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Abstract
Functional data are smooth, often continuous, random curves, which can be
seen as an extreme case of multivariate data with infinite dimensionality. Just as
componentwise inference for multivariate data naturally performs feature selec-
tion, subsetwise inference for functional data performs domain selection. In this
paper, we present a unified testing framework for domain selection on popu-
lations of functional data. In detail, 𝑝-values of hypothesis tests performed on
pointwise evaluations of functional data are suitably adjusted for providing con-
trol of the familywise error rate (FWER) over a family of subsets of the domain.
We show that several state-of-the-art domain selection methods fit within this
framework and differ from each other by the choice of the family over which
the control of the FWER is provided. In the existing literature, these families
are always defined a priori. In this work, we also propose a novel approach,
coined thresholdwise testing, in which the family of subsets is instead built in
a data-driven fashion. The method seamlessly generalizes to multidimensional
domains in contrast to methods based on a priori defined families. We provide
theoretical results with respect to consistency and control of the FWER for the
methods within the unified framework. We illustrate the performance of the
methods within the unified framework on simulated and real data examples and
compare their performance with other existing methods.
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1 INTRODUCTION

Functional data analysis (FDA) is a field of statistics that
pertains to the study of datasets in which the sample
unit is a smooth curve. Such data arise as the results of
many experimental studies, including engineering, biol-
ogy, medicine, and biomechanics. Examples of the two lat-
ter ones (diffusion magnetic resonance imaging data and
kinematic data) are going to be addressed in this paper.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

For functional data, besides estimation, clustering, and
prediction, it is of critical importance to design appropri-
ate statistical methodologies for inference such as testing
hypotheses on populations of functional data, which is the
objective of the present work. For example, suppose that
random functions are observed for two populations, and
we want to test if the mean functions 𝜇1 and 𝜇2 are the
same, testing 𝐻0 ∶ 𝜇1(⋅) = 𝜇2(⋅) versus 𝐻1 ∶ 𝜇1(⋅) ≠ 𝜇2(⋅).
In our examples, we consider the knee kinematics of two
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groups of patients and look for the differences in their
performance, as well as compare two diffusion models for
structural connectivity in the brain.Multiplemethods have
been devised in the literature to form global tests for this
setting and more general scenarios, both parametrically
(e.g., Horváth and Kokoszka, 2012; Staicu et al., 2014) and
nonparametrically (e.g., Cardot et al., 2004; Corain et al.,
2014).With the help of suchmethods, we could statistically
identify the existence of significant differences between
the populations but their results do not tell us in which
part of the domain (time of the movement, or part of the
brain) the differences appear. Therefore, if 𝐻0 of a global
test is rejected, we want to identify the parts of the domain
where significant differences occur, performing the so-
called local inference. In this paper, we focus on local infer-
ence for functional data, whichwe refer to as domain selec-
tion. Few attempts have been made in this direction in
the literature. A first and natural approach pertains to dis-
cretizing the functional domain and performing pointwise
inference. For instance, Fan and Zhang (2000) and Reiss
et al. (2010) derive pointwise confidence bands for func-
tional data. This however only provides a pointwise con-
trol of errors arising in statistical hypothesis testing. Sim-
ilar to the multivariate case, devising testing approaches
that use multiple (or even infinite) numbers of hypotheses
affects the performance of the test by increasing the over-
all probability of making wrong rejections. Out of the mul-
tiple concepts that can be used for controlling this over-
all probability, the most well known are the familywise
error rate (FWER), which is the probability of rejecting
at least one true null hypothesis, and false discovery rate
(FDR), which quantifies the expected proportion of false
discoveries (i.e., the expected ratio between the number of
wrong rejections and the total number of rejections). Both
measures are extensions to the multivariate setting of the
type I error, though with different experimental meanings.
While the control of the FWER is related to a determinis-
tic (although unknown) partition of the domain related to
where the null hypothesis is true, the control of the FDR
is instead related to a random (but observed) partition of
the domain related to the rejections of the null hypoth-
esis. Controlling the FWER is stronger than controlling
the FDR: if we devise a method for which the FWER is
controlled at a specific level for any ground truth of the
null hypothesis, then the FDR will also be controlled at
that level. Additionally, if the null hypothesis is true on
the whole domain, the two measures coincide. Simula-
tion studies in biomechanics and brain imaging research
fields comparing different approaches for FWER as well
as comparing it to FDR elucidate differences and similari-
ties in detection regions depending on the approach used.
For kinematic data, we refer to, for example, Naouma and
Pataky (2019) and Pataky et al. (2021), while discussions in

the context of brain imaging can be found in, for example,
Logan and Rowe (2004).
In our work, we focus on the problem of testing func-

tional data by providing adjusted 𝑝-values controlling the
FWER. Some examples of methods that instead of control
the FDR in the context of functional data can be found
in Perone Pacifico et al. (2004) and Olsen et al. (2021).
We base our approach on properly adjusting pointwise 𝑝-
values in order to account for the multiplicity of tests that
are jointly performed when analyzing the whole domain.
This issue has, inmultivariate analysis, given birth tomany
adjustment procedures (see, e.g., Marcus et al., 1976; Holm,
1979; Holmes et al., 1996; Winkler et al., 2014). However,
functional data differ from multivariate data in that func-
tional data feature unique properties such as smoothness
and domain continuity, which can be used to improve
upon classic methods for performing domain selection.
Vsevolozhskaya et al. (2014) propose a method for domain
selection that relies on the availability of a partition of
the domain that allows to perform dimensionality reduc-
tion. They perform functional tests on the elements of the
partition and resort to a closed testing procedure (Marcus
et al., 1976) to adjust the resulting 𝑝-values and achieve
strong control of the FWER for the family generated by
unions of the elements of the partition. The resulting infer-
ence heavily depends on the partition itself. In addition,
the coarseness of the partition defines the depth to which
local inference is performed, and the approach is of prac-
tical relevance only for relatively small predefined parti-
tions. We refer to this method as partition-closed testing
(PCT). Another approach— introduced for functional 𝑡-
tests in Pini and Vantini (2017) and extended to functional-
on-scalar linear models in Abramowicz et al. (2018)— is
interval-wise testing (IWT). The procedure simultaneously
tests a family of hypotheses generated by all intervals of the
domain. This is however of practical use only for functional
data defined on one-dimensional domains as it is unclear
how to define “multidimensional intervals” and would
be computationally overdemanding due to the curse of
dimensionality. IWT provides control of the FWER for the
family of all intervals: if the null hypothesis is true onmore
complex subsets of the domain (e.g., a union of intervals),
IWT fails to control the FWER. The adjustment made on
the pointwise and setwise p-values is only one of the pos-
sible approaches presented in the literature. Some works
recently focused on providing simultaneous confidence
bands for functional data: Degras (2017) develop asymp-
totic confidence bands, Rathnayake and Choudhary (2016)
focus on parametric confidence bands, and Crainiceanu
et al. (2012) and Park et al. (2017) use bootstrap confi-
dence bands. Confidence sets based on random field the-
ory have also been considered in, for example, Telschow
and Schwartzman (2022) and Liebl and Reimherr (2020). It
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ABRAMOWICZ et al. 3

