carried out by multiplying the 
corresponding 3-D transformation matrix T, such as the 
translation transformation matrix Ttrans or rotation 
transformation matrix Trot, to a cross-section matrix MCs, 
shown as MCs,i and MCs,j in Fig. 1 [12].The collection of all the 
cross-section matrices in a coil is denoted as ℂCs, and ℂCs = 
{MCs,1, MCs,1, …, MCs,nCs}, which contains nCs cross-sections.  

  2)  Locating Filament Vertices 

The next step after placing all cross-sections is to locate 
the “punctures” on them where the filaments will penetrate 
through, connecting corresponding puncture points over 
cross-sections in sequence to form a continuous filament. The 
positions of these points are determined using a local 
coordinate system attached to each cross-section. The local 
coordinate system has two base vectors, denoted as u and v. 
For a rectangular cross-section particularly, a local Cartesian 
coordinate system can be established by choosing its two 
adjacent edges as the two axes. For a cross-section has nCsp 
points on it, the ith point, Pi, is assumed to have a local 
coordinate of Pi,loc = (ai,bi), then the position of Pi in the global 
coordinate system Pi,glo, can be easily calculated as aiu+biv+t, 
where t is the translation vector pointing from the global 
origin to the local origin. The information of all points on this 
cross-section can be written in a nCsp-by-3 matrix, MPt, in 
which every row stores the global x, y, z coordinates of one 
point on the cross-section. The collection of all the point 
matrices is denoted as ℂPt. and ℂPt = {MPt,1, MPt,2, …, MCs,nFa}, 
where nFa is the number of cross-section, or faces, with 
puncture points defined, as shown in Fig. 1.  

  3)  Forming Filaments 

The final step is the filament formation. One filament can 
be composed of only one straight filamentary segment, or 
several straight filamentary segments connected together. A 
filament does not have to be a closed polygon. Connecting the 
corresponding points on two cross-sections forms one 
segment in a filament. Clearly, smooth bending and twisting 
of coils are discretized by several straight segments because 
they are firstly approximated using multiple cross-sections. 
Each filament composed of nv vertices, can be recorded using 
an nv-by-3 matrix, MFil, in which each row stores the x, y, z 
coordinates of one vertex. Finally, the collection of all 
filaments in a coil is written as a set of matrices, denoted as 
ℂFil, as shown in . ℂFil = {MFil,1, MFil,2, …, MCs,nFil}, where nFil 
is the total number of filaments.  

The number of filaments in different parts of a coil does 
not need to be the same. However, in a simpler case that a coil 
is constructed with all filaments follow the same complete 
path along the coil spine, connecting the ith points on all cross-
sections in sequence by straight segments forms the ith 
filament, and the number of vertices on every filament is equal 
to the number of cross-sections, i.e., nv = nCs; the number of 
filaments is equal to the number of points on every cross-



section, i.e., nFil = nCsp. The general coil geometry construction 
process is illustrated in Fig. 1.  

 

Fig. 1. The general coil geometry construction process.  

B. Example: Coisl in a Lap Winding  

This section presents the geometry construction process of 
a coil with rectangular cross-section in a single-layer lap 
winding. Unlike coils with round cross-sections, the rotation 
in rectangular cross-section caused by bending and twisting 
needs to be handled properly to avoid cross-section mismatch. 
One final analytic coil shape is shown in Fig. 2.  

 

Fig. 2. Analytic coils and their corresponding 3-D FE coils. (a) shows the 
stator coil and (b) shows the rotor coil. For analytic coils: red and blue lines 
represent the filaments inside; silver lines outline the conductor edges, red and 
blue faces illustrate all cross-sections. 3-D FE coils are in yellow and green, 
which are built directly using analytic calculated coordinates.  

The axial part conductor, denoted as 𝔸, is a rectangular 
cuboid so it can be simply characterized by its start and end 
cross sections. Placing the start cross-section parallel to the yz 
plane, its coordinates can be calculated directly using machine 
geometry parameters such as the baseline circle radius, axial 

coil-side width and depth, then its end cross-section can be 
obtained by a translation along the x axis.  

