MCTK: a Multi-modal Conversational Troubleshooting Kit for
supporting users in web applications

Giulio Antonio Abbo
Department of Electronics,
Information and Bioengineering,
Politecnico di Milano
Milan, Italy
giulioantonio.abbo@polimi.it

Pietro Pinoli
Department of Electronics,
Information and Bioengineering,
Politecnico di Milano
Milan, Italy
pietro.pinoli@polimi.it

ABSTRACT

Conversational Interfaces for user assistance are becoming per-
suasive. Today, though, most chatbots are not integrated into the
application in which they are placed, but only superimposed, with
no communication between the conversational and the graphical
interface. We propose Multi-modal Conversational Troubleshoot-
ing Kit (MCTK), a Python package to easily integrate a conver-
sational agent for troubleshooting in web applications. MCTK is
multi-modal: once the system recognizes the problem the user is
encountering, the textual solution in the chat is coupled with visual
hints in the GUL On top of that, MCTK is easy to configure and
offers separation of concerns: dialogue designers can work on the
conversation without the necessity of modifying the code, and vice
versa.

CCS CONCEPTS

« Human-centered computing — Natural language interfaces;
Web-based interaction; Interaction techniques.

ACM Reference Format:

Giulio Antonio Abbo, Pietro Crovari, Sara Pido, Pietro Pinoli, and Franca
Garzotto. 2022. MCTK: a Multi-modal Conversational Troubleshooting Kit
for supporting users in web applications. In Proceedings of the 2022 In-
ternational Conference on Advanced Visual Interfaces (AVI 2022), June 6—
10, 2022, Frascati, Rome, Italy. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3531073.3534480

1 INTRODUCTION AND BACKGROUND

In the last decades, user assistance — the problem-solving process
that helps users of a specific system — has moved more and more
from manual-based approaches to conversational troubleshooting

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

AVI 2022, June 6-10, 2022, Frascati, Rome, Italy

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9719-3/22/06.

https://doi.org/10.1145/3531073.3534480

Pietro Crovari
Department of Electronics,
Information and Bioengineering,
Politecnico di Milano
Milan, Italy
pietro.crovari@polimi.it

Sara Pido
Department of Electronics,
Information and Bioengineering,
Politecnico di Milano
Milan, Italy
sara.pido@polimi.it

Franca Garzotto
Department of Electronics,
Information and Bioengineering,
Politecnico di Milano
Milan, Italy
franca.garzotto@polimi.it

methodologies, where the user is not required to read a handbook
or a set of frequently asked questions and is instead actively helped
by a system expert [5]. The automation of this procedure has led to
the rise in popularity of conversational troubleshooting bots. Today,
many tools for conversational problem solving are available on the
market [2, 7]. These can be categorized into two families, according
to the integration paradigm.

The first one comprises all plug-and-play platforms: adopters
can configure their chatbots through a GUI and it is automatically
deployed into a component inserted in the website. However, these
tools are just superimposed on the application: the chatbot is not
aware of what is happening on the website, and vice versa.

The second family includes all those conversational frameworks
that expose an API for the programmers to interact with. However,
these tools are built around the conversation: the implementation of
the conversational interface and the design of the dialogue itself are
intrinsically entangled; a domain or conversational expert cannot
improve the system autonomously and is forced to ask a developer
for support [9].

When the complexity of the tasks arises, an effective troubleshoot-
ing could benefit from multi-modal assistance, juxtaposing the
textual messages with visual hints on the graphical user inter-
face [4, 6, 8]. For this reason, we propose MCTK, Multi-modal
Conversational Troubleshooting Kit, a prototype system that al-
lows to easily design and integrate a conversational agent into a
web application. When MCTK is integrated into a web application,
the user can ask a question through the chat, and the system dis-
plays a textual solution in the chat together with visual hints in the
graphical interface to guide the user.

To the best of our knowledge, MCTK is the first conversational
troubleshooting toolkit designed to be multi-modal, extensible, and
to follow the separation of concerns: the conversation design is de-
tached from the implementation, meaning that a dialogue designer
can change the behaviour of the system without interventions on
the code, and, in the same way, interventions on the code are not
linked with the behaviour’s configuration.

https://orcid.org/0000-0001-6301-0028
https://orcid.org/0000-0002-6436-4431
https://orcid.org/0000-0003-1425-1719
https://orcid.org/0000-0001-9786-2851
https://doi.org/10.1145/3531073.3534480
https://doi.org/10.1145/3531073.3534480
https://doi.org/10.1145/3531073.3534480

AVI 2022, June 6-10, 2022, Frascati, Rome, Italy

Our work paves the ground for a new generation of conver-
sational agents, able to actively support the user in their tasks,
providing intuitive guidance even in complex settings.