is also worth to notice that besides FWER and FDR, addi-
tional performance measures have been introduced (e.g.,
false discovery exceedance, false cluster rates, and false
nondiscovery proportions).We do not discuss them further
in this paper, but refer the reader to, for example, Perone
Pacifico et al. (2004) for further information.
In our paper, we focus onmethods that aim at providing

control of the FWER. We start by formalizing the concepts
in Section 2 and introduce a general framework for per-
forming local inference in Section 3. The basic principles
of the methods are based on standard pointwise inferen-
tial procedures and their setwise counterparts for a cho-
sen family of subsets. The framework is related to a wide
class of inferential problems (e.g., comparisons of popula-
tion means, hypothesis tests for coefficients in models), as
weutilize general concepts of null and alternative hypothe-
ses. Furthermore, it can be applied either to a paramet-
ric or a nonparametric analysis. Using the properties of
the underlying tests, we formulate and prove finite sample
and asymptotic properties for methods within this frame-
work in Sections 4 and 5 and Web Appendices A and B,
respectively. In Section 4, we show how well-established
methods from the literature on inference for functional
data can be described in the light of our proposed uni-
fied framework. In Section 5, we present a novel method
with asymptotic control of the FWER. The control is pro-
vided for the family generated by domain discretization
corresponding to the resolution of the observed functional
data. The computational burden of the new method is
independent of the dimension and complexity of the data
domain. Further, simulation studies designed to exemplify
the properties of the described methods and to compare
them with alternative methods existing in the literature
are presented in Section 6. Real data applications are pre-
sented in Section 7, while Section 8 contains conclusions.
Additional definitions and results are presented in Web
Appendices C–I.

2 DEFINITIONS AND THE
INFERENTIAL PROBLEM

Consider a space of continuous random functions defined
on domain 𝐷, where 𝐷 is a compact subset of ℝ𝑑, 𝑑 ≥ 1.
Let us consider a general inferential problem based on a
sample of 𝑛 independent functional observations. Without
loss of generality, assume that we aim at testing a func-
tional null hypothesis𝐻0 against an alternative hypothesis
𝐻1. For instance, it could be the functional two-sample 𝑡-
test where𝐻0 ∶ 𝜇1(⋅) = 𝜇2(⋅) is tested against𝐻1 ∶ 𝜇1(⋅) ≠
𝜇2(⋅). Let 0 and 1 denote the regions of 𝐷 where the
null hypothesis is true and false, respectively. Our goal is
to construct an inferential method that correctly identifies

0 and 1 and controls the type I error along with the
domain. Formally, assume to observe a random sample of𝑛
continuous functions 𝑦𝑖(𝑡), 𝑡 ∈ 𝐷, 𝑖 = 1, … , 𝑛 possibly with
attached functional or scalar covariates. For all 𝑡 ∈ 𝐷, we
denote by𝐻𝑡

0
and𝐻𝑡

1
the restrictions of𝐻0 and𝐻1 to point

𝑡. Assume that we can obtain a test statistic 𝑇𝑛(𝑡) for test-
ing 𝐻𝑡

0
against 𝐻𝑡

1
at point 𝑡, where𝐻𝑡

0
is rejected for large

values of 𝑇𝑛(𝑡). Let 𝑝𝑛(𝑡) denote the 𝑝-value of the test at
point 𝑡 based on𝑇𝑛(𝑡) and data {𝑦𝑖(𝑡)}𝑛𝑖=1. Depending on the
assumptions of the generative process of functional data
and on the sample size, 𝑝𝑛(𝑡) can be computed with para-
metric, asymptotic, or nonparametric tests.

2.1 Pointwise and setwise test
properties

Below, we define some of the properties that are typically
required for pointwise tests.

Definition 2.1. We say that the pointwise test of𝐻𝑡
0
against

𝐻𝑡
1
based on the statistic 𝑇𝑛(𝑡) with 𝑝-value 𝑝𝑛(𝑡) is

∙ valid if for all 𝛼 ∈ (0, 1) and any 𝑛 ∈ ℕ+ the probability
of rejecting𝐻𝑡

0
at level 𝛼 when it is true is smaller or equal

to 𝛼, that is, 𝑡 ∈ 0 ⇒ ℙ[𝑝𝑛(𝑡) ≤ 𝛼]≤𝛼,
∙ asymptotically valid if for all 𝛼 ∈ (0, 1) the prob-
ability of rejecting 𝐻𝑡

0
at level 𝛼 when it is true is

asymptotically smaller or equal to 𝛼, that is, 𝑡 ∈ 0 ⇒

lim𝑛→∞ ℙ[𝑝𝑛(𝑡) ≤ 𝛼]≤𝛼, 𝑎𝑛𝑑
∙ consistent if for alls 𝛼 ∈ (0, 1) the probability of rejecting
𝐻𝑡
0
at level 𝛼 when 𝐻𝑡

0
is false is asymptotically one, that

is, 𝑡 ∈ 1 ⇒ lim𝑛→∞ ℙ[𝑝𝑛(𝑡) ≤ 𝛼] = 1.

Remark 2.1. In Definition 2.1, we specify in general terms
𝑛 → ∞. However, depending on the test that is performed,
somemore specific assumptions about the sample sizemay
be required. For example, when performing a test compar-
ing two populations, both sample sizes are required to go
to infinity and not only the total sample size 𝑛.