Since the coil may have different cross-section width and 
depth in the end-region, a quadrilateral frustum is attached to 
the end of the axial part for cross-section transition, denoted 
as 𝔸𝔼 part. As shown in Fig. 3(a), the end face of 𝔸, ABCD, 
is transformed to EFGH with different depth and width, both 
ABCD and EFGH are rectangles and parallel to the yz plane.  

 

Fig. 3. Detailed Geometry of different parts in the analytic coil. (a) Part 𝔸𝔼. 
(b) Part 𝕁𝔸. (c) Part 𝕁𝔼. (d), (g) and (h) are Part 𝔼. (e) Part 𝕁ℕ. (f) Part ℕ.  

To avoid coil-end clashing, the two-layer end-winding 
arrangement is adopted [13], [14]. A step is connected right 
after 𝔸𝔼 which joins the axial and end parts, denoted as 𝕁𝔸. 
As shown in Fig. 3(b), the end cross-section of 𝔸𝔼, i.e., ABCD, 
is firstly rotated by θ1 = π/2 around axis BA, then the resultant 
cross-section is lifted by a translation in radial direction to 
form a “neck” which creates a clearance between the upper 
and lower layers of coil ends. Finally, the end face of neck is 
rotated around axis HG by θ2 = π/2 to EFGH. 𝕁𝔸 can raise or 
lower the axial cross-section in the radial direction for a coil-
end bent outwards or inwards without changing its shape. Also, 
depending on the end-winding arrangement and end cross-
section depth, the neck may not be necessary and θ1, θ2 can be 
smaller than π/2.  

The end-winding is assumed to have a helix spine, and the 
end-winding angle is defined as φ, so the angle between the 
machine shaft, i.e., the cylinder axis, and the tangential line at 
any point on the spine is always (π/2−φ). A joint is used before 
the end part to form the bend, denoted as 𝕁𝔼, as shown in Fig. 
3(c). The end cross-section of 𝕁𝔸, ABCD, which is parallel to 
the yz plane, is firstly rotated by θ1 = π/2−φ around axis AD, 
then the normal vector of the resultant face ADEF, i.e., the coil 
spine, has an angle (π/2−φ) to the machine shaft, i.e., the x axis. 
This step completes the bending, but the position of ADEF can 
make following steps difficult to construct solid geometry 
since none of its edges is parallel to any axis. Therefore, 
another cross-section is found by cutting the coil using a plane 
parallel to x axis along AD, the resultant face is shown by 



ADGH in Fig. 3(c). In practice, HG can be obtained by 
translating AD along x axis by wen/cos(φ), where wen is the 
coil-end cross-section width, i.e., |AB| in Fig. 3(c). AFH-DEG 
is a triangular prism and ∠HAF = ∠GDE = φ. Though ADGH 
is not perpendicular to the spine, its edges AH and DG are 
parallel to the x axis, which is helpful in later end-part solid 
formation.  

The end-winding part, denoted as 𝔼, are constructed using 
cross-sections in radial direction and parallel to x axis. As 
shown in Fig. 3(g) and (h), faces EFGH and IJKL are both 
parallel to x axis and cross the origin point O. The projection 
of upper-layer end winding in yz plane has a baseline radius 
Rb,en; the helix radius set for entire end-winding is Re, which is 
usually chosen as the mean radius of upper and lower end 
layers. The central point on the end face of 𝕁𝔼 is A, its 
Cartesian coordinates is (xA, yA, zA), and its projection on yz 
plane in polar coordinates is (ryz,A, θyz,A), then the coordinates 
of point E, F, G and H, for example, can be easily calculated 
as xE = xF = xA − Reδ1tan(φ) − wen/[2cos(φ)]; xG = xH = xA − 
Reδ1tan(φ) + wen/[2cos(φ)]; yE = yH = (Rb,en+den/2)cos(θyz,A−δ1); 
yF = yG = (Rb,en−den/2)cos(θyz,A−δ1); zE = zH = 
(Rb,en+den/2)sin(θyz,A−δ1); zF = zG = (Rb,en−den/2)sin(θyz,A−δ1), 
where den is the end-winding coil-side depth. As a result, EH 
∥ FG ∥ SV ∥ TU. Since EF ∦ ST and GH ∦ UV, a splitting face 
ETUH is inserted to form two triangular prisms EFT-HGU 
and ETS-HUV back-to-back to resolve the cross-section 
twisting, as shown in Fig. 3(c). Triangular prisms EFI-HGL 
and IFJ-LGK in Fig. 3(g) are built in the same way. Fig. 3(h) 
shows the end-windings of two adjacent coils, it can be 
observed from the geometry relation that one criterion to avoid 
end-winding clashing is |CQ| > wen cos(φ), considering |CQ| 
= Re |θyz,A − θyz,R| tan(φ), and |θyz,A − θyz,R| is the angular 
difference between the projection of two adjacent axial 
conductors in yz plane, i.e., the “slot” angle αax, the criterion 
can be re-written as tan(φ)sec(φ) > wen/(αaxRe).  

