
Socio-hydrological features of armed 
conflicts in the Lake Chad Basin

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41893-022-00936-2



Supplementary Methods 1 

Balance and water indicators 2 

The water indicators are calculated starting from a soil water balance performed monthly and at a 5 3 

arc minutes resolution. Equation (1) is the water balance for a single cell: 4 

 5 

 
𝛥𝑆

𝛥𝑡
= 𝑃𝑡 + 𝐼𝑡 − 𝐸𝑇𝑎𝑐𝑡,𝑡 − 𝐷𝑝𝑡 − 𝑅𝑡 Equation (1) 

where Δ𝑆[𝑚𝑚] is the daily change in water storage in the cell, Δ𝑡 is the timestep of one day used in 6 

the simulation, 𝑃𝑡[
𝑚𝑚

𝑑𝑎𝑦
] is the daily effective precipitation, 𝐼𝑡[

𝑚𝑚

𝑑𝑎𝑦
] is the irrigation supply (only for 7 

irrigated crops), 𝐸𝑇𝑎𝑐𝑡,𝑡[
𝑚𝑚

𝑑𝑎𝑦
] is the actual evapotranspiration, 𝐷𝑝𝑡[

𝑚𝑚

𝑑𝑎𝑦
] is the deep percolation and 8 

𝑅𝑡[
𝑚𝑚

𝑑𝑎𝑦
] is the surface runoff. According to the guidelines of the FAO paper 5677, the 9 

evapotranspiration is given by the product of the reference evapotranspiration and a crop coefficient, 10 

accounting also for stress of the plant in the case of rainfed crops. Crop specific cultivated areas are 11 

retrieved from the MIRCA dataset78. Non-harvested areas are retrieved from the GlobCover 2009 12 

project79 and their evaporation coefficients are taken in their calibrated form from80. Precipitation 13 

data are retrieved as rainfall from the University of East Anglia’s Climate Research Unit CRU TS 2.0 14 

dataset81 and converted to effective by using a Dunnian approach. Although the balance is performed 15 

on a daily timescale, the results are aggregated by month.  16 

From the balance in Equation (1) a set of water indicators is calculated, the first of which is water 17 

scarcity 𝑊𝑆[−], computed as the ratio between water withdrawal and freshwater availability: 18 

 19 

 
𝑊𝑆𝑖[𝑚3] =

𝐷𝑜𝑚𝑖 + 𝐼𝑛𝑑𝑖 + 𝐴𝑔𝑟𝑖

0.2𝑅𝑖 + 〈[0.2𝑅 − (𝐷 + 𝐼 + 𝐴)]𝑢𝑝(𝑖)〉
 Equation (2) 

where 𝐷𝑜𝑚𝑖[𝑚3], 𝐼𝑛𝑑𝑖[𝑚3] and 𝐴𝑔𝑟𝑖[𝑚3] are the domestic, industrial, and agricultural blue water 20 

footprints in the cell 𝑖, respectively and 𝑅𝑖[𝑚3] is the runoff. The 𝑢𝑝(𝑖) pedix means that its argument 21 

is taken as sum of the upstream contributions to the cell 𝑖, whereas the pointy brackets 〈 〉 mean that 22 

the argument is set to zero when negative. In this way, we consider water availability in a cell as the 23 

sum of water directly available locally and the surplus (non-used water availability) coming from 24 

upstream areas, when present. Domestic and industrial water footprint are taken from Mekonnen & 25 

Hoekstra69, whereas the agricultural blue water footprint and the runoff are outputs of the hydrological 26 

balance model. Millimetric fluxes are converted into volumes using pixel-specific areas. The 0.2 27 

factor in Equations (1) to (6) accounts for the presence of environmental flows81. 28 

Equation (3) is analogous to the denominator of Equation 2, and it is used to calculate the total amount 29 

of water available for withdrawal: 30 

 31 

 𝑊𝐴𝑖[𝑚3] = 0.2𝑅𝑖 + 〈[0.2𝑅 − (𝐷𝑜𝑚 + 𝐼𝑛𝑑 + 𝐴𝑔𝑟)]𝑢𝑝(𝑖)〉 Equation (3) 