Note that according to Definition 2.1, we allow for valid
tests— with an error smaller than 𝛼— rather than exact
tests— with an error equal to 𝛼— which is related to the
use of permutation tests in our paper. We now introduce
the following hypotheses defined on any set 𝐴 ⊂ 𝐷: 𝐻𝐴

0

is the hypothesis that 𝐻𝑡
0
is true for all 𝑡 ∈ 𝐴 while 𝐻𝐴

1
is

the alternative that𝐻𝑡
1
is true for some 𝑡 ∈ 𝐴. Assume that

tests of 𝐻𝐴
0
against 𝐻𝐴

1
are performed using the following

statistic:

𝑇𝐴𝑛 =
1|𝐴| ∫𝐴 𝑇𝑛(𝑡)d𝑡, (1)
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4 ABRAMOWICZ et al.

where the integral is defined in a Lebesgue sense and |𝐴|
denotes the Lebesgue measure of 𝐴. Let 𝑝𝐴𝑛 be the corre-
sponding 𝑝-value. We now provide the definitions of valid-
ity and consistency for the test on 𝐴.

Definition 2.2. For any 𝐴 ⊆ 𝐷 such that |𝐴| > 0, we say
that the test of 𝐻𝐴

0
against 𝐻𝐴

1
, based on the statistic 𝑇𝐴𝑛 in

(1) with a 𝑝-value 𝑝𝐴𝑛 is

∙ valid if for any𝛼 ∈ (0, 1)and for any𝑛 ∈ ℕ+, |𝐴 ∩1| =
0 ⇒ ℙ[𝑝𝐴𝑛 ≤ 𝛼]≤𝛼;

∙ asymptotically valid if for any 𝛼 ∈ (0, 1), |𝐴 ∩1| =
0 ⇒ lim𝑛→∞ ℙ[𝑝𝐴𝑛 ≤ 𝛼]≤𝛼;

∙ consistent if for any 𝛼 ∈ (0, 1): |𝐴 ∩1| > 0 ⇒

lim𝑛→∞ ℙ[𝑝𝐴𝑛 ≤ 𝛼] = 1.

In the nonparametric permutation test framework, it
is straightforward to build valid and consistent tests on
sets from the corresponding pointwise tests under mild
assumptions. Specifically, following Pesarin and Salmaso
(2010, pp. 122–124), we know that if permutation tests are
used and we use the same permutations for all points of
the set, the (asymptotic) validity of the pointwise tests
implies (asymptotic) validity of the tests on sets. Further,
if for all 𝑡 ∈ 𝐷, 𝑇𝑛(𝑡) is nonnegative and stochastically
greater under𝐻𝑡

1
than under𝐻𝑡

0
, we have that consistency

of the pointwise tests implies consistency of the tests on
sets.

2.2 Domain selection

Suppose that we use the pointwise 𝑝-value 𝑝𝑛(𝑡) for select-
ing the parts of the domain imputable for the rejection
of 𝐻0 by performing thresholding at level 𝛼 ∈ (0, 1), that
is, the parts where 𝑝𝑛(⋅) < 𝛼. The probability that this
selected region—or part of it—is wrongly selected is not
controlled, since 𝑝𝑛(𝑡) is computed pointwise and cannot
guarantee any control of the probability of committing at
least one type I error over the whole domain. In multi-
variate statistical analysis, 𝑝-values are adjusted to provide
global control of the type I error rate. Selection of the vari-
ables responsible for the rejection of the null hypothesis
is performed by thresholding properly adjusted 𝑝-values
instead of the original unadjusted ones. A type of adjust-
ment strategy is controlling the FWER, that is, the proba-
bility of rejecting at least one true null hypothesis. There
are two classical types of control of the FWER that have
been defined in the literature: weak control of the FWER
holds if the FWER is controlled when all null hypothe-
ses are true, while strong control of the FWER holds if
the FWER is controlled for any configuration of true and
false null hypotheses. We introduce an analogous concept

in FDA.We define strong control of the FWERof a test pro-
cedure based on an adjusted 𝑝-value function 𝑝𝑛(𝑡), 𝑡 ∈ 𝐷

(cf. Equation (6)) as follows.

Definition 2.3. We say that a test procedure has a
strong control of the FWER if for any 𝑛 ∈ ℕ+ its
adjusted 𝑝-value function 𝑝𝑛(𝑡), 𝑡 ∈ 𝐷 is such that, for all
𝛼 ∈ (0, 1),

𝐴 ⊆ cl(0) ⇒ ℙ(∃𝑡 ∈ 𝐴 ∶ 𝑝𝑛(𝑡) ≤ 𝛼) ≤ 𝛼. (2)

Here cl(0) denotes the closure of the set 0. In some
cases, we cannot control over all possible configurations
of 0 and 1, only have specific types of them. We there-
fore define such a type of intermediate control. Consider
a family of domain subsets 𝒢, in which elements can be
expressed as finite unions of closed compact subregions of
𝐷.

Definition 2.4. We say that a test procedure has a control
of the FWER restricted to family 𝒢 if for all 𝑛 ∈ ℕ+ its
adjusted 𝑝-value function 𝑝𝑛(𝑡), 𝑡 ∈ 𝐷 is such that, for all
𝛼 ∈ (0, 1),

𝐺 ∈ 𝒢with𝐺 ⊆ cl(0) ⇒ ℙ(∃𝑡 ∈ 𝐺 ∶ 𝑝𝑛(𝑡) ≤ 𝛼) ≤ 𝛼.

(3)

When𝒢 is the family of all possible subsets of𝐷, the con-
trol defined as above coincideswith the strong one. Finally,
analogously to the multivariate framework, if a procedure
has a control of the FWER restricted to 𝒢 = {𝐷}, we say
that it has a weak control of the FWER. Some situations
may only have an asymptotic control of the FWER , that
is, control of the FWERwhen 𝑛 → ∞. In the following, we
formalize it for the restricted FWER.

Definition 2.5. We say that a test procedure has anasymp-
totic control of the FWER restricted to family 𝒢 if its
adjusted 𝑝-value function 𝑝𝑛(𝑡), 𝑡 ∈ 𝐷 is such that, for all
𝛼 ∈ (0, 1),

𝐺 ∈ 𝒢with𝐺 ⊆ cl(0)

⇒ lim sup
𝑛→∞

ℙ(∃𝑡 ∈ 𝐺 ∶ 𝑝𝑛(𝑡) ≤ 𝛼) ≤ 𝛼. (4)

Finally, we define the consistency of an inferential pro-
cedure, assuring that it asymptotically detects the parts of
the domain where𝐻1 holds, that is,1.