The final cross-section of 𝔼 part, as shown by ABCD in 
Fig. 3(e), is set as parallel to the zx plane, and its distance to 
the zx plane is the half coil-end cross-section width. Then the 
cross-section perpendicular to the coil spine is reverted by 
translating AD by a distance wen with an angle θ1 = φ, i.e., the 
end-winding angle. The resultant face ADFE is then rotated 
around axis DA by (π/2−φ) to form ADHG parallel to yz plane. 
This step forms the joint between the end and nose parts, 
denoted as 𝕁ℕ. The nose part, ℕ, is subsequently obtained by 
rotating the end face of 𝕁ℕ, i.e., ABCD in Fig. 3(f), by π/2, the 
resultant face CDEF is in xy plane and is connected to the nose 
part on the other half end-winding by a parallelepiped EFCD-
GHIJ, which is also used to tolerate and compensate for the 
potential displacement between upper and lower end-layers in 
practice.  

The calculated cross-section coordinates are directly fed 
into 3-D FEA since they are all vertices of real solids rather 
than imaginary object, and one 3-D FE coil is constructed as 
shown in Fig. 2. The analytic stator coil in Fig. 2 has 3-by-2 
uniformly distributed filaments inside. A constant local-
coordinate matrix is defined for all cross-sections, which 
stores the local Cartesian coordinates of one point in each row 
and is 6-by-2 in size. Base vector u is always set as the longer 
edge of the cross-section and v as the shorter edge, so local 
coordinates (1/4, 1/3) always refers to a position at 1/4 of the 
longer edge and 1/3 of the shorter edge. According to the local 
coordinates, three columns of filaments are distributed evenly 
along the longer edge with each column containing two 

filaments, distributed uniformly along shorter edge. Finally, 
filaments are generated by connecting the corresponding 
points on every cross-section.  

III. MAGNETIC MODELING AND INDUCTANCE CALCULATION 

A. Mutual Inductance of Two Straight Segments Placed at 

Any Orientation in 3-D  

The ACRIM winding inductances are calculated from the 
coil self and coil-to-coil mutual inductances, while the coil-
level inductances are calculated based on the conductor-to-
conductor or filament-to-filament inductance. The filament-
level inductance is obtained by collecting the segment-to-
segment inductances, so the mutual inductance between two 
filamentary segments placed at any orientation in 3-D is the 
basis for the whole calculation.  

The first step is to determine the spatial relation of two 
straight segments so correct equations can be applied. Fig. 4 
shows two straight filamentary segments AB and CD placed 
arbitrarily in 3-D, their unit-direction vectors are m1 and m2, 
respectively; the cross product of m1 and m2 is w, i.e., 
w = m1×m2; the normal vectors of planes ABC and ABD are 
n1 and n2, respectively; |AB|, |AC|, |AD|, |CD|, |CB| and |BD| 
are distances between every two vertices. All these vectors 
and distances can be calculated using the coordinates of the 
four vertices A, B, C and D and they are needed in the spatial-
relation determination.  

