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Abstract 

With the deployment of Low Earth Orbit (LEO) mega constellations, the space environment is becoming 
increasingly congested, making Space Situational Awareness (SSA) essential for ensuring space safety. SSA relies 
on Space Surveillance and Tracking (SST) systems, which use a limited number of sensors to detect and track 
Resident Space Objects (RSOs). However, the growing number of RSOs has placed significant pressure on these 
systems. Optimally tasking multiple sensors to observe RSOs at each epoch is critical for maintaining SSA but 
presents challenges due to the large-scale and multi-objective nature of the problem. This paper presents an efficient 
optimisation method based on coordinate descent and Pareto optimality to address the high-dimensional multi-
objective sensor tasking problem. By decomposing the optimisation problem in the three-dimensional solution space 
into a set of optimisation subproblems defined on a two-dimensional solution plane and iteratively optimizing all 
subproblems along two-dimensional coordinates, the optimisation problem in the three-dimensional solution space 
can gradually approach the optimal solution. Multiple objectives are balanced within each subproblem, resulting in 
improved RSO catalogue maintenance. The proposed method is validated in multi-sensor, multi-target, and multi-
epoch sensor tasking scenarios, and its performance is compared to the classical greedy approach using metrics such 
as detection probability, position and velocity errors, and cataloguing success rate. This approach enhances large-
scale sensor tasking and strengthens SSA capabilities under resource constraints. Notably, the method effectively 
addresses this complex, high-dimensional multi-objective optimisation problem. 
Keywords: Space Situational Awareness, LEO Mega Constellations, Sensor Tasking, Coordinate Descent, Pareto 
Optimality 
 
1. Introduction 

Space Situational Awareness (SSA) is a fundamental 
capability to ensure the safety of on-orbit spacecraft and 
the sustainability of the space industry. A key 
component of SSA is the ability to establish and 
maintain a catalogue of Resident Space Objects (RSOs) 
through space surveillance and tracking (SST) systems. 
To achieve this, communities have long relied on 
ground-based or space-based sensors forming SST 
systems for the detection and tracking of targets in orbit. 
However, with the rapid growth of space activities, such 
as the large-scale deployment of mega constellations in 
Low Earth Orbit (LEO) consisting of tens of thousands 
of satellites, the number of in-orbit spacecraft requiring 
timely and accurate detection has sharply increased. 
Additionally, both NASA and ESA estimate that 
approximately 100 million debris objects between 1 mm 
and 10 cm in size are currently untracked and 
unrecorded in any catalogue. 

What makes the situation even more critical is that 
the SST sensor resources available for SSA are limited. 
On one hand, the number of sensors cannot be increased 

indefinitely due to cost constraints. On the other hand, 
each sensor’s detection capacity is restricted by 
hardware limitations. Simultaneously, due to the 
nonlinearity of orbital dynamics, the position 
uncertainty of RSOs increases over time, necessitating 
frequent re-observation of all known objects. This 
creates immense pressure on SSA. Therefore, one of the 
primary challenges in SSA is tracking a vast number of 
RSOs using a limited number of sensors. 

To maximise the use of limited sensor resources for 
collecting observation data on numerous RSOs, and thus 
maintaining robust SSA capabilities, efficient sensor 
tasking schemes are essential. The aim of this large-
scale tasking scheme is to allocate the observation tasks 
of each sensor to the RSOs at each epoch in an optimal 
manner, thereby generating more effective 
measurements and improving orbital state estimates on 
a global scale [1-3]. However, optimal sensor tasking is 
a complex endeavour due to several factors. First, this 
large-scale optimisation problem involves multiple 
sensors, multiple epochs, and a considerable number of 
RSOs to be observed, resulting in exponential growth in 
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the three-dimensional solution space as any of these 
elements increase, leading to high computational 
complexity and difficult optimisation. Second, many 
operations, such as collision avoidance and emergency 
rescues, require timely and accurate updates of RSO 
orbital states, and these demands as optimisation 
objectives are often conflicting. This makes the multi-
sensor, multi-target tracking problem a challenging 
multi-objective optimisation task. 