Definition 2.6. We say that the test procedure is consistent
if its adjusted 𝑝-value function 𝑝𝑛(𝑡), 𝑡 ∈ 𝐷 is such that, for
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ABRAMOWICZ et al. 5

all 𝛼 ∈ (0, 1),

lim
𝑛→∞

ℙ(∀𝑡 ∈ Int(1) ∶ 𝑝𝑛(𝑡) ≤ 𝛼) = 1, (5)

where Int(1) denotes the interior of set1.

Remark 2.2. Since tests on subsets are performed using an
integrated pointwise test statistic, deviations from the null
hypothesis at only one point or a set of null Lebesgue mea-
sures cannot be detected. In particular, the boundary of
the set 1 cannot be detected, since it has a null measure.
Hence, strong control of the FWER is extended beyond
0 to the closure of the set 0, while consistency can be
reached only for the interior of1.

3 A UNIFIED FRAMEWORK

In this section, we describe a unified framework for test-
ing local functional hypotheses on 𝐷, given a set of 𝑛 inde-
pendent random functions. We present a class of methods
that can be used to adjust the pointwise 𝑝-values 𝑝𝑛(𝑡) to
provide a control of the FWER over specific families. Con-
sider a nonempty (possibly infinite) family  of Lebesgue-
measurable subsets of the domain of nonnull measure,
such that ∪𝑆∈𝑆 = 𝐷. The testing procedure that we pro-
pose is based on performing tests on the restrictions of
𝐻0 and 𝐻1 to all subsets of the family and adjusting the
𝑝-value according to the results of such tests. First, we
formally describe the testing procedure for a general 
and provide a characterization of the inferential proper-
ties of the methods depending on the choice of  . Then,
we describe several methods that can be obtained for
some particular choices of  . The unified framework con-
sists of the following steps (presented graphically in Web
Appendix I):

1. Computation of 𝑝-values for all subsets. For all 𝑆 ∈  ,
compute the 𝑝-value 𝑝𝑆𝑛 of the test of 𝐻𝑆

0
against 𝐻𝑆

1
,

based on the test statistic 𝑇𝑆𝑛 in (1).
2. Computation of the adjusted 𝑝-value function. For all 𝑡 ∈

𝐷, compute the adjusted 𝑝-value,

𝑝𝑛(𝑡;) = sup
𝑆∈∶𝑡∈𝑆

𝑝𝑆𝑛. (6)

3. Domain selection. Select the subsets of 𝐷 where 𝐻0 is
rejected at level 𝛼 ∈ (0, 1) as

{𝑡 ∈ 𝐷 ∶ 𝑝𝑛(𝑡;) ≤ 𝛼}.

In the following sections, we consider two types of fam-
ilies  : a predefined type, where all subsets belonging to 

are defined a priori, and a data-driven type, where the sub-
sets belonging to the family depend on the data at hand.
For clarity, we denote the predefined families by − and
the data-driven ones by 𝑛.

4 PREDEFINED FAMILIES

In this section, we state properties of the test procedure
described in Section 3 for predefined families, with proofs
given in Web Appendices A and B.

Theorem 4.1. Let − be a predefined nonempty family of
Lebesgue-measurable subsets of domain𝐷. Let𝑝𝑛(𝑡;−), 𝑡 ∈
𝐷, be the adjusted 𝑝-value function in (6). If the tests of 𝐻𝑆

0

against 𝐻𝑆
1
are valid (asymptotically valid) for all 𝑆 ∈ −,

then, the test procedure based on𝑝𝑛(𝑡;−), 𝑡 ∈ 𝐷, has a con-
trol (asymptotic control) of the FWER restricted to the family
− .
Theorem 4.2. Let  be a nonempty family of Lebesgue-
measurable subsets of the domain 𝐷. Assume that the car-
dinality of family  is finite. Further, assume that all 𝑆 ∈ 
are either compact sets or a finite union of compact sets. If
the tests of 𝐻𝑆

0
against 𝐻𝑆

1
are consistent for all 𝑆 ∈  , the

test procedure based on 𝑝𝑛(𝑡,) in (6) is consistent.
Theorem 4.1 states that if the family is fixed, the prob-

ability of wrongly detecting a set where the null hypothe-
sis is actually true is bounded by 𝛼 for every set included
in the family −. Theorem 4.2 states the conditions under
which the test procedure is consistent. Observe that the lat-
ter result is valid for both predefined and data-driven fam-
ilies  .
The remainder of this section discusses test procedures

for particular choices of predefined families −, and theo-
retical properties of corresponding adjustment procedures.
We focus on the case when 𝐷 = [𝑎, 𝑏], leaving the discus-
sion about higher dimensions to Section 7.2.

Global testing
Suppose that the family consists only of the whole domain,
𝐺𝑙𝑜𝑏 ∶= {𝐷}. The corresponding test procedure performs
one test over 𝐷 and assigns its 𝑝-value to all points of 𝐷,
with 𝑝𝑛(𝑡;𝐺𝑙𝑜𝑏) ≡ 𝑝𝐷𝑛 , for all 𝑡 ∈ 𝐷. From Theorem 4.1. it
follows that if the test on𝐷 is valid, thismethod has a weak
control of the FWER. The consistency of the procedure fol-
lows directly from the consistency of the test. However, a
global test cannot provide strong control of the FWER. Fur-
ther, since the adjusted 𝑝-value function is constant, it can-
not be used to select specific parts of the domain responsi-
ble for the rejection of the null hypothesis.
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6 ABRAMOWICZ et al.

Borelwise testing
The Borelwise testing procedure (BWT) is based on the
choice 𝐵𝑊𝑇 ∶= (𝐷), where (𝐷) denotes all Borel sets
of nonzero measure of 𝐷. Borel subsets of zero measure
are excluded since the test statistic (1) is not definite on
such sets. The resulting procedure is the continuous exten-
sion of the closed testing procedure (see, e.g., Marcus et al.,
1976) that has been proposed in multivariate analysis. If
all tests are valid, Theorem 4.1 implies that the BWT has
a strong control over the FWER. The adjusted 𝑝-value
function for this method is constant, with 𝑝𝑛(𝑡;𝐵𝑊𝑇) ≥
max𝑡∈𝐷 𝑝𝑛(𝑡) (Proposition 1 in Web Appendix B). Hence,
the BWT is not consistent and cannot be used for domain
selection.

Partition-closed testing
Assume that interest lies in performing tests on an a pri-
ori selected partition of the original domain. Let {𝑆𝑗}𝐽𝑗=1 for
some finite 𝐽 ∈ ℕ+ define the sets of the partition, satis-
fying 𝑆𝑗 ⊆ 𝐷, 𝑆𝑗 ∩ 𝑆𝑗′ = ∅ for all 𝑗 ≠ 𝑗′, and

⋃𝐽

𝑗=1
𝑆𝑗 = 𝐷.