 

Fig. 4. Two straight filamentary segments placed at any orientation in 3-D.  

  4)  Mutual Inductance of Two Parallel Segments  

When m1∥m2, AB and CD are in parallel. The closed-form 
solution for the mutual inductance of unequal parallel 
filaments, as shown in (7) in the Appendix, needs to be 
applied. The expression is denoted as Exp-Mpa in the main text 
for simplicity. It is worth mentioning that, whether m1 and m2 
are parallel is usually determined using their dot product, i.e., 
m1⋅m2 = 0 means AB and CD are in parallel otherwise they are 
unparallel, but in practice, a very small tolerance, ϵ, needs to 
be used to compensate for the residual in numerical 
calculation, i.e., the criterion becomes |m1⋅m2| < ϵ (ϵ > 0).  

Also, there are special cases needs to be checked. It can be 
noticed that, if term d in (7) is 0, Exp-Mpa will be trapped into 
a singularity. Specifically, there can be two cases. The first 
case is when the two segments are entirely or partially 
overlapping, as shown in Fig. 5(a) and (b), AB and CD are still 
in parallel but the mutual inductance between them goes to 
infinity. As a result, segment overlapping, both entirely or 
partially, needs to be avoided from the geometry modeling. 
The second case is when AB and CD are collinear without 
meeting and overlapping, as shown in Fig. 5(c). A closed-form 
solution for mutual inductance of them can be easily derived 
using Neumann integrals for this particular situation.  

In Fig. 5(c), the length of segments AB and CD are l1 and 
l2 respectively, the distance between their near ends, i.e., |CB|, 
is δ. The mutual inductance of two unequal collinear not-
meeting filaments, Mpa-cl, is,  
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Where μ0 is the vacuum permeability, x1 and x2 are the vectors 
pointing from the origin to the line elements dx1 and dx2 on 
AB and CD, respectively.  

 

Fig. 5. Two parallel segments placed at special positions. (a) AB and CD are 
entirely overlap. (b) AB and CD are partially overlap. (c) AB and CD are 
collinear without meeting.  

  5)  Mutual Inductance of Two Unparallel segments 

Meeting at One End 

If AB and CD are unparallel, but they meet at one end, then 
they are in the same plane and the closed-form solution for 
mutual inductance between two unequal filaments meeting at 
one end needs to be applied, as shown in (8) in the Appendix. 
The expression is denoted as Exp-Mmt. Similarly, “meeting” is 
practically defined as: the distance between two ends on 
different segments is below a very small tolerance, ϵ. Since 
l1+R > m1 and m1+R > l1 in (8), Exp-Mmt does not encounter 
any singularity. It is clear that, when AB and CD are 
perpendicular to each other, the mutual inductance of them is 
0.  

  6)  Mutual Inductance of Two Unparallel But Coplannar 

Segments Without Two End-Points Meeting 

When AB and CD are unparallel and not meeting at any 
end, then the vector w = m1×m2 needs to be calculated, which 
is the cross product of the unit-direction vectors of the two 
segments. The reason to introduce w is because planes ABC 
or ABD may not always exist, for example, when one end of a 
segment lies on the other segment, or on the straight extension 
of the other segment, as shown in Fig. 6, then n1 or n2 can be 
unavailable. If any two of the three vectors n1, n2, w are in 
parallel, i.e., n1∥n2 or n1∥w or n2∥w, then AB and CD are still 
coplanar though not in parallel nor meeting at one end, the 
corresponding closed-form expression (9) as shown in 
Appendix needs to be applied, which is denoted as Exp-Mcp.  

 

Fig. 6. (a) End point C is on the extension of AB. (b) End point C is on AB.   