To address this complex high-dimensional multi-
objective optimisation problem, various methods have 
been explored, including heuristic planning 
combinations [4] and rigorous information-theoretic 
approaches. The former can generate sensor tasking 
schemes without the need for target state information, 
but they may fall short in terms of estimation accuracy 
and catalogue maintenance, and require extensive 
parameter tuning. The latter, although mathematically 
rigorous, often rely solely on Information Gain (IG) 
functions, allocating sensor tasks based on mathematical 
principles without explicitly considering multiple real-
world mission objectives. 

For the handling of multiple epochs within a time 
window, two frameworks are available: single-step and 
multi-step. The single-step framework selects targets to 
observe using predicted information from the next 
epoch, simplifying the solution space of the 
optimisation problem but often leading to short-sighted 
results. In contrast, the multi-step framework allocates 
sensors across multiple epochs in the time window, 
which significantly increases computational cost but 
typically produces more effective global outcomes [1]. 

This paper proposes an efficient optimisation 
method based on the coordinate descent approach and 
the concept of Pareto optimality. Building on the multi-
step optimisation framework, by decomposing the 
optimisation problem in the three-dimensional solution 
space into a set of optimisation subproblems defined on 
a two-dimensional solution plane and iteratively 
optimising all subproblems along two-dimensional 
coordinates, the solution gradually approaches the 
global optimum. Moreover, multiple objective functions 
are established in the context of SSA, and the decision-
making process balancing these functions is embedded 
within each optimisation subproblem, leading the 
overall optimisation problem to converge towards 
enhanced performance in RSO catalogue maintenance. 

The remainder of this paper is organised as follows: 
Section 2 introduces the mathematical principles of the 
Bernoulli Filter (BF) used for space object state 
estimation. Section 3 discusses the space-based 
observation model and the space object detectability 
model. Section 4 defines a general multi-sensor, multi-
target tracking multi-step optimisation framework and 
further introduces the efficient high-dimensional multi-
objective optimisation method developed. Section 5 

presents detailed simulation results for large-scale 
tasking cases, where 12 space sensors track up to 1,000 
LEO Starlink satellites over a 12-hour time window. 
Section 6 concludes the paper with discussion. 

 
2. Bernoulli Filter 

The developed optimisation method needs to be 
integrated with appropriate filtering techniques to obtain 
state estimations of space targets. The Random Finite 
Set (RFS) method captures the presence state of a target 
and its motion state in the surveillance region by 
modeling the state as a finite set of elements. The BF is 
a popular single-target tracker that developed based on 
the RFS theory. Compared with the classical Kalman 
filter, the BF measures the presence of a target using 
existence probability r , which accounts for the birth, 
survival or death of a target in the presence of detection 
uncertainty and environmental clutter, as well as missed 
detection. Because of these merits, the BF is a suitable 
tool in SSA as its effectiveness in detection and tracking. 

Assume the orbital state of a space object is 
represented by a random variable x , and all the 
available information can be represented by a Bernoulli 
RFS { , }r pπ = , where r and p  represent the existence 
probability and probability density, respectively. If the 
posterior density 1kπ −  at time 1k −  is a Bernoulli given 
by 1 1 1{ , }k k kr pπ − − −= , with 1kp −  being a Gaussian 
mixture of the form 
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where ,R kp  is the birth probability of targets, ,S kp  is the 
survival probability of targets, and ,R kJ  is the number 
of the birth Gaussian mixtures at time k . ( )

,
i

R kQ  is the 
state covariances of birth-targets. And 
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Under linear Gaussian assumption, the prior 

Bernoulli UFS | 1 | 1 | 1{ , }k k k k k kr pπ − − −=  is updated using 
the collected measurement kZ , and the posterior 
Bernoulli UFS { , }k k kr pπ = is given by,  
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where ,D kp  is the detection probability of targets at time 
k , and kκ  is the clutter intensity at time k . And 
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In practice, the detection probability ,D kp  is not 
time-invariant due to the variations in illumination 
conditions and relative distance between sensors and 
targets. The calculation of the correct ,D kp  plays an 
important role in the above process. For the multi-step 
sensor tasking problem, ,D kp  needs to be determined by 
the Apparent Magnitude (AM) and geometric position 
visibility of the target, which will be discussed further in 
Section 3. 

