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Abstract The trifilar pendulum is one of the most widely used methods for the
measurement of the moment of inertia of a body around a rotating axis. Despite
its simplicity, this method allows very high accuracy.

In general, the motion of the pendulum is assumed to be small enough to be
considered linear. However, some applications exist for which larger motions have
to be employed. In these cases, the amplitude of the motion influences the period
of oscillation of the pendulum and affects the moment of inertia measured value.
To avoid such errors, the nonlinear motion of the pendulum in large oscillation
conditions has to be considered. In this paper, the large motion of the pendulum
is investigated analytically, numerically and experimentally. From these analyses,
the situations where the nonlinearities of the motion of the pendulum have more
influence on the accuracy are identified and described. The most important pa-
rameters influencing the period of oscillation are highlighted. The analyses show
that by a proper and simple instrumentation of the pendulum, highly accurate
results can be obtained also for large motion amplitudes. A calibration technique
able to consider the most important nonlinearities in the motion of the pendulum
is presented.

.

Keywords Moment of inertia measurement · Trifilar pendulum · Error analysis ·
Experimental calibration · Analytical study · Nonlinear motion

1 Introduction

The trifilar (or bifilar) pendulum technique is widely used in the measurement of
the moment of inertia of rigid bodies around a rotation axis [16,17,19]. Although
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the method is very simple and non expensive hardware is involved, in the review
presented in [19], the method has shown a high accuracy compared with other
approaches with an uncertainty less than 1%.

The use of the trifilar pendulum is a well established practice and early papers
dating back to the middle of the last century can be found [12]. In this paper,
the trifilar pendulum is applied to military equipment. The paper presents the
motion equation of the pendulum, derived for small amplitudes of oscillation.
Also, an error analysis is presented where the error is computed by considering
the sensitivity analysis of the linearized formula to each of its parameters. This
approach for error estimation has been repeatedly applied to trifilar pendulums
in several papers [20,4,3,10,8]. This kind of analysis has proved to be very useful
to quantify the measurement error due to the principal parameters of the test rig,
namely mass, cable lengths, distance between the cables and oscillation period. In
[22], this analysis has been further developed to take into account the effects of
the asymmetries in the construction of the pendulum.

The formula for the measurement of the moment of inertia is derived under the
hypothesis of the centre of gravity of the system laying on the rotation axis of the
pendulum. The error due to a misalignment of the centre of gravity has been also
studied [3]. This error is mostly proportional to the square of the misalignment
distance, and can be neglected in first order approximations of the error [3]. If
the centre of gravity is purposely not aligned to the rotation axis, the pendulum
can be used to measure the centre of gravity location [6]. The problem of avoiding
lateral motions of the pendulum has also been investigated and centering devices
to force pure rotational motions have been proposed [12,18].

The motion of the trifilar pendulum evolves from a given initial displacement
without further actuation. The damping of the motion is thus unavoidable. The
damping problem has been considered since the most early papers [12]. In well-
realized pendulums and in the absence of bodies with airfoil providing aerodynamic
drag, the damping is usually small enough to consider negligible its effect on the
oscillation period. In [11], the moments of inertia of an unmanned airplane are
measured. In this case, the damping is not negligible and a nonlinear parameters
identification procedure is employed to take its effects into account. Given the
high damping of the airplane, large oscillation angles of the order of 25o have been
imposed to the pendulum. A nonlinear motion equation has been considered to
model the dependence of the oscillation period on damping and motion amplitude.

Referring to large oscillations of the pendulum, very few papers can be found
in the literature discussing their effects. In [4], experimental tests are reported
showing a non negligible influence of the oscillation amplitude on the measured
period for amplitudes of the order of 5o. A quadratic interpolation is proposed
to extrapolate the period for vanishing amplitudes. A rather complete analysis
of the period dependency on the oscillation amplitude can be found in [6]. This
paper shows that the sensitivity of the oscillation period on the amplitude strongly
depends on the geometry of the pendulum and on the radius of gyration of the
system. In particular, the period is more influenced by the oscillation amplitude
if the distance between the cables is relatively large with respect to their length
and if the radius of gyration of the system is small. In the paper, the nonlinear
equations of motion of the pendulum are studied and a formula is proposed able
to approximate the dependency of the period on the motion amplitude for most
combinations of test rig geometry and radii of gyration. The formula gives a highly
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non liner relationship between period and moment of inertia and seems not suitable
for measurement purposes. In [7], also the effects of the centre of gravity offset are
considered in non linear model. A study of the nonlinear motion of the pendulum
is also proposed in [13] with the aim of reducing the measurement error below
1%. The proposed approach is, however, quite cumbersome and no significant
improvement is found with respect to the standard linearized approach. In [14], a
nonlinear approach is derived which has shown an accuracy of the order of 0.1%
of the full scale of the employed test rig for non-small oscillation amplitudes, up
to 45o. The approach is suitable for pendulums with long cables with respect to
their distance or systems with a large radius of gyration.