2 MCTK:MULTI-MODAL CONVERSATIONAL
TROUBLESHOOTING KIT

2.1 Design Requirements

MCTK is a framework to provide multi-modal conversational trou-
bleshooting. Embedding MCTK into a website allows users to de-
scribe the issue they encountered to a chatbot, and receive multi-
modal suggestions — text messages in the chat and visual hints in
the GUI - on how to solve it accordingly.

Contrarily to most used chatbot frameworks, we want MCTK
to natively support multi-modality: if a user poses a question, the
response should not only provide the answer but also point out
graphically which elements of the graphical interface are related to
the specific question [3].

We aim at separation of concerns: the deployment of MCTK and
its configuration must be loosely coupled, such that the conversa-
tion designer can modify the chatbot without any programming
knowledge required.

Finally, we require extensibility, both for the introduction of
new types of issues and the inclusion of new interface items in the
troubleshooting system.

2.2 How it works

We can describe the action of MCTK in four steps, as shown in
Figure 1. (1) The system receives an issue description from the
interface and the set of functionalities (modules) that are active on
the screen. (2) An external natural language understating engine is
trained with sample utterances to extract the problem type from
the user sentences [1]. (3) This information is used to identify
the problem that is causing the issue, and then retrieve the list of
possible solutions. (4) These solutions are finally communicated to
the users, through a sentence in the chat, that guides them through
the resolution and some visual hints that suggest where to operate
on the interface.

Queft\on Problem Solution Semfnce
Active Modules Identification Identification Visual Hints

Figure 1: Operative workflow of MCTK

The system is built around the Configuration Table, a data struc-
ture representing connections between problems and solutions in a
specific field of application; its structure is represented in Table 1.

Each column represents a problem type and each row is a param-
eter of a module; a module can span multiple lines, one for each of
its parameters. If a specific parameter is linked to a problem type,
the corresponding cell will contain an identifier corresponding to
an utterance, contained in a separate table. This structure balances
maintainability, relevant when reading and updating the table, with
extensibility, which is important when expanding the table with
new problem types and solutions.

MCTK is currently implemented as a Python package. To use
it, it is sufficient to initialize it with the Configuration Table data.

Abbo et al.

Table 1: Structure of the Configuration Table.

Module Parameter probleml problem2 problemN
moduleA paraml utternacel utterance2
moduleA param2 utternace3 utterance4
moduleB param3 utterance5

Then, when provided with the user question and the context data,
it returns the response and the information to update the graphical
interface. The developer can display this information as preferred,
or use some ready-to-use frontend components that speed up the
integration.

A preliminary assessment with 3 developers and 3 conversation
designers shows that both successfully used MCTK in autonomy.
In addition, we extended a simple tool for clustering analysis with
MCTXK, to explore its troubleshooting ability, as shown in Figure 2.
The chatbot was able to help users in improving their analysis
for all 10 users who tried the application, even if they had never
done a clustering analysis before. Users especially appreciated the
multi-modality of the answers and the support received from the
chatbot.

J) Here vou canecit
percenage the pipeline that
—_— o 0%, . was used. When
o o @ :ru" =9 you are done, you
. C e e Ter, Felely can run tagain
Aaglomerativechustering = 'y - . .
o e e
5 IR . .
e o s & 2% %t o’ « 3 :-"g There are too 2
‘ g e, 2) - "' ":_' many clusters
—_
S L 2 TS -V M0
e X.ot, R IR ICHEER S, R Y
L o = o & . howthe clusters
2 fy LA S . e A are disposed, try
. I A - . >0y tochangethe
P L1 & *eq L) berof
s 5 . Htoo * number o
i - * e o oo, te - PRTC clusters. Ifno
% 3 3)< modfcatons
= .o 79 — ’ satisty you, iy to
. —)
& A QRS T change clustering
algorithm. When
you are ready you
can run the
Scater ot = pipeiine again
v
i opertion dosst contan any paamet [—

Figure 2: MCTK in action. When a user describes a problem,
MCTK replies with a textual suggestion and and providing
visual hints on the interface

3 CONCLUSION

We propose MCTK, a framework that allows multi-modal trou-
bleshooting: guiding through the conversation and highlighting
the relevant parts of the graphical interface. Users can describe
their issues using natural language, MCTK identifies the underly-
ing problem and proposes (textually and graphically) an executable
solution.

