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Abstract 

Landslides are natural hazards that pose a significant threat to human lives and infrastructure. Landslide 

susceptibility mapping aims to classify areas at risk of landslides. Multi-Criteria Decision Making (MCDM) 

algorithms have the advantage of incorporating expert opinions, while Statistics and Machine Learning models 

demonstrate greater objectivity. This study compares three representative models, namely Analytic Hierarchy 

Process (AHP), Frequency Ratio (FR), and Random Forest (RF), for developing a landslide susceptibility 

model in Van Yen District, Yen Bai Province. The classification points for landslides were divided into a 70% 

training set and a 30% testing set. Thirteen conditioning factors were used to evaluate the landslide's influences. 

The results show that the AHP and FR models perform well with AUC = 0.842 and AUC = 0.852, respectively, 

while the RF model outperforms them with AUC = 0.949. The study demonstrates the applicability of these 

models for analyzing landslide susceptibility in the research area, highlighting the strong potential of machine 

learning models. 

 

Keywords: Frequency Ratio, Landslide, Machine Learning, Multi-Criteria Decision Making, Random Forest 

 

 

1. Introduction 

Landslides are a type of natural hazard that occurs 

when a mass of soil or rock moves from its initial 

position downward in the form of layers or blocks [1] 

[2] [3] [4] and [5]. It may cause strong impacts on 

infrastructure, land use, and result in loss of human 

life [2]. The causes of landslides stem from various 

sources, including slope instability due to differences 

in elevation, slope, environmental and weather 

conditions, as well as human activities and natural 

events [6]. Every year, Vietnam records 

approximately 50 landslide incidents that result in 

damages to properties and loss of human lives. The 

frequency and severity of landslides are increasing in 

the Northwestern mountainous region of Vietnam, 

causing significant damages. Therefore, early 

prediction of this natural hazard is highly important 

[7]. 

Landslide Susceptibility Model (LSM) is a method 

used to identify areas at risk of landslides by 

analyzing the spatial distribution of influencing 

factors [8]. These factors include terrain 

characteristics, such as elevation, slope, and aspect, 

as well as meteorological factors such as annual 

rainfall and wind [9]. Factors related to river 

networks, such as flow accumulation and river 

buffer, as well as geological factors including 

lithological maps and distances to faults or land 

cover, are also considered [5]. Data collected through 

image interpretation or field surveys are used as 

training and testing data in landslide susceptibility 

models [10] and1[11]. The main objective of 

landslide susceptibility models is to identify high 

possibility areas for landslides based on the factors 

and their relationships [7].  
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Landslide susceptibility models can be based on 

several groups of methods, such as multi-criteria 

decision-making methods based on expert opinions, 

statistical methods, and machine learning models 

[12] [13] [14] and [15]. Some commonly applied 

methods within the multi-criteria decision making 

include Analytic Hierarchy Process (AHP), 

Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS), and Decision-Making Trial and 

Evaluation Laboratory (DEMATEL) [16] [17] [18] 

and [19]. Statistical methods or machine learning 

models have been employed in recent years to 

construct landslide susceptibility models [20] [21] 

and [22]. These methods build models based on the 

assumption that the conditions leading to landslides 

have causal relationships with historical events [23] 

[24] and [25]. Some models within this group 

commonly applied in landslide susceptibility 

mapping include Frequency Ratio (FR), Weight of 

Evidence (WoE), and Evidential Belief Functions 

(EBF) [20] and [26]. Machine learning methods 

using single or combined models have also been 

researched and applied in this context. Various 

algorithms have been successfully employed in the 

study of establishing landslide susceptibility maps, 

including Decision Tree (DT), Support Vector 

Machine (SVM), Artificial Neural Networks (ANN), 

and Random Forest (RF) [27] [28] [29] and [30]. 

The multi-criteria decision-making method is 

considered to be more subjective, while statistical 

and machine learning methods are known for their 

higher objectivity and often higher accuracy. 

However, this is not a rule as some machine learning 

and statistical models may not surpass the data 

scarcity and reliability of expert-based models. 

Furthermore, machine learning models require the 

selection of binary label for non-landslide locations, 

whereas statistical models do not require this. The 

main objective of this study is to compare several 

methods for landslide susceptibility modeling in 

three categories: MCDM methods, statistical 

methods, and machine learning methods. 