However, there are terms in (9) involving inverse 
hyperbolic tangent. It is known that, tanh−1(ξ) is defined on a 
domain of ξ∈(−1,1), so (9) becomes unapplicable if the ξ fall 
outside this domain. According to the defined geometry and 
the triangle inequality in Fig. 11(a), there are always 
R1+R2 ≥ m, R1+R4 ≥ l, R3+R4 ≥ m and R2+R3 ≥ l, but when 
R1+R2 = m, or R1+R4 = l, or R3+R4 = m, or R2+R3 = l, the 
argument applied to tanh−1 is 1 so (9) becomes invalid, which 
corresponds to the situation that one end of a segment lies on 
the other unparallel segment. This situation can be resolved by 
breaking the intersected segment at the intersection point and 

using Exp-Mmt instead. As shown in Fig. 6(b), end point C is 
on segment AB. Direct implementation of Exp-Mcp causes 
singularity, so the mutual inductance of AB and CD can be 
calculated by breaking AB into two sub-segments AC and CB, 
then adding the mutual inductances of AC and CD, and CB 
and CD, i.e., Mcp-ACB(AB,CD) = Mmt(AC,CD) + Mmt(CB,CD), 
where Mcp-ACB(AB, CD) represents the mutual inductance of 
AB and CD when end point C is on segment AB, Mmt(AC,CD) 
means calculating the mutual inductance of AC and CD using 
Exp-Mmt.  

Except for the special case above, mutual inductance of 
other spatial relations under this circumstance can be 
computed directly using (9): either the two segments are 
crossing each other or they do not have any intersection at all, 
no singularity will be produced. Also, when the two segments 
are perpendicular to each other, regardless intersecting or not, 
the mutual inductance of them is 0, which can be given 
without calculation.  

  7)  Mutual Inductance of Skew Segments 

If AB and CD are unparallel and it is unable to find any 
two of the three vectors n1, n2, w in parallel, then AB and CD 
are not coplanar, i.e., AC and CD are skew. The closed-form 
expression for mutual inductance of skew segments, denoted 
as Exp-Msk, is shown as (12) in Appendix. Since the spatial 
relation of the two segments has been restricted to skew, the 
expression can be directly applied and does not encounter 
singularity issues.  

The entire procedure for mutual inductance calculation of 
two straight filamentary segments placed at any orientation in 
3-D is summarized in Fig. 7.  

B. Self and Mutual Inductances of Coils and Windings  

The mutual inductance between two filaments composed 
of multiple sub-segments, MFil-Fil, can be calculated as  

Seg,Fil Seg,Fil1 2

Fil-Fil 1 2 Seg-Seg

1 1

(Fil ,Fil ) (Seg ,Seg )

N N

i j

i j

M M
 
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where MSeg-Seg(Segi, Segj) are the mutual inductance between 
two segments Segi and Segj; NSeg,Fil1 and NSeg,Fil2 are the 
number of segments in filaments Fil1 and Fil2 respectively.  

One coil can be assumed to be composed of several 
conductors. The self-inductance of a conductor, LCond, can be 
calculated as 

Fil,Cond Fil,Cond1 2

Cond 1 Fil-Fil2
1 1,Fil

1
(Cond ) (Fil ,Fil )

N N

i j

i j j i

L M
N   

    (3) 

where NFil,cond1
 is the number of filaments in the conductor 

Cond1. The mutual inductance between two coils, MCond-Cond, 
can be calculated as 

Fil,Cond Fil,Cond1 2

1 2

Cond-Cond 1 2

Fil-Fil

1 1Fil,Cond Fil,Cond

(Cond ,Cond )

1
(Fil ,Fil )

N N

i j

i j

M

M
N N  



 
 (4) 

where NFil,cond1
 and NFil,cond2

 are the number of filaments in 

conductors, Cond1 and Cond2, respectively. Both LCond and 
MCond-Cond are known as the partial inductances since they may 
not complete a closed loop. The coil self and mutual 
inductances, i.e., the loop inductances, can be calculated by 



summing partial inductances. More specifically, the coil self-
inductance, LCoil, can be calculated as 

Cond,Coil1

Cond,Coil1

Coil 1 Cond

1

Cond-Cond

1,

(Coil ) ( (Cond )

(Cond ,Cond ))

N

i

i

N

i j

j j i

L L

M



 









 (5) 

where NCond,Coil1
 is the number of conductors in coil, Coil1. The 

mutual inductance between two coils, MCoil-Coil is   

Cond,Coil1 Cond,Coil2

Coil-Coil 1 2

Cond-Cond

1 1

(Coil ,Coil )

(Cond ,Cond )

N N

i j

i j

M

M
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

 
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where NCond,Coil1
 and NCond,Coil2

 are the number of conductors in 

coils, Coil1.and Coil2, respectively.  