Assume that 𝑆𝑗 is Lebesgue-measurable for all 𝑗. Then,
the partition-closed testing procedure (PCT; Vsevolozh-
skaya et al., 2014) is the inferential procedure based on
a family containing all possible unions between sets 𝑆𝑗 ,
with 𝑃𝐶𝑇,𝐽 = {∪𝑗∈𝕀𝑆𝑗}𝕀⊆{1,…,𝐽}. From Theorem 4.1, it fol-
lows that the PCT procedure has a control of the FWER
restricted to family 𝑃𝐶𝑇,𝐽 when the tests are valid. For
every finite 𝐽, the PCT method is consistent, by Theo-
rem 4.2 if the tests on subsets are consistent. Since the
method is based on performing tests on unions of sets 𝑆𝑗 ,
the adjusted 𝑝-value 𝑝𝑛(𝑡;𝑃𝐶𝑇,𝐽) is a stepwise constant
function attaining the same value for all points belonging
to the same element of the partition. If for some 𝑗, we reject
the null hypothesis on 𝑆𝑗 , we only know that 𝑆𝑗 presents
a statistically significant deviation from the null hypothe-
sis in at least one of its points. With this method, it is not
possible to decide which set of points within this subset
that are responsible for the rejection of 𝐻0. The practical
use of the method is highly dependent on the choice of
{𝑆𝑗}

𝐽
𝑗=1

. Consider two uniform partitions of the domain 𝐷,
the first of size 𝐽0, 𝐽0 ∈ ℕ+ and the second of size 𝐽1 = 𝑘𝐽0,
for an arbitrary 𝑘 ∈ ℕ+, 𝑘 > 1. By definition, the adjusted
𝑝-value function for the PCTmethod based on the partition
of size 𝐽1 cannot be smaller than the one corresponding to
size 𝐽0. Moreover, if at any 𝑡0 ∈ 𝐷 the unadjusted 𝑝-value
function is above the significance level, the corresponding
adjusted 𝑝-value function increases with 𝑘, and at some
point exceeds the significance level on the whole domain,
resulting in no domain selection. Note that if the measure
of all elements of the partition goes to zero (as 𝐽 → ∞) the
PCT and BWT methods coincide, and for 𝐽 = 1 the PCT
method coincides with the global testing.

Intervalwise testing
IWT (Pini and Vantini, 2017) is based on performing a
test on every interval of the (one-dimensional) domain.
The method fits under the unified framework with family
𝐼𝑊𝑇 = {[𝑡1, 𝑡2] ∶ 𝑡2 > 𝑡1}𝑡1,𝑡2∈𝐷 . By Theorem 4.1, the test
procedure has a control of the FWER restricted to 𝐼𝑊𝑇

when valid tests are used. The attained intervalwise con-
trol of the FWER is in-between the weak and the strong
control. Further, the pointwise test statistic is a continuous
function, and the test statistic (1) is continuouswith respect
to the limits of integration. This implies that 𝑝𝑛(𝑡;𝐼𝑊𝑇) is
continuous on𝐷, providing uswith a tool for domain selec-
tion. Similar methods can be defined by replacing inter-
vals withmore complex subsets. An apparently straightfor-
ward extension of IWT would be families that also include
countable unions of intervals. However, such a general-
ization does not lead to a method with desired proper-
ties. Indeed, for a fixed integer 𝐾, consider the testing
procedure based on the family 𝐾 = {∪𝐾

𝑗=1
[𝑡1𝑗, 𝑡2𝑗] ∶ 𝑡2𝑗 >

𝑡1𝑗}𝑡1𝑗 ,𝑡2𝑗∈𝐷, 𝑗=1,…,𝐾 , that is, the family of all possible unions
of at most 𝐾 disjoint intervals. It can be shown (see Propo-
sition 2 inWebAppendix B) that the adjusted𝑝-value func-
tion 𝑝𝑛(𝑡;𝐾) is such that, for all 𝐾 ≥ 2, 𝑝𝑛(𝑡;𝐾) is con-
stant on 𝐷 and such that 𝑝𝑛(𝑡;𝐾) ≥ max𝑡∈𝐷 𝑝𝑛(𝑡), mak-
ing the method unsuitable for domain selection. Further-
more, for all𝐾 < ∞, 𝑝𝑛(𝑡;𝐾) is not providedwith a finite-
sample strong control of the FWER.

5 DATA-DRIVEN FAMILIES

Section 4 shows that in the case of predefined families
it is not possible to guarantee both the possibility of per-
forming domain selection and strong control of the FWER.
In the following, we show that, with data-driven families,
it is possible to identify families that provide an asymp-
totically strong control of the FWER while allowing for
domain selection.

Thresholdwise testing
The thresholdwise testing (TWT) performs tests on a fam-
ily, 𝑇𝑊𝑇𝐽,𝑛

, which is constructed based on the unad-
justed 𝑝-value function, and thus data dependent. The
family is constructed in the following way: Analogously
to the PCT, consider a partition of the domain {𝑆𝑗}

𝐽
𝑗=1

and the corresponding family of subsets 𝑃𝐶𝑇,𝐽 . We intro-
duce the discretized version of the unadjusted 𝑝-value
function as 𝑝𝐽,𝑛(𝑡) = 𝑝𝑆𝑗∗ , where 𝑗∗ is such that 𝑡 ∈ 𝑆𝑗∗ ,
and thus 𝑝𝐽,𝑛(𝑡), 𝑡 ∈ 𝐷 is piecewise constant. The next
step is to determine the family of subsets on which the
tests are being performed. In the PCT case, the family
is 𝑃𝐶𝑇,𝐽 and we would perform 2𝐽 tests. For the TWT
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ABRAMOWICZ et al. 7

procedure, we define amuch smaller family𝑇𝑊𝑇𝐽,𝑛
which

is data dependent. It consists of the sublevel and super-
level sets of the discretized unadjusted 𝑝-value function.
Formally,

𝑇𝑊𝑇𝐽,𝑛
=
{{

𝑡 ∈ 𝐷 ∶ 𝑝𝐽,𝑛(𝑡) ≤ 𝑦,
}

{
𝑡 ∈ 𝐷 ∶ 𝑝𝐽,𝑛(𝑡) > 𝑦

}}
𝑦∈[0,1]