Specifically, the Analytic Hierarchy Process (AHP), 

Frequency Ratio (FR), and Random Forest (RF) 

models are applied as representative methods. The 

effectiveness of using these models allows for 

determining the most suitable model for the research 

area. The performance and accuracy of the models 

used are evaluated using Overall Accuracy (OA), 

Receiver Operating Characteristic (ROC) curve, 

Area Under the Curve (AUC), and other statistical 

measures. 

 

 

 

2. Study Area and Dataset 

2.1 Study Area 

Van Yen district is located in the Northern part of 

Yen Bai province, Vietnam, with geographical 

coordinates ranging from 21°05′30′′ to 22°01′00′′ 

North latitude and from 104°02′30′′ to 104°03′00′′ 

East longitude. This area has a complex topography, 

with a continuous and increasing range of hills and 

mountains from the Southeast to the Northwest. 

Situated between the high mountains of Con Voi and 

Pung Luong, the area features a network of numerous 

streams flowing into the Hong River. Van Yen 

district regularly experiences landslides on an annual 

basis. According to statistics, it is the district with the 

highest landslide frequency among the districts in the 

Northwest region of Vietnam [31]. 

 

2.2 Data Used 

2.2.1 Landslide inventory data 

Landslides inventory data plays an extremely 

important role in the process of constructing 

landslide models through data analysis and modeling 

[32] [33] and [34]. This study combined fieldwork 

and remote sensing interpretation, to collect landslide 

inventory data. However, all landslide inventory 

points were verified through field surveys before 

being used in the models. 301 landslide points 

collected from surveys conducted in 2013, 2017, and 

2022 were used in this study (Figure 1). 

 

2.2.2 Conditioning factors data 

The study aimed to construct maps of conditioning 

factors using satellite imagery, collected data, and 

station measurement data. Digital Elevation Model 

(Figure 2(a)) with 12.5m of spatial resolution derived 

from ALOS PALSAR data was used to build layers 

of slope (Figure 1), aspect (Figure 2(b)), plan 

curvature (Figure 2(c)), profile curvature (Figure 

2(d)), topographic wetness index (Figure 2(e)), and 

flow accumulation (Figure 2(k)) [35] and [36]. 

Geological maps (Figure 2(g)) with five rock groups 

ranging from group 1 to group 5 based on increasing 

hardness and distances to faults (Figure 2(f)) were 

established using a 1:200,000 scale geological map 

and fault data provided by the Vietnam Institute of 

Geosciences and Mineral Resources. The factors of 

distance to roads (Figure 2(h)) and distance to rivers 

(Figure 2(i)) were established with different buffer 

zone levels, while the rainfall map (Figure 2(k)) was 

interpolated using Kriging method from the average 

data of 10 years from six stations located within and 

surrounding the study area [37]. The land cover map 

(Figure 2(j)) was classifying seven sub-class using a 

classification method based on Sentinel-2 satellite 

imagery with 10m of spatial resolution. 
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Figure 1: Location of the study area and the landslide inventory map 

 

 
Figure 2: Conditioning factors of the study area (a) Elevation; (b) Aspect; (c) Plan curvature;  

(d) Profile curvature; (e) TWI; (f) Distance to faults 
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Figure 2: Conditioning factors of the study area (g) Lithology; (h) Distance to road; (i) Distance to river;  

(j) Land cover; (k) Rainfall; (l) Flow accumulation 
 

 
 

Figure 3: Outline of the methodological workflow 
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3. Methodology 

3.1 Multicollinearity Test 

Multicollinearity occurs when the independent 

variables in a model have a linear relationship with 

each other, resulting in high correlation coefficients 

even though the regression coefficients not be 

statistically significant. Before incorporating 

independent variables into the model, the 

multicollinearity of the predictor variables needs to 

be assessed (Figure 3). Variance Inflation Factors 

(VIF) and Tolerance (TOL) are used to test the 

multicollinearity of the input factors in order to select 

an optimal set of data layers for the model. 

Multicollinearity among the independent variables is 

considered to be present if the VIF is greater than 10 

or the TOL is less than 0.1 [5]. 

 

3.2 Analytical Hierarchy Process (AHP) 

The Analytical Hierarchy Process (AHP) method is 

used to assess the roles and impacts of factors related 

to landslide hazards. This method is based on 

constructing a pairwise comparison matrix of 

different factors to determine their priority levels. 