In order to have a measure of water availability that is more representative of its importance for human 32 

livelihoods, we compute per capita water availability indicator WAPC, dividing Equation (3) by the 33 

number of inhabitants in the cell. The cell population is calculated converting the population density 34 

data retrieved from WorldPop70. The resulting formula is Equation (4). 35 

 36 

 
𝑊𝐴𝑃𝐶𝑖 [

𝑚3

𝑐𝑎𝑝
] =

0.2𝑅𝑖 + 〈[0.2𝑅 − (𝐷𝑜𝑚 + 𝐼𝑛𝑑 + 𝐴𝑔𝑟)]𝑢𝑝(𝑖)〉

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖
 Equation (4) 



The yearly cumulate of 𝑊𝐴𝑃𝐶 can be compared to the thresholds proposed by Falkenmark et al.82, 37 

representing the minimum amount of water a single person requires yearly to avoid conditions of 38 

water stress and scarcity. In Figure S2, these bounds are used for representation, as their original 39 

yearly values in the yearly map and as rescaled monthly values in the monthly map. 40 

To better consider the importance of water for livelihoods, evapotranspiration from cultivated areas 41 

is calculated as the green water flux for the millet and sorghum cultivated areas during their growing 42 

season (Figure S1). These crops are selected as the main crops in the area, basing on FAOSTAT data 43 

on crop production for the six countries intersecting the study area (Niger, Nigeria, Cameroon, Chad, 44 

Central African Republic, Sudan)83. Then, the crop calendars are interpolated to select a unique range 45 

going from July to October. Here 𝐺𝑊𝑖[𝑚3] stands for the total flux, whereas its per capita flux is 46 

denoted by 𝐺𝑊𝑃𝐶𝑖 [
𝑚3

𝑐𝑎𝑝
]. 47 

The third couple of indicators (𝑊𝐴𝐺, 𝑊𝐴𝑃𝐶𝐺) accounts for all the water resources sustaining human 48 

essential needs. From an operational point of view, the sum of water availability and green water for 49 

food production is computed, obtaining the formulas in Equations (5) and (6): 50 

 51 

 𝑊𝐴𝐺𝑖[𝑚3] = 0.2𝑅𝑖 + 𝐺𝑊𝑐𝑢𝑙𝑡𝑖
+ 〈[0.2𝑅 − (𝐷 + 𝐼 + 𝐴)]𝑢𝑝(𝑖)〉 Equation (5) 

   

 
𝑊𝐴𝐺𝑃𝐶𝑖 [

𝑚3

𝑐𝑎𝑝
] =

0.2𝑅𝑖 + 𝐺𝑊𝑐𝑢𝑙𝑡𝑖
+ 〈[0.2𝑅 − (𝐷 + 𝐼 + 𝐴)]𝑢𝑝(𝑖)〉

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖
 Equation (6) 

The indicators are put into relation to conflict through two different analyses:  spatial econometrics 52 

and conflict points analysis. 53 

Spatial econometrics 54 

In Zero-Inflated Poisson (ZIP) regression models60, the Poisson distribution is conditioned by a non-55 

zero outcome of a binomial distribution. ZIP models assume that the dependent variable is Poisson-56 

distributed with a probability 1 − 𝜋, and is concentrated on zero with probability 𝜋. This means that 57 

a zero in the data may originate from a null outcome of the binomial distribution (the Poisson counting 58 

process did not set off) or from a zero counts outcome of the Poisson counting process, as in Equation 59 

(7): 60 

 {

𝑃(𝑦 = 0) = 𝜋 + (1 − 𝜋)𝑒−𝜆                     

𝑃(𝑦 = 𝑘) = (1 − 𝜋)
𝑒−𝜆𝜆𝑘

𝑘!
    𝑘 = 1,2, …

 Equation (7) 

We build a Bayesian hierarchical model structure that includes both the spatial components and the 61 

zero-inflated component74. The model parameters are estimated in a Bayesian approach. The 62 

unknown parameters are understood as random variables with a prior joint distribution and the 63 

statistical problem consists of updating this distribution by computing a posterior joint conditional 64 

probability of the parameters given the data. 65 

To account for spatial interactions in the outcome variables and in the covariates, we set up four 66 

model specifications on the regressive component for the estimation of the Poisson parameter 𝜆, with 67 

a logarithmic link function. The four models are defined with increasing complexity, following the 68 

spatial model taxonomy by Elhorst84. The first is the baseline (BSL) model in Equation (8), with no 69 

spatial interaction: 70 

 log( 𝜆) = 𝛽𝑋 + 𝜀 Equation (8) 