The phase winding self and mutual inductances can be 
calculated by collecting the contribution of coil inductances. 
Periodicity and symmetry in three-phase winding layout can 
be invoked so that only mutual inductances of independent 
coil pairs are computed and repeated evaluations are 
eliminated, which further accelerates the calculation. The 
collection routine of phase inductances for single-layer lap-
windings as well as the equivalent-circuit inductances has 
been discussed in [13], so will not be repeated here.  

 

Fig. 7. Mutual inductance calculation procedure of two straight filamentary 
segments placed at any orientation in 3-D.  

IV. 3-D FEA VALIDATION AND DISCUSSION 

In this section, the proposed geometry modeling and 
inductance calculation method is validated on a three-phase, 
six-pole ACRIM design. The geometry parameters of the 
ACRIM used for validation are shown in Table I. In addition, 
the “neck” length in part 𝕁𝔸 is set as 1 mm for both stator and 
rotor, the axial length of part 𝔸𝔼 is set to 2.4 mm for stator 
and 2.15 mm for rotor.  

Because wax,rot/dax,rot≈5, wax,stat/dax,rot≈5 and dax,stat/dax,rot≈2, 
rotor and stator coils are set to have 5-by-1 filaments and 5-
by-2 filaments, respectively, in the analytic calculation. The 
analytic coil shapes are shown in Fig. 8(a) and (b). Fig. 8(c), 
(d) and (e) shows the full 3-D FEA model of both stator and 

rotor three phase windings, symmetry is invoked so only half 
model is built to reduce the solution time. The proposed 
method is applicable to any rotor position, in this case the 
inductance is calculated when the stator and rotor axial 
windings of corresponding phases are geometrically aligned.   

Table I  

GEOMETRY PARAMETERS OF A THREE-PHASE, SIX-POLE ACRIM  

 Stator Rotor 

Number of coils per pole per-phase, q 2 2 
Axial winding baseline circle radius, rb 109.9 mm 103.3 mm 

Axial coil side width (tangential), wax 16.68 mm 15.93 mm 

Axial coil side depth (radial), dax 7.20 mm 3.50 mm 
Axial winding length, h 240 mm 215 mm 

End-winding coil side width (axial), wen 7.20 mm 3.50 mm 

End-winding coil side depth (radial), den 18.53 mm 17.70 mm 
End-winding angle, φ 29.78° 27.28° 

 

Fig. 8. (a) and (b) Analytic and 3-D FEA coils of the ACRIM design, (a) 
shows two adjacent stator coils and (b) shows one stator coil and one 
geometrically aligned rotor coil. (c), (d) and (e) Full 3-D FEA winding model.  

The FEA inductance values are obtained by exciting one 
stator or rotor phase then calculating the fluxes linking all the 
phases. Fig. 9(a), (b), (c) and (d) show the 3-D FEA results of 
the ACRIM when stator phase A is excited. The field produced 
by the end-windings can be clearly observed in Fig. 9(a), (b) 
and (d). The red streamlines with arrows inside coils illustrate 
the excitation current; the arrows in space visualize the vector 
field of magnetic flux density. The 3-D FEA inductance 
values, are compared in Table II. The multi-filament method 
achieves good accuracy, most of the discrepancies are under 
1% and the largest discrepancy of 2.06%.  