Despite the few papers dealing with large oscillations, the possibility to per-
form measurements with arbitrary large amplitudes can be of relevant practical
application. In fact, the measurement of the moment of inertia of compact bod-
ies is prone to errors due to the period dependency on amplitude, even for small
angles as shown in [4]. On the other hand, large bodies with airfoils are usually
tested in large oscillations and in this case the length of the cables cannot be very
large due to physical limitations. The present paper aims to study the large mo-
tion of the trifilar pendulum and derive a suitable procedure to its exploitation in
actual measurements. The paper is structured as follows. Firstly, an analytical ex-
pression of the period as a function of the motion amplitude, pendulum geometry
and inertia properties of the system is derived and numerically validated. Then, a
measurement procedure for the moment of inertia based on this formula is shown
and its effectiveness is proved by a numerical analysis. Finally, experimental tests
are reported.

2 Oscillation period for large oscillations

The kinematics of the trifilar pendulum is depicted in Fig. 1. The carrying plate
of the pendulum is depicted, for simplicity, as an equilateral triangle. The cables,
of length L, are connected at the vertices of the triangle and are equidistant from
the centre of the triangle, coincident with the centre of gravity of the system. The
distance between the centre of gravity and the cable connection is R. In Fig. 1b,
the rotation in the horizontal plane is shown. The pendulum rotates of an angle
θ and the point A moves to the point A′. By simple trigonometric analysis, the

distance AA′ is 2R sin
(
θ
2

)
.

Fig. 1b shows the motion of the pendulum in the vertical plane. Due to the
rotation θ in the plane of the pendulum, the cables rotate of an angle α, while the
plate moves upward of a quantity ∆z. The displacement AA′ is equal to L sinα.
By equating the distance AA′ computed in the horizontal and in the vertical plane,
the relationship between θ and α reads

L sinα = 2R sin

(
θ

2

)
(1)

The displacement ∆z can be computed as function of α as

∆z = L (1− cosα) (2)

and by remembering eq. 1, as function of θ as
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∆z = L−

√
L2 − 4R2 sin2

(
θ

2

)
= L−

√
L2 − 2R2 + 2R2 cos θ (3)

The potential energy of the system is given by two contributions, the potential
energy of the mass m of the system moving in the vertical direction and the
elastic energy of the structural torsional system of the pendulum. The torsional
stiffness can be present if the cables are clamped to the plate and no spherical
joint is present. In most systems, a spherical joint is applied in order to avoid this
torsional system. However, such spherical joints complicate the hardware of the
system and have a (small) friction. If the torsional stiffness is considered, a simpler
hardware can be realized and the friction is avoided. Taking into account these
two contributions, the potential energy reads

U = mg∆z +
1

2
kθ2 = mg

(
L−

√
L2 − 2R2 + 2R2 cos θ

)
+

1

2
kθ2 (4)

where g is the acceleration of gravity and k the torsional stiffness. m is the mass
of the system, given by the sum of the mass of the carrying plate (m0) and of the
mass of the body under investigation (m1), i.e. m = m0 +m1.

The kinetic energy of the system is given by the vertical motion of the mass of
the system and by the rotational motion of the inertia J of the system and reads

E =
1

2
m∆ż2 +

1

2
Jθ̇2 =

1

2
m

(
d (∆z)

dθ
θ̇

)2

+
1

2
Jθ̇2 (5)

with

d (∆z)

dθ
=

R2 sin θ√
L2 − 2R2 + 2R2 cos θ

(6)

J is the inertia of the system, given by the sum of the inertia of the carrying
plate (J0) and of the inertia of the body under investigation (J1), i.e. J = J0 +J1.
It has to be observed, that this relationships implies that the carrying plate and
the body under investigation have their centre of gravity lying on the vertical axis
passing through the centre of the plate. This simplification does not reduce the
generality of the following analysis as it is always possible to add balancing masses
in order to achieve such distribution. Moreover, in general, the carrying plate is
designed to have its centre of gravity in this position and absolute care is given in
mounting the body under investigation with the same requirement, in case adding
balancing masses.

The equation of motion can be obtained by differentiating the potential and
kinetic energy of the system as

(
J +

mR4 sin2 θ

L2 − 2R2 + 2R2 cos θ

)
θ̈+

+
mR2 sin θ

(
R2 +R2 cos2 θ + L2 cos θ − 2R2 cos θ

)
(L2 − 2R2 + 2R2 cos θ)2

θ̇2+

+
mgR2 sin θ√

L2 − 2R2 + 2R2 cos θ
+ kθ = 0

(7)
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Fig. 1: Trifilar pendulum kinematic. O is the geometrical centre of the pendulum,
R is the distance between the centre and each cable. a) Top view. b) Lateral view.