We assign partially informative zero-centered gaussian independent priors to the regression 71 

coefficients 𝛽. The error term is a priori normally distributed with zero mean and standard deviation 72 

𝜎𝜀, whose prior distribution is inverse-gamma with uninformative parameters. The second model is 73 

the Spatially Lagged Explanatory Variables X (SLX) model in Equation (9), which accounts for the 74 

effects of covariates in the neighbouring cells. The neighbouring cells are identified via a square 75 

contiguity matrix, whose elements 𝑤𝑖,𝑗 are equal to 1 when cell 𝑖 is adjacent to cell 𝑗 and zero 76 

otherwise. By convention 𝑤𝑖,𝑖 = 0. The contiguity matrix is then row-normalized to obtain the spatial 77 

weights matrix 𝑊, which is then used in the models: 78 

 log (𝜆) = 𝑋𝛽 + 𝑊𝑋𝜃 + 𝜀 Equation (9) 

In the SLX case, to avoid shadow effects, we selected only the spatial lag of covariates having a 79 

negligible covariance between a cell and its neighbor cell values. Parameter 𝜃 shares the same prior 80 

with 𝛽. The spatial lag of conflict (SLC) model in Equation (10) accounts for the spatial interaction 81 

of conflicts through a spatially structured random effects component 𝑢, i.e. a random variable 82 

centered in the average of its neighbors’ values, and multiplied by the coefficient 𝜌; 𝜌 can therefore 83 

be thought of as the spatial autocorrelation of the outcome between each cell and its neighbours85: 84 

 85 

 
log(λ) = 𝑋𝛽 + 𝑢 + 𝜀 

𝑢 ~ 𝑁(𝜌𝑊𝑢, 𝜏𝑢)  0 < 𝜌 < 1 
Equation (10) 

Following Elhorst84, the spatial autoregressive parameter 𝜌 is a priori logit-beta-distributed, with 86 

uninformative parameters. The last competing model given in Equation (11) is a spatial lag of conflict 87 

and covariates (SLCX) model. It includes spatially lagged values of both the random effect 𝑢 and the 88 

independent variables 𝑋: 89 

 90 

 log(𝜆) = 𝑋𝛽 + 𝑊𝑋𝜃 + 𝑢 + 𝜀 Equation (11) 

As far as the binomial parameter 𝜋 is concerned, it is thought of as a transformed parameter of a 91 

hyperparameter 𝛼: 92 

 93 

 𝜋 =
exp 𝛼

1 + exp 𝛼
 Equation (12) 

where a priori 𝛼 has zero-centered normal distribution with high standard deviation. In this way, the 94 

prior on 𝜋 is diffuse on the (0,1) range.  95 

The fit is performed via integrated nested Laplace approximation, using the R-package “INLA”75 and 96 

the model selection criterion is the deviance information criterion (DIC). Where the DIC results are 97 

too close to call, we choose the model whose posterior density best fits the observed data histograms.  98 

 99 

  100 



Supplementary Results 101 

Balance and water indicators 102 

The water indicators calculated through the soil water balance model (Table 1) show how climate and 103 

human activities interact in shaping water availability. Green water consumption (GW) presents an 104 

uneven distribution in the study area. Darfur shows much higher values of GW than the neighboring 105 

Chadian areas (Figure S 1), resulting rather from greater extent of harvested area than from different 106 

potential evapotranspiration. By comparing yearly and monthly values of water availability (WA), 107 

total water availability (WAG), their per capita values (WAPC, WAGPC) and water scarcity (WS), 108 

the yearly analysis does not capture the seasonality of water stress that is well highlighted by the 109 

monthly analysis. In fact, the yearly WAPC, WAGPC and WS show that most of the area is not under 110 

any stress or shortage of water (see the first map in Figure S 2). Instead, the in-depth analysis of 111 

monthly water balance demonstrates that this is mostly due to the extremely high values of water 112 

availability during the rainy season, in particular in the months of July and August.  By contrast, the 113 

months outside of the rainy season are characterized, especially for Darfur and for the Komadugu-114 