 
3. Space-based Observation Model 

Currently, SSA (Space Situational Awareness) 
missions are primarily conducted using ground-based 
sensors. However, with the increasing number of RSOs 
(Resident Space Objects), ground observation systems 
face challenges in terms of capacity, accuracy, and 
update frequency. On the other hand, the success of 

certain space-based SSA projects has demonstrated their 
ability to provide better coverage, higher accuracy, and 
faster revisit times [5,6]. Therefore, there is a growing 
need for further research into space-based multi-sensor 
task assignment methods for tracking large numbers of 
RSOs. 

The state of the space-based sensor or target in LEO 
is usually expressed in terms of r  and v , which are 
defined in the J2000 Earth-Centered Inertial (ECI). 
When calculating the AM of a target, the topocentric 
spherical coordinate system is commonly used to 
determine the relative state between the sensor and the 
target. 

When a dozen space-based sensors are confronted 
with thousands of potential observation targets, 
determining the detectability of targets using simple 
geometric relationships can significantly reduce the 
complexity of the solution space of the sensor control 
vector u . The detectability of a target is jointly 
determined by its visibility, AM, and a constant target 
detection probability DP  that measures the sensor 
profile, then ,D kp can be expressed as 
 

,, , Dv kD k am kp pp P=           (14) 
 
where ,am kp  is calculated according to the relative 
position among the target, the sensor and the Sun. The 
detailed derivation can be found in Coder [7]. The 
visibility ,v kp  can be further expressed as 
 

, ,, (1 )(1 )b k kv skp p p= − −           (15) 
 

where ,b kp  denotes the probability that the target is 
blocked by Earth, which is obtained from the geometric 
relationship among the sensor, the target and the Earth. 
The output of the function is 0 if the target is not 
blocked by the Earth in the FOR of the sensor, and it 
equals 1 if it is blocked. ,s kp  represents the probability 
that the target is blocked by the Earth shadow, which is 
obtained from the geometric relationship among the sun, 
the target and the earth. The output of the function is 0 
when the target is not in the shadow formed by the sun 
to the earth, and it equals 1 when it is in the shadow. 
The geometric judgment methods for ,b kp  and ,s kp  are 
essentially similar, and the specific judgment method 
for ,s kp , for example, is shown below 
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Figure 1 The geometric judgment steps for ,s kp  
 
4. Sensor Tasking Optimisation 

For the task planning of multiple sensors, single-step 
assignment strategies provide an effective approach due 
to their computational simplicity and quick response to 
anomalies. The core idea involves selecting the most 
valuable immediate observation task by maximizing a 
reward function or minimizing a penalty function, such 
as Information Gain (IG). The process of target state 
estimation and update driven by IG is illustrated in 
Figure 2. IG is calculated based on the predicted prior 
estimate covariance | 1k kP −  and the updated posterior 
estimate covariance kP , with a larger IG value leading 
to more accurate posterior estimations [8]. Common IG 
functions include Kullback-Leibler divergence, Cauchy-
Schwarz divergence, and Rényi divergence. 