(7)

From the construction of 𝑝𝐽,𝑛(𝑡), 𝑡 ∈ 𝐷, it is straightfor-
ward to see that 𝑇𝑊𝑇𝐽,𝑛

⊂ 𝑃𝐶𝑇,𝐽 and that the maximum
number of elements in 𝑇𝑊𝑇𝐽,𝑛

is 2𝐽. With such a choice,
the adjusted 𝑝-value function 𝑝𝑛(𝑡;𝑇𝑊𝑇𝐽,𝑛

) as defined
in (6) is a piecewise constant, satisfying 𝑝𝑛(𝑡;𝑇𝑊𝑇𝐽,𝑛

) =

max𝑆∈𝑇𝑊𝑇𝐽,𝑛
∶ 𝑡∈𝑆 𝑝

𝑆
𝑛 . Here the supremum in definition (6)

is replaced by amaximum since the discretized unadjusted
𝑝-value function is a piecewise constant on a finite parti-
tion and hence attains only a finite number of levels.
For finite 𝑛, and when the tests are valid, TWT has a

weak control of the FWER, since 𝐷 ∈ 𝑇𝑊𝑇𝐽,𝑛
. Naturally,

given the data the TWT procedure with valid tests also
provides a finite sample control of the FWER restricted
to 𝑇𝑊𝑇𝐽,𝑛

. However, by definition, the partition is data
dependent as the sets over which we control the error
change between samples. The strength of the TWT is that
control of the FWER restricted to𝑃𝐶𝑇,𝐽 is attained asymp-
totically, for asymptotically valid and consistent tests (see
Theorem 5.1). The proof of the theorem is given in Web
Appendix A.

Theorem 5.1. Let 𝑇𝑊𝑇𝐽,𝑛
be the TWT family, based on the

partition {𝑆𝑗}
𝐽
𝑗=1

. Assume that for all 𝑆 ∈ 𝑃𝐶𝑇,𝐽 , the tests
of 𝐻𝑆

0
against 𝐻𝑆

1
are asymptotically valid and consistent.

Then, the test procedure based on the adjusted 𝑝-value func-
tion 𝑝𝑛(𝑡,𝑇𝑊𝑇𝐽,𝑛

) has an asymptotic control of the FWER
restricted to 𝑃𝐶𝑇,𝐽 .
The conditions of Theorem 4.2 are met if the tests are

consistent for all 𝑆 ∈ 𝑃𝐶𝑇,𝐽 , since for finite 𝐽 the family is
finite, and all subsets in the family are composed of a finite
union of compact sets. This implies that the TWT proce-
dure is consistent. The resolution of the domain selection
process is related to the coarseness of the partition {𝑆𝑗}𝐽𝑗=1
, similarly to PCT. In both cases, the largest subset we can
provide a control of is 𝑆0,𝐽 which is the biggest set included
in0 that can be constructed as a union of elements of the
partition. For finite 𝐽, 𝑆0,𝐽 is possibly smaller than 0, so
the control provided by TWT is weaker than the asymp-
totic strong control of the FWER. In practice, however, by
refining the partition, the difference can be made arbitrar-
ily small. In general, onewould like to increase the value of
𝐽 in order to have a good approximation of the functional
data and of the set0 where the FWER is controlled, even
though increasing the size of the partition can in principle

decrease the power of the method, since a larger number
of tests would be involved in the maximization. The effect
of changing the partition size 𝐽 is explored in a simulation
study described inWebAppendix F. It illustrates thatwhen
𝐽 is sufficiently large to well approximate 0 by 𝑆0,𝐽 , the
method continues to have similar power for larger 𝐽.
As discussed earlier, increasing 𝐽 has a significantly neg-

ative effect on power and domain selection capability for
the PCT method, due to the exponential number of tests
performed. It is illustrated by the simulation study in Sec-
tion 6 that compares the performance of all the methods
within the unified framework described in Sections 4 and
5, as the sample size grows. The study confirms the already
mentioned pros and cons of the methods and shows how
the power (sensitivity) of all other methods except BWT
increases with the sample size. The TWT procedure is
by construction more powerful than PCT, since 𝐹𝑇𝑊𝑇𝐽,𝑛

⊂

𝐹𝑃𝐶𝑇𝐽 , and the number of tests increase linearly, making
it suitable for high-resolution domain selection. The com-
putational costs of TWT are not affected by the dimen-
sionality of the domain. In the case of multidimensional
domains, one only has to ensure that the partition can
approximate the sets 0 and 1. This makes TWT natu-
rally suited to deal with functional data defined on mul-
tidimensional domains or even on smooth manifolds (cf.
Section 7.2). Alternative data-driven families can be con-
structed using preimages of the unadjusted 𝑝-value func-
tion, corresponding to a suitable family of subsets of the
codomain [0,1]. Such families can be shown to share the
same asymptotic properties as the TWT method, and are
discussed in Web Appendix C.

6 SIMULATION STUDIES

This simulation study has two aims. First, the performance
of the methods within the general framework is compared
in a finite sample setting. Second, we compare the perfor-
mance of the TWT method with some additional methods
provided in the literature.

Simulation model
For both simulation studies, the inferential problem at
hand is the comparison of means of two functional popu-
lations and we utilize the same underlyingmodel. We con-
sider equal size samples of two groups:

𝑦𝑖𝑗(𝑡) = 𝜇𝑖(𝑡) + 𝜀𝑖𝑗(𝑡) 𝑖 = 1, … , 𝑛, 𝑗 = 1, 2, 𝑡 ∈ 𝐷 = [0, 1].

The error functions 𝜀𝑖𝑗(𝑡) have zero mean and are
independent between individuals and populations. We
simulate them by simulating the coefficients of a cubic
B-spline basis expansion with 81 basis functions and
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8 ABRAMOWICZ et al.