Table II 
COMPARISON OF THE ANALYTIC ESTIMATED AND 3-D FEA VALUES

1
  

 3-D FEA results Multi-filament results Discrepancy2 

Unit μH μH (%) 

LsA  4.2399 4.2246 0.36 

Lra  3.5846 3.5938 −0.26 
MAB  −0.4305 −0.4246 1.36 

Mab  −0.4829 −0.4772 1.18 

MAa  2.3329 2.3260 0.29 
MAb  −0.4933 −0.4831 2.06 

MAc −0.4838 −0.4793 0.94 

Ls  4.6704 4.6492 0.45 
Lr  4.0675 4.0710 −0.09 

M  2.8215 2.8072 0.50 
1 Stator and rotor windings are geometrically aligned.  
2 Discrepancies are calculated with respect to the 3-D FEA results.  

where LsA is the stator one phase (phase A) self-inductance; Lra 
is the rotor one phase (phase a) self-inductance; MAB is the 



mutual inductance of stator phase A and B, i.e., the stator 
phase-to-phase mutual inductance; Mab is the mutual 
inductance of rotor phase a and b, i.e., the rotor phase-to-phase 
mutual inductance. For a balanced three-phase winding, MAB 
= MAC and Mab = Mac. MAa is the mutual inductance of stator 
phase A and rotor phase a, i.e., the stator-to-rotor homonym 
phase inductance; MAb and MAc are the mutual inductance of 
stator phase A and rotor phase b and rotor phase c respectively, 
i.e., the stator-to-rotor heteronym phase inductance. When 
stator phase A and rotor phase a are geometrically aligned, MAb 
and MAc may not have the same value, as shown in Table II, 
because the geometric alignment only refers to the axial 
windings, so magnetic alignment between stator and rotor 
phases are not necessarily ensured considering the 
complicated end-winding shapes with bending and twisting.  

Table III compares the 2-D FEA and single-filament 
analytic inductance results with the values derived by 3-D 
FEA. In the single-filament method, the stator and rotor self-
inductances are calculated by converting the original 
rectangular cross-section into an equivalent round cross-
section which has the same area. The 2-D FEA magnetic flux 
density plot are shown in Fig. 9(e). 

Table III 
COMPARISON OF THE 2-D FEA RESULTS AND SINGLE-FILAMENT ANALYTIC 

ESTIMATION RESULTS WITH 3-D FEA RESULTS  

 

 2-D FEA results Single-filament results 

 
Inductance 

(μH) 
Discrepancy* 

(%) 
Inductance 

(μH) 
Discrepancy* 

(%) 

LsA  2.0565 51.50 4.3705 −3.08 

Lra  2.1390 40.33 3.8644 −7.81 
MAB  −0.6424 −49.21 −0.4106 4.61 

Mab  −0.6477 −34.14 −0.4609 4.55 

MAa  1.7597 24.57 2.4214 −3.79 
MAb  −0.6172 −25.12 −0.4727 4.16 

MAc −0.6172 −27.57 −0.4687 3.13 

Ls  2.6989 42.21 4.7812 −2.37 
Lr  2.7867 31.49 4.3254 −6.34 

M  2.3769 15.76 2.8921 −2.50 
* Discrepancies are calculated with respect to the 3-D FEA results.  

The 2-D FEA results have a large discrepancy with respect 
to the 3-D results because it assumes infinite-long axial 
windings and ignores the end-windings. The single-filament 
method has a discrepancy level below 10% and most 
discrepancies are around 5%, which is larger than the multi-
filament results, but still shows a reasonably good accuracy 
compared to 2-D FEA values, because the analytic coils have 
a high fidelity to 3-D FE coils. Both the single-filament and 
multi-filament methods greatly reduce the solution time 
compared to 3-D FEA, as shown in Table IV.  

Table IV 

COMPARISON OF THE SOLUTION TIME
*
  

 FE methods Analytic methods 

Solution 

Time  

3-D FEA 2-D FEA 
Single-
filament 

Multi-
filament 

28 min 39 s 10 s 2 s 59 s 
* Computations are carried out on a PC with a 3.20 GHz CPU and 16 GB 

RAM.  