 

 
Figure 2 Filtering process to compute IG using 

actual observation information 
 
Using the obtained IG, the single-step multi-sensor 

task assignment scheme can be modelled as a two-
dimensional matrix, where each cell represents the IG 
value for each sensor-target pair. This matrix can then 
be optimised using auction algorithms [1]. However, the 
single-step assignment approach is inherently short-
sighted, as it does not consider the overall effect over a 
time window during decision-making. Moreover, 
single-step methods often rely solely on mathematically 
defined reward functions without accounting for 
specific mission requirements, such as the apparent 
magnitude of space targets or the average observation 
intervals. Consequently, the use of a Predicted Ideal 
Measurement Set (PIMS) ˆ

kZ  can replace actual 
observations kZ , using ˆ

kZ  to generate pseudo-posterior 
probability densities k̂P  and obtaining IG based on 

| 1k kP −  and k̂P ., as shown in Figure 3. This extends the 
sensor tasking problem with sN  sensors and tN  targets 
from single step to multiple steps, which consisting wT  
epochs, considering the overall effect over time. 
 

 
Figure 3 Filtering process to compute IG using PIMS 

 
While multi-step task planning can consider the 

overall tracking effect over a time window, this also 
introduces challenges in optimizing the three-
dimensional solution space. For example, when tracking 
hundreds of targets over thousands of time steps 
(epochs), the computational complexity becomes 
particularly significant. Therefore, a three-dimensional 
optimisation method must be developed that 
significantly reduces computational complexity while 
maintaining solution performance. Additionally, it is 
essential to incorporate mission-specific requirements to 
construct physically meaningful objective functions that 
guide the optimisation of multi-sensor task planning. 

Thus, this paper models the multi-sensor multi-step 
task planning process as a three-dimensional 
optimisation problem, as shown in the left-hand side of 
Figure 4. The x -axis represents pN  potential sensor 
pointing tasks, the y -axis represents sN  sensors in the 
space-based tracking system, and the z -axis represents 
the time window { },  ...,  wk k T+ , where k  is the initial 
epoch, and wT  is the length of the time window, that is, 
each time window contains wT  epochs. In this 3D 
solution space, element ( , , )p i t  represents the task 
assignment ( , )i p

tu , where ( , ) 1i p
tu =  indicates that sensor 

i  is pointing p  at epoch t , and ( , ) 0i p
tu =  indicates it is 

not. 
To reduce the dimensionality of the problem, sensor 

pointing number p  are used instead of binary 0-1 
assignments, representing this three-dimensional 
optimisation problem in a two-dimensional task 
planning table, as shown on the right-hand side of 
Figure 4. The y -axis represents sN  sensors, and the z -
axis represents the time window { },  ...,  wk k T+ . Each 
element ( , )i t  in this two-dimensional solution space 
represents the task ( )i

tu , where element ( )i
tu p=  denotes 

the pointing number p  for sensor i  at epoch t . 
 

 
Figure 4 Multi-sensor and multi-target tracking task 

planning model 
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To describe the optimisation process over a time 

window, we define: 
 

( ) ( ) ( ) ( )
1{ , ,..., }

w

i i i i
k k k Tu u u+ +=u           (16) 

 
representing a set of tasks for sensor i  over the time 
window { },  ...,  wk k T+ . The tasks for all sensors over 
the time window are then defined as: 
 

( )(1) (2){ }sN= , ,...,U u u u           (17) 
 

The optimal task  
 

( )** (1)* (2)*{ }sN= , ,...,U u u u           (18) 
 
is mathematically expressed as: 
 

1
*

2arg min or max ( ), ( ), ..., ( )
fobj obj objN=  

   
U

U f U f U f U       (19) 

 
where,  
 

1 2( ), ( ), ..., ( )
fobj obj obj N  f U f U f U           (20) 

 
are fN  objective functions. The solution of the optimal 
task assignment *U  is a multi-objective optimisation 
process, in which we find *U  from all possible task 
assignments U , to minimize or maximize each 
objective function. However, in most cases, multiple 
objective functions conflict with each other, making it 
difficult to achieve a global minimum or maximum for 
all functions simultaneously. Therefore, *U  must be 
balanced between the different objectives to optimise 
multiple criteria simultaneously. 