Each pair of factors is evaluated on a standard scale 

of 9 levels, based on expert knowledge, literature, 

and experience. The average values of the factors 

ranked in order are used to calculate the weights and 

eigenvalues, along with the consistency ratio (CR), 

which is determined as follows [38]: 

 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
  

Equation 1 

 

Where:  

CI is the consistency index; RI is a random index 

determined through a lookup table.  

 

The Landslide Susceptibility Index is determined by 

integrating the weights of the sub-classes and the 

weights of the classes calculated according to the 

following formula: 

 

𝐿𝑆𝐼 =  ∑ 𝑀𝑗𝑊𝑖𝑗

𝑛

𝑗=1

 

Equation 2 

Where:  

LSI is Landslide Susceptibility Index; Mj is the 

weight of the jth factor; Wij is the weight of the ith 

sub-class in the factor j. 

 

3.3 Frequency Ratio (FR) 

The Frequency Ratio (FR) method is based on the 

spatial relationship between past landslide 

occurrences and the factors influencing landslide 

formation. A higher FR value indicates a stronger 

correlation between the occurrence of landslides and 

the causal factors. The FR value is calculated using 

the formula [39]: 

 

𝐹𝑟 =
𝑁𝑝𝑖𝑥(1)/𝑁𝑝𝑖𝑥(2)

∑ 𝑁𝑝𝑖𝑥(3) / ∑ 𝑁𝑝𝑖𝑥(4)
 

Equation 3 

 

Where: 

𝑁 𝑝𝑖𝑥 (1) is the number of landslide pixels of the 

factor class; 𝑁 𝑝𝑖𝑥 (2)  is the total number of 

pixels of the sub-class over the entire study area; 

𝑁 𝑝𝑖𝑥 (3) is the total number of landslide pixels 

of the study area; 𝑁 𝑝𝑖𝑥 (4) is the total number of 

pixels of the study area. 

 

Landslide Susceptibility Index (LSI) map is 

generated by summing all the FR values of n 

influencing factors according to the following 

formula: 

𝐿𝑆𝐼 = 𝐹𝑅1 + 𝐹𝑅2 + ⋯ + 𝐹𝑅𝑛 

 

Equation 4 

Where:  

FR is the frequency ratio; n is the number of 

landslide causative factors used. 

 

3.4 Random Forest (RF) 

Random Forest is a machine learning method that 

combines multiple decision trees to generate 

predictions and classifications. Random Forest is 

capable of handling complex data and helps reduce 

overfitting. Each decision tree produces different 

output, and they are evaluated based on weights and 

a "voting" method to prioritize decision trees. 

Random Forest increases the diversity of trees by 

developing them from different subsets of training 

data created using the bagging method. Instead of 

using the entire training dataset to build a single 

decision tree, the bagging method divides the training 

dataset into smaller subsets, with each subset 

randomly sampled from the original dataset. Random 

Forest creates multiple subsets of data by randomly 

sampling with replacement from the training samples 

to train multiple decision trees. The study used 

Random Forest with 100 decision trees and no 

maximum depth limit for the trees to construct a 

landslide susceptibility model. The study used 

labeled landslide points and non-landslide points for 

training and validating the model. Finally, the entire 

study area was retrained by the constructed model to 

estimate the landslide susceptibility index. 

 

3.5 Model Evaluation 

The study utilized the Accuracy (OA), Receiver 

Operating Characteristic (ROC), and Area Under 
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Curve (AUC) to evaluate the accuracy and 

performance of the models. While ACC measures the 

proportion of correct predictions by the model, ROC 

is a tool for assessing the predictive performance of 

models [40] and [41]. The ROC curve is constructed 

by using sensitivity as the Y-axis and 1-specificity as 

the X-axis with different cutoff thresholds. The area 

under the ROC curve, known as AUC, represents the 

model's data classification ability. The correlation 

between the predictive ability and AUC can be 

quantified as follows: excellent (0.9-1), very good 

(0.8-0.9), good (0.7-0.8), fair (0.6-0.7), and poor 

(0.5-0.6). The formulas for calculating overall 

accuracy (OA), sensitivity, and specificity are as 

follows: 

OA = 
𝑇𝑃 + 𝑇𝑁 

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Equation 5 

Sensitivity = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 

Equation 6 
 

Specificity = 
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
 

Equation 7 

Where:  

TP is the number of true positives; FN is the 

number of false negatives; TN is the number of 

true negatives; FP is the number of false positives. 