Yobe river basin, by low water availability and absolute water scarcity, i.e. values lower than 115 

500m3/capita (Figure S 2). Roughly half of the study area is in water scarcity conditions for at least 116 

half of the year (Figure 1). The GW presents no particular seasonality, since it is defined for the sole 117 

growing season of the area’s main food crops. These indicators are investigated in relation to conflict 118 

via two different statistical analyses. WS is used as a covariate in the spatial econometrics model, 119 

while the other six indicators in Table 1 are clustered and combined to build up patterns of 120 

environmental stress in the conflict points analysis. 121 

Environmental patterns as support to case study analyses: the case of the Boko 122 

Haram territorialization in 2015 123 

In 2015, Boko Haram related conflicts are mostly located in Nigeria but represent also high shares of 124 

conflict events in Cameroon, Niger, and Chad. They mostly follow the abundance-scarcity pattern 125 

(‘Boko Haram 2015’ graph in Figure S 3), a pattern that puts the focus on human interdependencies 126 

from water resources rather than on resource availability. All considered water availability indicators 127 

are high when taken as volumes and low when taken as per capita values, showing how the most 128 

proximate factor in the dynamic is population density variation. In a dynamic way, areas that have 129 

high biophysical availability of water resources attract increased human pressure (and competition) 130 

which, given the low governance capability, eventually leads to low per capita water availability 131 

values. This mechanism characterized the violent stage of the Boko Haram insurgency in Nigeria and 132 

its spatial spillover towards areas politically not exposed to conflict, testifying the strategy shift from 133 

ruthless violence to territorial control48.Yet, while Cameroon conflicts also follows the abundance-134 

scarcity pattern, no pattern is detected in Chad and Niger conflicts (see ‘Niger 2015’ and ‘Cameroon 135 

2015’ graphs in Figure S 3 for comparison). Cameroon is politically the most stable country in the 136 

area: only 12% of the events taking place in Cameroon involved Cameroonian actors. Conflicts 137 

connected to Boko Haram in Cameroon are in an area with high agricultural potential and very similar 138 

hydrological pattern as the Nigerian area where Boko Haram conflicts started. For instance, the Maga 139 

Dam and the fertile Waza-Logone floodplains are located in the Cameroonian part of the study area61. 140 

This suggests that the Boko Haram conflict spillover to Cameroon is one uncommon, but significant, 141 

case where a specific pattern of water availability played a role. Instead, in the case of Chad and 142 

Niger, the expansion of Boko Haram from Nigeria, affecting mostly the lake shores, happened for 143 

predominantly strategic reasons86, a consequence of Boko Haram looking for shelter in the rural areas 144 

and islands around Lake Chad, which are beyond the reach of military forces 48. Therefore, the 145 

absence of a pattern is consistent both with the history of the conflict dynamic and with the spatial 146 



econometric analysis. Moreover, it may testify that even conflict dynamics related in some way to 147 

particular processes involving water resources can spill over to neighbouring areas in which different 148 

processes take place, or, once again, it may show that apparently weak spatial econometric model 149 

correlations stand for relevant, but not universal, socio-environmental mechanisms. Yet, land seizure 150 

and control, together with the presence of refugees in the same region, may put additional pressure 151 

on natural resources on the Lake Chad shores, in particular on land38,87.  152 

Supplementary Figures 153 

 154 
Figure S 1. Water demand for main crops during growing season in 2000, 2005, 2010, 2015. Basin outlines retrieved from 77 155 

 156 



 157 
Figure S 2. Yearly and monthly WAPC values for the year 2000. Basin outlines retrieved from 77 158 

 159 



 160 
Figure S 3. Indicator clustering combinations for different conflict subsets. Each graph represents a year-country subset of conflict 161 
event. The year and the country are reported in the title, whereas the subset size is reported in the graph subtitle, below the graph. Each 162 
vertical bar represents the distribution among hotspot and coldspot classes of one indicator. The indicator acronym is reported below 163 
the bar. The color scheme is built on different significance levels in the same way as in Figure 4 (**=99% significance, *=95% 164 
significance, .=90% significance). 165 
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Supplementary tables 167 

Excel file Supplementary.xlsx. 168 
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