If a sensor's field of view (FOV) is focused on a 
single space target, then the x -axis of the potential 
sensor pointing assignments is defined as tN  targets, 
the y -axis as sN  sensors, and the z -axis as the time 
window { },  ...,  wk k T+ , as shown in Figure 5. First, 
there are tN  targets can be selected to observe for 
sensor i  at epoch t . By calculating their PIMS based 
on the observation model, reserving the targets with the 
detection probability above a certain threshold ( )i,t

tN  for 
sensor i  at epoch t . Repeating this process for sN  
sensors and wT  epochs, making the 3D solution space 
can be compressed into a reduced hyper-dimensional 
space. 

Subsequently, a optimisation subproblem is defined 
to determine which target should be selected from ( )i,t

tN  
potential targets for sensor i  at epoch t . Solving this 
optimisation subproblem provides the observation target 
for sensor i  at epoch t . Repeating this process across 

sN  sensors and wT  epochs results in a two-dimensional 
sensor tasking table, where each element ( , )i t  records 
the task assignment ( )i

tu j=  observing target j  for 
sensor i  at epoch t . Completing a round of all 
optimisation subproblems with sN  sensors and wT  
epochs is one iteration. 

Since the task assignment of sensors affects the 
value of the objective function in each optimisation 
subproblem, after completing the task assignment for 
the final sensor at the last epoch, we return to the first 
sensor and first epoch, continuing the iterative 
optimisation process in the hyper-dimensional solution 
space. This iteration continues until either the required 
number of iterations iterN  is completed, or system 
performance criteria are met. 

 

 
Figure 5 Multi-sensor multi-step sensor tasking 

solution process 
 
The specific process of the optimisation method 

proposed in this paper is illustrated in Figure 6. Firstly, 
an initial task scheduling table is randomly generated 
from the high-dimensional solution space based on 
multi-sensor, multi-step task planning. The table is then 
optimised along the time epochs corresponding to each 
sensor. For each optimisation subproblem within the 
table's cell ( , )i t , the values of ( )i,t

tN  sets of multiple 
objective functions are calculated when ( )i,t

tN  potential 
observation targets are respectively assigned to the 
sensor tasking solution. By balancing these objectives, 
the best target is selected from ( )i,t

tN  potential targets 
for the sensor i  at the epoch t . This process is repeated 
for all sensors and epochs, constituting one full iteration 
of the optimisation process. This iterative process is 
repeated until the objective functions fall below a 
certain threshold or the iteration count exceeds a pre-
defined limit iterN , yielding a task scheduling plan that 
meets the system requirements. 
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Figure 6 Flowchart of traversal solution of 

optimisation subproblem 
 

The optimisation process guided by the objective 
functions can vary according to the task requirements in 
target tracking missions. These objectives may relate to 
detection quality, such as maximising detection 
probability, signal-to-noise ratio, or the number of 
successfully detected targets. Alternatively, they may 
concern cataloguing maintenance or orbit determination, 
such as the average number of detections per target or 
the time span between repeated detections. To improve 
the tracking performance of space-based observation 
systems for large-scale targets, three objective functions 
are designed in this paper to represent observation 
quality. 

The first objective function is designed as the 
standard deviation of the number of detections for all 
targets, mathematically expressed as: 
 

1
1
(( ) )

t
j 2

d

N

j
j=

dob
t

1f = N N
N

−∑           (21) 

 
where tN  is the number of targets, ( ) j

dN  is the number 
of times target j  is observed within the time window, 
and dN  is the average number of observations for all 
targets during the time window. The smaller the value 
of this objective function, the more evenly the system 
can detect all targets. 

The second objective function is designed as the 
average miss detection probability for all targets, 
mathematically expressed as: 
 

( )

1
2 ( )

s wN
i

t
i

d
= t=ks

k+T

obj
w

1f = Q
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where ( )( )d

i
tQ  is the probability that target j  is missed 

by sensor i  at epoch t , and this value matches 
d dQ = 1- P  for any sensor at any epoch. The smaller the 

value of this objective function, the fewer the missed 
detections, indicating a higher total number of 
successful detections by the sensors. 