 

4. Results and Discussion  

4.1 Relationship between Landslide Conditioning 

Factors 

Figure 4 provides the results of the assessment of 

multicollinearity among the landslide conditioning 

factors. Based on the obtained results, the minimum 

TOL value is 0.288, and the maximum VIF value is 

3.471, meeting the thresholds of TOL < 0.1 and VIF 

> 10. These findings indicate that the landslide 

conditioning factors in this dataset exhibit relatively 

low levels of multicollinearity, and none of them 

demonstrate significant correlation. The selected 

dataset layers that meet the criteria will be chosen to 

construct landslide sensitivity assessment models 

using the proposed methods. 

 

4.2 Landslide Susceptibility Map 

This study employed the Analytic Hierarchy Process 

(AHP) method with a total of 78 pairwise 

comparisons conducted, and the Consistency Ratio 

(CR) was found to be 3.7%, which is below the 

allowable 10% threshold, indicating the consistency 

of the pairwise comparison matrix. The results 

revealed that distance to roads had the highest weight 

(0.151) among the factors, while distance to rivers 

was considered the least important with a weight of 

0.021. As for the FR method, the results showed that 

land cover had the highest weight, while elevation 

had the lowest weight with values of 0.038 and 0.144, 

respectively (Figure 5(a)). The area with elevations 

ranging from 0-169m exhibited the highest 

normalized FR value among the elevation subclasses 

(0.700). Additionally, for slope, the subclasses 0o-

10o and 10o-20o had the highest normalized FR 

values of 0.479 and 0.275, respectively (Figure 5). 

These areas represent average elevations and slopes, 

which are convenient for residential settlements and 

construction projects. There is similarity between the 

AHP and FR methods in these two factor groups. 

Higher normalized FR values were found in the 

North and Southeast directions with values of 0.177 

and 0.143, respectively. These findings align with the 

AHP method, as field investigations indicated the 

tendency of local residents in selecting construction 

sites. Regarding Plan Curvature and Profile 

Curvature, the FR method showed that high landslide 

susceptibility occurs in terrains with moderate 

curvature, while the AHP method suggested an 

increasing landslide susceptibility with increasing 

terrain curvature. 
 

 
Figure 4: VIF and tolerance values for multicollinearity testing 
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Figure 5: Comparison between AHP weights and normalized frequency ratios (a) Conditional factors, 

(b) Elevation; (c) Slope; (d) Aspect; (e) Plan Curvature; (f) Profile Curvature; (g) TWI; (h) Distance to Faults 
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Figure 5: Comparison between AHP weights and normalized frequency ratios (i) Lithology;  

(j) Distance to road; (k) Distance to river; (l) Land cover; (m) Rainfall;  

(n) Flow accumulation 

 

For lithology, the weights tended to decrease for 

subclasses with higher hardness. However, there was 

a sudden increase in the fourth group with a 

normalized FR value of 0.272. Concerning land 

cover, the results indicated high normalized FR 

values in the Build-up and Paddy field subclasses, 

whereas the AHP method favored the Build-up and 

terrace field subclasses. The buffer zone-based 

factors, such as distance to roads, distance to rivers, 

and distance to faults, exhibited a clear increase in FR 

values for smaller buffer zones. There was no clearly 

discernible trend between rainfall amount and 

landslide distribution, but the results showed higher 

FR values for areas with average rainfall of 1353-

1388mm and 1476-1527mm. Overall, the results 

indicate a certain degree of consistency in the 

importance levels of subclasses between expert 

assessments in the AHP method and spatial analysis-

based assessments using FR. However, some factor 

subclasses show differences, such as lithology, land 

cover, and rainfall. In this study, the model results 

from three methods were used to generate three 

landslide susceptibility maps (Figure 6). Overall, the 

three landslide susceptibility maps exhibit similar 

spatial distributions. The AHP and Frequency Ratio 

methods tend to produce larger areas of moderate 

susceptibility compared to the Random Forest 

method, which shows a higher proportion of very 

high or very low susceptibility areas. Areas with high 

landslide susceptibility are predominantly distributed 

along transportation routes and residential areas.  
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Figure 6: Landslide susceptibility map using (a) Analytic hierarchy process,  

(b) Frequency ratio, (c) Random forest 
 

Table 1: Indexes for the model’s performance assessment 
 

Index Frequency Ratio Random Forest AHP 

TP 63 77 65 

TN 77 81 66 

FP 11 7 22 

FN 25 11 23 

OA 0.795 0.898 0.744 

Sensitivity 0.716 0.875 0.739 

Specificity 0.875 0.92 0.75 

AUC 0.852 0.949 0.842 

 

Particularly, a significant increase in landslide 

potential can be observed in areas along the CT05 

national highway and DT151 road. Additionally, 

other hotspots within the region were identified, 

including buffer zones along the transportation routes 

in Phong Du Thuong and Phong Du Ha communes, 

as well as the cluster of Yen Thinh, Yen Hop, Dai 

Phac, and Yen Phu communes. 