MCTK aims at being easy to configure, maintain, and extend, as it
is based on two simple tables that do not require specific knowledge
to be edited. Further study will assess rigorously the effectiveness
of the kit and its ease of use. Despite MCTK being still a prototype,
we aim at distributing it as an open-source Python package to be
easily integrated into any web application.

MCTK: a Multi-modal Conversational Troubleshooting Kit for supporting users in web applications AVI 2022, June 6-10, 2022, Frascati, Rome, Italy

ACKNOWLEDGMENTS

This research is partially funded by EIT (European Institute of
Technologies) under contract EIT Digital 22148 “Include”

REFERENCES

[1] Kate Acomb, Jonathan Bloom, Krishna Dayanidhi, Phillip Hunter, Peter Krogh,
Esther Levin, and Roberto Pieraccini. 2007. Technical Support Dialog Systems:
Issues, Problems, and Solutions. In Proceedings of the Workshop on Bridging the
Gap: Academic and Industrial Research in Dialog Technologies (NAACL-HLT-Dialog
’07). Association for Computational Linguistics, USA, 25-31.

Rodrigo Bavaresco, Diorgenes Silveira, Eduardo Reis, Jorge Barbosa, Rodrigo
Righi, Cristiano Costa, Rodolfo Antunes, Marcio Gomes, Clauter Gatti, Mari-
angela Vanzin, Saint Clair Junior, Elton Silva, and Carlos Moreira. 2020. Con-
versational Agents in Business: A Systematic Literature Review and Future Re-
search Directions. Computer Science Review 36 (May 2020), 100239. https:
//doi.org/10.1016/j.cosrev.2020.100239

Abbas Mehrabi Boshrabadi and Reza Biria. 2014. The efficacy of multimodal vs.
print-based texts for teaching reading comprehension skills to iranian high school
third graders. 5 (Jan. 2014), 17.

o,

=

[4] Pietro Crovari, Sara Pid6, Franca Garzotto, and Stefano Ceri. 2021. Show, Don’t Tell.

Reflections on the Design of Multi-modal Conversational Interfaces. In Chatbot
Research and Design (Lecture Notes in Computer Science), Asbjern Felstad, Theo
Araujo, Symeon Papadopoulos, Effie L.-C. Law, Ewa Luger, Morten Goodwin, and
Petter Bae Brandtzaeg (Eds.). Springer International Publishing, Cham, 64-77.
https://doi.org/10.1007/978-3-030-68288-0_5

David Heckerman, John S Breese, and Koos Rommelse. 1995. Decision-theoretic
troubleshooting. Commun. ACM 38, 3 (1995), 49-57.

Dominic W. Massaro. 2004. A Framework for Evaluating Multimodal Integration
by Humans and a Role for Embodied Conversational Agents. In Proceedings of the
6th International Conference on Multimodal Interfaces - ICMI *04. ACM Press, State
College, PA, USA, 24. https://doi.org/10.1145/1027933.1027939

Emi Moriuchi, V Myles Landers, Deborah Colton, and Neil Hair. 2021. Engagement
with chatbots versus augmented reality interactive technology in e-commerce.
Journal of Strategic Marketing 29, 5 (2021), 375-389.

Sharon Oviatt, Rachel Coulston, and Rebecca Lunsford. 2004. When Do We
Interact Multimodally? Cognitive Load and Multimodal Communication Patterns.
Proceedings of the 6th international conference on Multimodal interfaces (2004), 8.
Donya Rooein, Devis Bianchini, Francesco Leotta, Massimo Mecella, Paolo Paolini,
and Barbara Pernici. 2021. aCHAT-WF: Generating Conversational Agents for
Teaching Business Process Models. Software and Systems Modeling (Oct. 2021).
https://doi.org/10.1007/s10270-021-00925-7

https://doi.org/10.1016/j.cosrev.2020.100239
https://doi.org/10.1016/j.cosrev.2020.100239
https://doi.org/10.1007/978-3-030-68288-0_5
https://doi.org/10.1145/1027933.1027939
https://doi.org/10.1007/s10270-021-00925-7

	Abstract
	1 Introduction and Background
	2 MCTK:Multi-modal Conversational Troubleshooting Kit
	2.1 Design Requirements
	2.2 How it works

	3 Conclusion
	Acknowledgments
	References