V. CONCLUSION 

This paper proposes a combined geometry modeling and 
3-D inductance calculation method for ACRIMs. The 
geometry construction process can handle coils with non-
circular cross-sections and complex shapes. Coils are firstly 
characterized by a series of cross-sections then discretized 
using straight filamentary segments. The cross-section shape, 

conductor bending and twisting can be reflected by the spatial 
arrangement of multi-filaments. The calculated coordinates of 
coils can be used directly to build a 3-D FEA model. The 
inductance calculation method uses closed-form solutions of 
Neumann integrals which is fast, accurate and robust so is 
suitable to be incorporated into an optimization program. The 
calculation procedure for mutual inductance of two straight 
segments placed at any orientation in 3-D is explained. The 
comparison between analytic estimated and 3-D FEA results 
shows the proposed method achieves a good accuracy, which 
also confirms the importance of a high-fidelity geometry 
modeling.  

 

Fig. 9. (a), (b), (c) and (d) 3-D FEA results when stator phase A is excited by 
1 A current. Red streamlines illustrate the stator phase A excitation current; 
arrows plot the magnetic flux density. (e) 2-D FEA magnetic flux density plot 
when stator phase A is excited by 1 A current.  

APPENDIX 

Closed-form solutions for mutual inductance of two 
straight segments have been derived in [10], they are 
presented here for clearness of explanation in Section III-A 
and for any practical purposes. For expressions in this section, 
the unit for length is meter and the unit of inductance is henry.  

A. Mutual Inductance of Two Parallel Segments  

Two parallel segments are shown in Fig. 10(a), the mutual 
inductance of them, Mpa, is (7).  

 

Fig. 10. (a) Two parallel segments. B′ is the projection of B on CD, |BB′|=d, 
|CB′|=|δ|. (b)Two segments meeting at one end. |DB| = R, ∠BAD = ε.  
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where α = l+m+δ, β = l+δ, γ = m+δ, and d is the distance 
between two segments so is always positive, while δ can be a 
negative number. Singularity issue arises when d = 0, and (1) 
needs to be applied instead for non-overlapping segments.  

B. Mutual Inductance of Two Unparallel Segments Meeting 

at One End  

Fig. 10(b) shows two segments unparallel and meeting at 
one end, the mutual inductance of them, Mmt, is (8).  
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According to the geometry relation in Fig. 10(b) and triangle 

inequality, m < l+R, l < m+R, so applying (8) to end-meeting 

unparallel segments does not encounter singularities.  

C. Mutual Inductance of Two Unparallel But Coplanar 

Segments Without Two End-Points Meeting 

Two unparallel but coplanar segments without end-point 
meeting are shown in Fig. 11(a), the mutual inductance of 
them, Mcp, is (9).  

 

Fig. 11. (a) Two unparallel but coplanar segments without end-point meeting. 
E is the point of intersection of (the extensions of) AB and CD. |AE|=μ, |CE|=ν, 
|BD|=R1, |BC|=R2, |AC|=R3, |AD|=R4, ∠AEC = ε. (b) Two skew segments. AB 
is on plane γ, CD is on plane β, and β⊥γ, OP is the line of intersection of β 
and γ, |PP′|=d, |CB|=ν, |AP|=μ, ∠BPO = ε, and |BD|=R1, |BC|=R2, |AC|=R3, 
|AD|=R4.  
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where α2 = R4
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The expression is not applicable to the situation when 
R1+R2 = m, or R1+R4 = l, or R3+R4 = m, or R2+R3 = l.  

D. Mutual Inductance of Skew Segments 

Two skew segments are shown in Fig. 11(b), the mutual 
inductance of them, Msk, is (12).  

7
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The first term in (12) has the same expression as (9) so is 
abbreviated as Exp-Mcp. In (12). Also, there are α2 = R4

2 − R3
2 

+ R2
2 − R1

2, cos ε = α2/(2lm), and the expressions of μ, ν are 
the same as (10) and (11). Besides, d2 = R3

2 − μ2 – ν2 + 
2μνcos ε. The term Ω is calculated as  
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 (13) 

According to the geometry relation, R1 + R2 > m, R1 + R4 > l, 
R3 + R4 > m, and R2 + R3 > l. d > 0, ε ≠ 0 and ε ≠ π, so 
singularity issue does not occur when applying this expression 
to two skew segments.  
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