The third objective function is the mean difference 
between the maximum and minimum intervals of 
adjacent detections for each target, mathematically 
expressed as: 
 

3 ( )
t

obj m

N
j j

j=
ax m

1
in

t

1f = G - G
N ∑           (23) 

 
where j

maxG  and j
minG  represent the maximum and 

minimum detection intervals for target j  within the 
time window. The smaller the value of this objective 
function, the more evenly the targets are detected over 
the time window. 

For each optimisation subproblem, since the 
objective functions are interrelated and cannot be 
decomposed into independent optimisations for each, 
common strategies include minimising the sum or 
product of the objective functions. However, these 
strategies often fail to simultaneously minimise all 
objectives, potentially over-emphasising certain 
objectives at the expense of others. To address this, a 
Pareto front approach is employed in this paper to 
balance the conflicting objectives. 

The core idea is to find the Pareto front in the three-
dimensional space formed by the three objective 
functions, where the targets corresponding to solutions 
on the Pareto front can be considered equally optimal. A 
random solution from the Pareto front is selected as the 
solution to the optimisation subproblem, i.e., the 
observation target. As shown in Figure 7, the blue 
surface represents the Pareto front, and each point on 
the surface represents a solution. During the iterative 
process, solutions from the Pareto front gradually 
replace those falling off the front, enabling the 
optimisation process to explore the solution space more 
thoroughly and avoid local optima. 

 

 
Figure 7 Schematic diagram of solving optimisation 

subproblems based on Pareto frontier 
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In terms of computational complexity, the proposed 
optimisation method offers a significant advantage over 
traditional exhaustive methods used to solve three-
dimensional optimisation problems. The computational 
complexity of the exhaustive approach is ( )( )w sT NO N ⋅ , 
where N  represents the average number of observable 
targets per sensor at each epoch. As the number of 
epochs wT  and targets sN  increases, the computational 
burden grows exponentially, posing a severe challenge 
for large-scale target tracking optimisation. In contrast, 
the computational complexity of the proposed method is 

( )w s iterO N T N N⋅ ⋅ ⋅ , allowing the computational cost to 
grow linearly as the number of targets increases, 
significantly reducing the computational burden. 

 
5. Simulation and Discussion 

To evaluate the performance of the multi-sensor 
parallel tracking method designed in this chapter, a 
simulation was conducted using 12 space-based sensors 
to track 1,000 Starlink satellites. Each time window 
consists of 240 epochs, with a epoch interval t∆  of 1 
minute, covering a total of 3 consecutive time windows, 
or 12 hours. The space-based observation constellation 
adopts a Walker constellation configuration, with 
parameters as shown in Table 1. It is assumed that each 
sensor in the constellation operates continuously and 
can reorient in any direction within a certain time t∆ , 
constrained only by detectability. 

 
Table 1 Constellation parameters 

Parameter Value 
Orbital altitude 532.47 km 
Orbital inclination 46.86 deg 
Right ascension of ascending node 93.04 deg 
Number of orbital planes 4 
Number of satellites in the plane 3 

 
Since observational data and task decisions are 

obtained at discrete, uniform time intervals, it is 
assumed that targets can only be detected at specific 
epochs, and the detection epoch t  satisfies: 
 

t k t= ∆           (24) 
 
where 1, 2, ... , /wk tT=     ∆ . At these epochs, the state of 
the target is described by [ ], , , , ,X a e i Mω= Ω . 

The true values of the initial states of each target are 
obtained from the publicly available catalogue 
information provided by NORAD on 15 January 2023, 
with the initial state uncertainties described by the 
covariance matrix in Table 2. The initial estimated 
states of the targets are generated by adding random 
perturbations due to uncertainties to the true values and 
converting them to Cartesian coordinates, which serve 

as the initial input for the filter. It is assumed that the 
orbital propagation of both satellites in the space-based 
observation constellation and the targets occurs in a 
two-body dynamics scenario. 