 

4.3 Compare and Evaluate Models 

The study compared three models, namely Frequency 

Ratio (FR), Random Forest (RF), and Analytic 

Hierarchy Process (AHP), to determine which model 

is more effective in predicting and classifying 

landslides. With an accuracy (ACC) of 0.898, RF 

outperformed FR (0.795) and AHP (0.744). The 

sensitivity of RF (0.875) was also higher than that of 

FR (0.716) and AHP (0.739), indicating the ability of 

RF to correctly identify positive cases (Table 1). 

Additionally, RF also exhibited high specificity 

(0.920), indicating its ability to accurately classify 

negative cases. In contrast, FR and AHP had lower 

specificity values of 0.875 and 0.750, respectively. In 

terms of the AUC (Area Under the Curve) metric, 

which provides an overall assessment of model 

performance, RF achieved the highest value (0.949), 

demonstrating good classification ability for both 

positive and negative cases. FR attained an AUC 

value of 0.852, while AHP had an AUC value of 

0.842 (Figure 7). When comparing the results of the 

area ratios for the five susceptibility levels of 

landslide, there are differences among the three 

classification models. In the very high level, the 

Random Forest (RF) method achieved an area ratio 

of 29.6%, surpassing both the Analytic Hierarchy 

Process (AHP) method (11.7%) and the Frequency 

Ratio (FR) method (20.5%). However, in the high 

level, the Frequency Ratio (FR) method obtained an 

area ratio of 31.6%, higher than both Random Forest 

(20.8%) and Analytic Hierarchy Process (24.5%).  
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In the moderate level, the AHP method achieved an 

area ratio of 29.5%, higher than both Random Forest 

(23.5%) and Frequency Ratio (23.8%). For the low 

and very low levels, all three methods showed lower 

area ratios. In the low level, the AHP method 

achieved an area ratio of 23.5%, lower than both 

Random Forest (13.6%) and Frequency Ratio 

(14.7%). On the other hand, in the very low level, the 

Frequency Ratio method had the lowest area ratio 

(9.4%), while Random Forest (12.6%) and AHP 

(10.7%) had higher area ratios (Figure 8).

 

 
Figure 7: ROC curve and AUC of three models 

 

 
 

Figure 8: Landslide susceptibility class division in terms of area for three models 

 

5. Conclusion 

This study compared three models for landslide 

classification: Frequency Ratio (FR), Random Forest 

(RF), and Analytic Hierarchy Process (AHP), to 

determine the most effective model for landslide 

susceptibility model in the study area. The results 

showed that RF outperformed the other models with 

an accuracy (ACC) of 0.898, higher than FR (0.795) 

and AHP (0.744). The sensitivity of RF (0.875) was 

also higher than FR (0.716) and AHP (0.739), 

indicating the ability of RF to correctly identify 

positive cases. RF also demonstrated high specificity 

with a value of 0.920, indicating its ability to 

accurately classify negative cases.  
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FR and AHP had lower specificity values of 0.875 

and 0.750, respectively. The AUC values confirmed 

the superiority of RF, with the highest value of 0.949 

compared to FR (0.852) and AHP (0.842). When 

considering the area ratios for the five susceptibility 

levels of landslides, RF showed an advantage in the 

very high level with an area ratio of 29.6%, 

surpassing FR (20.5%) and AHP (11.7%). However, 

in the high level, FR achieved the highest area ratio 

(31.6%), higher than RF (20.8%) and AHP (24.5%). 

On the other hand, AHP had the highest area ratio in 

the moderate level (29.5%), outperforming RF 

(23.5%) and FR (23.8%). 

Based on these results, RF was identified as the 

most effective model for landslide prediction and 

classification, with higher accuracy, sensitivity, and 

specificity compared to FR and AHP. Additionally, 

RF demonstrated good classification performance for 

both positive and negative cases. The results 

highlight the superior advantages of machine 

learning models compared to traditional models in 

landslide risk prediction in the study area. 
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