TABLE 1 The overview of parameter values used in the two simulation studies

Parameter Meaning Values
Simulation 1
𝑛 Samples size 5, 10, 15, 20, 30, 40
𝑑 Effect size 1, 2, 3
𝜇2(𝑡) Prototype for the mean

𝜎(𝑡) Standard deviation function

Simulation 2
𝑛 Samples size 5, 10, 15, 20, 30, 40
𝑑 Effect size 1, 2, 3
𝜇2(𝑡) Prototype for the mean

𝜎(𝑡) Standard deviation function

equally spaced knots, from a multivariate Gaussian distri-
bution: 𝜀𝑖𝑗(𝑡) = 𝜎(𝑡)

∑80

𝑘=1
𝑐𝑖𝑗𝑘𝐵𝑘(𝑡), where 𝑐𝑖𝑗𝑘 ∼ 𝑁(𝟎, Σ),

𝐵𝑘(𝑡), 𝑘 = 1,… , 80 are B-spline basis functions and 𝜎(𝑡) is
a standard deviation function. We assume that the basis
coefficients are correlated according to a squared exponen-
tial covariance function, that is,

[Σ]𝑘1,𝑘2 = Cov(𝑐𝑖𝑗𝑘1 , 𝑐𝑖𝑗𝑘2) = exp

(
−200

(
𝑘1 − 𝑘2
80

)2
)
,

𝑘1, 𝑘2 = 1,… , 81.

In all simulations, we use 𝜇1(𝑡) = 0 while we consider
multiple scenarios for𝜇2(𝑡) = 𝑑𝜇2(𝑡), with varying𝑑 repre-

senting the effect size and 𝜇2(𝑡) representing the prototype
for the mean. All prototypes are obtained using the same
cubic B-spline basis, whose coefficients are sequences of
zeroes and ones. In the first simulation study, we con-
sider a division of the domain into two equisized parts,
0 and 1, using two scenarios. In the first scenario,
(1.A),0 is an interval, while in the second scenario, (1.B),0 and 1 are composed of eight alternating intervals.
In the second simulation study, we consider three sce-
narios (2.A, 2.B, and 2.C), where the domain is divided
into two intervals 0 and 1, and we vary the propor-
tion of the domain corresponding to0. A summary of the
parameters and their values for both studies is presented
in Table 1.
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ABRAMOWICZ et al. 9

F IGURE 1 Results for simulation study 1 with effect size 𝑑 = 2 and constant standard deviation function. Examples of 𝑛 = 15 sample
functions from both populations (distinguished by color) are presented together with their corresponding mean functions (first column).
Effect of increased sample size 𝑛 on the estimated FWER (second column), FDR (third column), and sensitivity (fourth column) for the
introduced methods in the two scenarios. Line colors correspond to different methods, while line types correspond to different sizes of the
partition for the PCT method. The dashed horizontal line corresponds to the nominal level 𝛼 = 0.05. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version

We test the two sample mean equality hypothesis
using permutation tests with the pointwise test statistics
𝑇𝑛(𝑡) = (𝑦1(𝑡) − 𝑦2(𝑡))

2. We compare the performance of
the methods by estimating FWER, FDR, and sensitivity by
their empirical correspondence based on 1000 simulated
experiments. For details on the definition and used esti-
mates, as well as details of implementations, we refer to
Web Appendix D.

6.1 Simulation study 1: Comparison of
the methods within the unified framework

Figure 1 presents the dynamics of the estimated measures
for 𝑑 = 2 as a function of 𝑛, with 𝛼 = 0.05. As expected,
the sensitivity of all the methods, except BWT, increases
as 𝑛 increases. BWT is the only procedure always control-
ling the FWER. In practice, though, BWT does not detect
any significant differences and hence is not of practical
use. The IWT and PCT procedures control the FWER only
if the underlying partition into 0 and 1 can be cap-
tured by the corresponding family of subsets, so the pro-
vided control is not strong. In scenario A.1, since the null
hypothesis is true on an interval, IWT results in a finite

sample control of the FWER. The interval can also be
constructed using a partition defined by the PCT method
with 𝐽 = 4 and 10, but not with 𝐽 = 5. In scenario A.2,
none of the PCT partitions result in a separation of 0

and 1 and therefore no control is provided. TWT is the
only method that possibly allows the selection of portions
of the domain and provides asymptotically strong control
of the FWER. This control is here reached for a reason-
ably small sample size (i.e., 𝑛 ≈ 30), which further sup-
ports its possible usefulness in statistical practice. Finally,
as expected from theory, FDR is controlled by all proce-
dures controlling the FWER. Since FDR is generally lower
than FWER, in a few cases, procedures not controlling
FWER control the FDR instead (e.g., IWT in scenario A.2),
even though this is not supported by theory and could be
a consequence of the parameter choice. The results pre-
sented are inherently dependent on the effect size used in
the simulation studies. InWeb Appendix E, we present the
effect of changing the effect size on the performance of
the method. As expected, increasing the effect size speeds
up the convergence of TWT to the asymptotic strong con-
trol of the FWER, while lowering the value of this param-
eter implies higher sample sizes are required for attaining
the control.
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10 ABRAMOWICZ et al.

F IGURE 2 Results for simulation study 2 with effect size 𝑑 = 2 and constant standard deviation function. Examples of 𝑛 = 15 sample
functions from both populations (distinguished by color) are presented together with their corresponding mean functions (first column).
Effect of increased sample size 𝑛 on the estimated FWER (second column), FDR (third column), and sensitivity (fourth column) for the
compared methods in the three scenarios with different portions of0 and1. Scenarios 2.A, 2.B, and 2.C correspond to 25%, 50%, and 75% of
the domain corresponding to0, respectively. Line colors correspond to different methods, while line types correspond to different values of
parameter 𝑐 in the RFT method. The dashed horizontal line corresponds to the nominal level 𝛼 = 0.05. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version

6.2 Simulation study 2: Comparison
with alternative methods

In this study, we compare the performance of TWT, being a
member of our framework, with some alternativemethods
presented in the literature. We consider a method intro-
duced inCox andLee (2008) aiming at control of the FWER
using the permutational distribution of the minimum p-
value (p-min). We also consider two methods control-
ling the FDR: the functional Benjamini–Hochberg (fBH)
method introduced in Olsen et al. (2021) and the method
proposed in Perone Pacifico et al. (2004) based on random
field theory (henceforth denoted RFT). The RFT method
includes a parameter 𝑐 ∈ (0, 𝛼) which, while keeping the

FDR control at level 𝛼, affects the power of the result-
ing procedure. In the simulation studies, we compare the
performance of the method for two distinct values of this
parameter (0.1𝛼 and 0.9𝛼). Here we present the effect of
varying the size of 0 and 1, with the effect size 𝑑 = 2

and constant variance.
Figure 2 shows that in this scenario as 𝑛 increases

the strong FWER control is attained asymptotically by all
methods except fBH, while the FDR is controlled by all
methods. The RTF method is sensitive to the choice of
the parameter 𝑐, and even though the FDR is always con-
trolled, the FWER control is not guaranteed for the higher
value of 𝑐 for smaller samples. The p-min method controls
the FWER in all cases. However, recent studies (Mrkvička
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ABRAMOWICZ et al. 11

et al., 2022) have shown that for high-dimensional data the
power of the method decreases drastically. After reaching
FWER control, TWT shows a similar sensitivity as p-min.
Additional scenarios are considered in Web Appendix E,
where we study the effect of variance heterogeneity and
effect size. In general, we see the expected effect of the
signal-to-noise ratio on all of the methods and the main
conclusions remain unchanged.