 
Table 2 Initial State Uncertainty 

Parameter Value 

aσ  10 km 

eσ  10−4 

iσ  10−2 deg 
σ Ω  10−2 deg 

ωσ  10−2 deg 

Mσ  10−2 deg 
 
During the observation process, each sensor 

generates an observation value [ ],α δ=Z  at each 
epoch, where α  represents the right ascension and δ  
represents the declination of the target. The 
measurement noise and process noise for these 
observations are provided in Table 3. 

 
Table 3 Measurement Noise and Process Noise 

Parameter Value 
Measurement noise (RA) 5 arc sec 
Measurement noise (Dec) 5 arc sec 
Process noise (position) 10−4 km/s 
Process noise (velocity) 10−7 km/s 

 
The initial existence probability of a target is 1r = , 

its survival probability during state transition is 
0.99sp = , and the detection probability ,D kp  is 

calculated using the formulae given in Section 3, with 
the successful detection probability of the targets is 

0.98Dp = . It is assumed that the clutter is uniformly 
distributed in the observation space according to a 
Poisson distribution with a mean of 1. The number of 
iterations for optimisation is set to 20iterN = , and a 
total of 10 complete Monte Carlo (MC) simulations are 
conducted, with the average results of these 10 MC runs 
used as the basis for evaluation. 

Upon completion of each optimisation subproblem 
during iterative optimisation, the values of the large-
scale target tracking system on three objective functions 
are plotted in a coordinate system, demonstrating the 
convergence of each objective function during the 
optimisation process, as shown in Figure 8. For clarity 
of comparison, the values on the x -axis, y -axis, and 
z -axis are normalised between their maximum and 
minimum values. It can be observed that, after 
optimising the multi-sensor multi-step task scheduling, 
the three objective functions gradually converge from 
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larger values in the upper-right corner of the plot to 
smaller values in the lower-left corner. This indicates 
that the system achieves a more balanced detection of 
all targets, the total number of successful detections by 
the sensors increases, and the detection times for each 
target become more evenly distributed across the time 
window. 

 

 
Figure 8 Optimisation Process of the Three 

Objective Functions 
 
In the scenario where 12 sensors track 1,000 targets 

across 720 epochs, the proposed multi-step task 
scheduling method is compared with the IG-based 
single-step task scheduling method over 10 MC 
simulations in terms of sensor detection capability. As 
shown in Figure 9(a), the multi-step task scheduling 
method, based on multiple objective functions, 
improves the average detection probability of sensors 
from approximately 92% to about 99% compared to the 
single-step task scheduling method. This suggests that 
the multi-step task scheduling method is more 
predictive when selecting observation targets, thereby 
potentially collecting more observation results. Figure 
9(b) further visually reflects this property, showing that 
the multi-step task scheduling method is more effective 
in utilising limited sensor resources. 

 

 
(a) Average Target Detection Probability 

 
(b) Average Effective Detections per Time Step 

Figure 9 Comparison of Sensor Detection Capability 
between Multi-step and Single-step Task Scheduling 

Methods 
 
Further comparative analysis of the target tracking 

performance between the multi-step and single-step 
methods is conducted. The position error of the targets 
is calculated as the Euclidean distance between the 
estimated and true states, with the OSPA truncation 
parameter c  set to 100 km. The results of 10 MC 
simulations, where 12 sensors track 1,000 targets across 
720 epochs, are plotted in Figure 10(a), and the average 
results of the 10 MC runs are shown in Figure 10(b). 
The results indicate that the multi-step task scheduling 
method reduces the peak value of the average position 
error by about 20% in the initial stage and by 
approximately 59% during the long-term tracking phase 
compared to the single-step task scheduling method, 
demonstrating the effectiveness of the proposed method. 

 

 
(a) 10 MC Results 
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(b) Average Results of 10 MC Runs 

Figure 10 Comparison of Average Position Error 
between Multi-step and Single-step Task Scheduling 

Methods 
 
Similarly, the average velocity error in tracking 

large-scale targets using the multi-step method is 
compared with that of the single-step method, with the 
OSPA truncation parameter set to 0.1 km/s. The results 
of the proposed method after 10 MC simulations are 
shown in Figure 11. It can be seen that the trend of the 
average velocity error is similar to that of the average 
position error shown in Figure 10(b). 

 

 
Figure 11 Comparison of Average Velocity Error 

between Multi-step and Single-step Task Scheduling 
Methods (10 MC Average Results) 

 
In terms of maintaining the number of successfully 

tracked targets, the multi-step task scheduling method 
also demonstrates an advantage. Figure 12 records the 
variation in the number of successfully tracked targets 
over the time window, while Figure 13 presents the 
position errors of each target over the time window in 
the first MC simulation. Compared to the single-step 
task scheduling method, the multi-step task scheduling 
method can maintain continuous tracking of a larger 

number of targets. During the long-term tracking phase, 
the multi-step method is able to recover some of the 
targets that were lost in the early stages. This is 
attributed to the multiple objective functions established 
in accordance with the specific task context, which help 
maintain focus on each individual target. Specifically, 
while the IG-based single-step task scheduling method 
frequently abandons detection of certain targets due to 
lower IG values during allocation at each step, the 
multi-step task scheduling method, based on multiple 
objective functions, tends to detect all targets more 
evenly, thereby significantly improving the accuracy of 
tracking large-scale targets. 

 

 
Figure 12 Comparison of Successfully Tracked 

Target Numbers between Multi-step and Single-step 
Task Scheduling Methods 

 

 
(a) Position Errors for Each Target in Multi-step 

Method 
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(b) Position Errors for Each Target in Single-step 

Method 
Figure 13 Comparison of Position Errors for Each 

Target between Multi-step and Single-step Task 
Scheduling Methods 

 
In terms of computational complexity, assuming 12 

sensors observe 50 targets over 240 epochs with 20 
iterations, the complexity of the exhaustive method is 

240 12 576050 10× ≈ , while the complexity of the proposed 
optimisation method is 650 12 240 20 10× × × ≈ , which 
demonstrates a clear advantage in efficiently tracking 
thousands of large-scale targets. 

 
6. Conclusion and Future Work 

This paper has presented an efficient optimisation 
method for large-scale sensor tasking in Space 
Situational Awareness (SSA) systems. By leveraging a 
multi-step optimisation framework based on coordinate 
descent and Pareto optimality, the proposed approach 
decomposes a complex three-dimensional solution 
space into manageable two-dimensional subproblems, 
progressively improving sensor tasking performance. 
The method effectively balances multiple conflicting 
objectives, such as detection probability, tracking 
accuracy, and catalogue maintenance, resulting in a 
substantial enhancement in tracking Resident Space 
Objects (RSOs) using limited sensor resources. 

The multi-step optimisation method was validated 
through extensive simulations, where 12 space-based 
sensors tracked 1,000 Starlink satellites over a 12-hour 
period. The results demonstrate that the multi-step 
method outperforms the single-step Information Gain 
(IG)-based method by improving average detection 
probabilities, reducing position and velocity errors, and 
maintaining continuous tracking of a larger number of 
targets. The method’s computational efficiency, 
achieved through dimensionality reduction and Pareto 

optimisation, further highlights its suitability for large-
scale SSA applications. 

While the proposed method offers significant 
improvements in sensor tasking efficiency, several 
avenues for future research remain. First, the integration 
of more sophisticated filtering techniques, such as those 
considering non-linear dynamics and measurement 
noise more accurately, could further enhance tracking 
performance. Additionally, incorporating real-time 
adaptability into the optimisation process could improve 
response times in dynamic space environments where 
RSOs' states evolve unpredictably. Finally, extending 
the current framework to address multi-sensor 
coordination across distributed networks, as well as 
exploring its applicability to new sensor modalities and 
emerging space surveillance technologies, will further 
contribute to SSA capabilities in an increasingly 
congested space environment. 
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