7 REAL DATA APPLICATIONS

7.1 Knee kinematic data

Our simulation study of methods within the unified
framework is complemented with the analysis of one-
dimensional kinematic data, elucidating how the detected
regions can differ when different methods are applied.
The results together with a discussion are presented in
Web Appendix G.

7.2 Analysis of diffusion magnetic
resonance imaging data

In what follows, we compare the detected regions of the
methods presented in the second simulation study on
diffusionmagnetic resonance imaging (MRI) data. A brain
image is a complex spatial domain since it is a subspace
of ℝ3 with a complex shape. In this application, the
complex domain is defined by the voxels (three-
dimensional pixels of the imaged brain) that are inter-
sected by the so-called corpus callosum (CC), which
is the set of axons connecting the two hemispheres of
our brain. The CC axons form a bundle that defines a
two-dimensional manifold ofℝ3 (see Web Figure 10 for an
example).
The CC axons are intrinsically an anisotropic environ-

ment since axons can be broadly viewed as cylinders. In
particular, in this study we focus on fractional anisotropy
(FA), an index measuring the degree of anisotropy along
brain tracts, which has been widely adopted as a proxy
for quantifying axonal damage (Horsfield and Jones, 2002;
Assaf and Pasternak, 2008). FA is typically quantified with
two approaches: the first proposed approach is a single-
tensor model (STM; Basser et al., 1994) consisting of a sin-
gle anisotropic component, and a more complex approach
is a multicompartment model (MCM; Panagiotaki et al.,
2012) incorporating an additional isotropic component
related to free water.
Here we propose to demonstrate that improving upon

STM by using MCM does result in a significantly lower
population variance of FA. To achieve this goal, we pro-

cessed diffusion MRI data of 30 healthy subjects from the
Human Connectome Project (Van Essen et al., 2013) to
obtain a reconstruction of the CC of each subject using
both STM and MCM. We chose the CC because its recon-
struction is relatively easy. Finally, we defined the common
domain of the CC as the set of all the voxels of size 1.25
mm3 that were intersected by the CCs of all the 30 healthy
subjects, which provided us with a domain of 950 voxels
in three dimensions lying on a two-dimensional manifold.
Formore details on STMandMCMmodels and themethod
we used for fitting them, see Web Appendix H.
To test the stability of FA, we hypothesize that the popu-

lation variance should be lower when using themore com-
plex MCM over the STM. We therefore perform a paired
one-tailed permutation test using the variance ratio as the
test statistic. Domain selection is of paramount importance
in brain applications where we need spatial localization of
the differences. We can achieve domain selection via TWT
based on a discretized unadjusted 𝑝-value function evalu-
ated on the CC voxels. For completeness, we also included
all methods evaluated in the second simulation study, that
is, p-min, RFT with the two choices 𝑐 = 0.1𝛼 and 𝑐 = 0.9𝛼,
and fBH.Allmethodswere performed on the same discrete
evaluation of the data on 950 voxels, and p-values were
evaluated using 5000 permutations.
Figure 3 reports the regions of the brain where signif-

icant differences are observed by the considered meth-
ods at 𝛼 = 0.05. First of all, note that the p-min method
does not detect any significant difference. This is due
to the drastic decrease in the power of this method for
high-dimensional data (Mrkvička et al., 2022). Only when
increasing the number of permutations to 10,000, the
method starts detecting some differences.Wewould expect
to obtain more significant differences when increasing the
number of permutations, at a cost of a significant increase
in computational time. TWT detects instead a large region,
which is comparable with respect to the one detected by
fBH, and it is substantially larger than the one detected by
the RFT method with both choices of 𝑐. This latter result
could be related to the lower power of the RFT method
with respect to fBH also observed in simulation study 2.
Finally, note that even though the regions detected with
TWT-adjusted p-values and unadjusted p-values are very
similar, TWT is performing a substantial adjustment of p-
values, which can be seen in Web Figure 11.
The TWT approach identifies two symmetric areas (one

in each brain hemisphere) where the FA variance can-
not be claimed to be significantly lower in the MCM with
respect to the STM. This is very interesting from a neuro-
logical perspective because these two areas are precisely
the regions where the CC tract crosses with two other well-
known tracts, namely the superior longitudinal fasciculus
and the pyramidal tract. This shows that in these regions
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12 ABRAMOWICZ et al.

F IGURE 3 Voxels where the null hypothesis of equality of the variances of the two populations is rejected (green) and not rejected (gray)
according to the different methods. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version

the introduction of the free water–related isotropic com-
ponent is not sufficient to reduce the population variance.
Hence, the addition of a second anisotropic component
possibly would be needed to model the additional tracts.
The running time was about 4 min for TWT, 3 min for

each of the RFT methods, and 7 min for p-min; the tim-
ing was evaluated on a 2.6-GHz Quad-core i7 processor,
with 16 GB 2133 MHz LPDDR3 RAM and 512 Gb SSD hard
drive.

8 CONCLUSIONS

In this paper, we introduce a general framework for local
inference for functional data, where subsetwise test pro-
cedures on the functional data perform domain selection
while controlling the FWER. We investigate the proper-
ties of the test procedures (methods) within the frame-
work. The test procedures are based on two types of fam-
ilies (of subsets of the domain): predefined, appearing in
the existing literature, and data driven proposed in this
paper. We show that some serious practical limitations
of the methods based on the predefined families can be
overcome with the data-driven families. The possibility of
selecting significant regions in a possibly complex domain,
while retaining asymptotic FWER control restricted to
a family generated by the predefined data resolution,

is presented and illustrated in two application-focused
examples.
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SUPPORT ING INFORMATION
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7 are available with this paper at the Biometrics website
on Wiley Online Library. R code implementing the pro-
posed TWT method is available at github https://github.
com/astamm/fdatest. R code for reproducing the simu-
lated results is also available at the Biometrics website on
Wiley Online Library.
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