In eq. 7 the dissipation terms have not been considered. In fact, if no aero-
dynamic effect is present to damp the system, the pendulum is realized in order
to minimize friction and other sources of damping. Thus, for usual applications,
damping is negligible.

The obtained equation of motion (eq. 7) is a non linear function of the sole
coordinate θ describing the rotation of the pendulum. For θ small, Eq. 7 can be
linearized as

Jθ̈ +

(
mgR2

L
+ k

)
θ = 0 (8)

with oscillation period

T = 2π

√
J

mgR2

L + k
, (9)

which for k = 0 leads to the well known formula for the period of the trifilar
pendulum

T = 2π

√
JL

mgR2
(10)

For non small oscillations, eq. 7 can be approximated with its Taylor series up
to the fourth order as

(
J +

mR4θ2

L2

)
θ̈ +

Rm4

L2
θθ̇2+

+

(
mgR2

L
+ k

)
θ − mgR2

L

(
1

6
− R2

2L2

)
θ3 = 0

(11)

Calling
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A =
mR4

L2
(12)

B =
mgR2

L
(13)

C =
1

6
− R2

2L2
(14)

eq. 11 can be rewritten as(
J +Aθ2

)
θ̈ +Aθθ̇2 + (B + k) θ −BCθ3 = 0 (15)

The oscillation period can be derived by following the procedure presented in
[1]. Knowing that the physical solution of the system is an oscillation, a test func-
tion of the kind θ0 cos (ωt) can be employed. θ0 represents the motion amplitude,
ω the angular frequency and t is the time. By substituting the test function in eq.
15 the following relationship is obtained

(
J +Aθ20 cos2 (ωt)

)(
−θ0ω2 cos (ωt)

)
+

+Aω2θ30 cos (ωt) (− sin (ωt))2 +

+ (B + k) θ0 cos (ωt)−BCθ30 cos3 (ωt) = 0

(16)

cos3 (ωt) and cos (ωt) sin2 (ωt) ca be approximated as

cos3 (ωt) =
3

4
cos (ωt) +

1

4
cos (3ωt) ≈ 3

4
cos (ωt) (17)

cos (ωt) sin2 (ωt) =
1

4
cos (ωt)− 1

4
cos (3ωt) ≈ 1

4
cos (ωt) (18)

where the terms referring to higher frequencies have been neglected. By substitu-
iting eq. 17 and eq. 18 in eq. 16 and rearranging, eq. 16 can be rewritten as

−θ0ω2 cos (ωt)

(
J +

1

2
Aθ20

)
+ θ0 cos (ωt)

(
k +B

(
1 +

3

4
Cθ20

))
= 0 (19)

An by simplifying θ0 cos (ωt)

ω2
(
J +

1

2
Aθ20

)
−
(
k +B

(
1 +

3

4
Cθ20

))
= 0 (20)

From eq. 20, the oscillation period for large oscillations results

T = 2π

√√√√ J + 1
2Aθ

2
0

k +B
(
1 + 3

4Cθ
2
0

) (21)

that for θ0 small reduces to eq. 9.
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Fig. 2: Energy balance during the simulation of the motion of the pendulum. Initial
oscillation angle 45o, R/L = 0.5, data in Table 1. a) Non linear model of eq. 7. b)
Fourth order approximation of eq. 11.

2.1 Numerical validation

In this section a multibody model of the trifilar pendulum is used for the valida-
tion of the formula of eq. 21 for the computation of the pendulum period. The
considered multibody model is realized by Matlab Simmechanics�and comprises
a plate, the body under investigation, three massless rigid cables and a torsional
stiffness representing the clamping of the cables. The multibody model is simple
and reproduces the system of Fig. 1 in order to evaluate eq. 21 under the same
modelling hypotheses. Table 1 reports the parameters used for the simulations.
The torsional stiffness of the cables in the table has been estimated by considering
length, section and fill factor of the cables.

Usual trifilar pendulum applications, have a small ration R/L in order to keep
the motion as close to a linear situation as possible. In this analysis, to test the
ability of eq. 21 to catch the nonlinear behavior of the system, the ratio R/L is
varied from a small value of 0.1 to a very large value of 1.

A preliminary numerical validation is also reported in Fig. 2. The figure shows
the energy balance during a simulation with an initial rotation angle of 45o and
R/L = 0.5. Both the complete non linear model of eq. 7 and the approximated
fourth order model of eq. 11 show a constant value of the total energy.

Fig. 3 shows the comparison between the period of oscillation computed by
the multibody model and the approximated formula of eq. 21. In Fig. 3a, the
simulations have been performed with the data in Table 1 for motion amplitudes
from 1o to 45o. In Fig. 3b and 3c, the same simulations have been performed with
the mass increased four times (i.e. half of the radius of gyration) and decreased
four times (i.e. double of the radius of gyration) respectively. The pictures show
that eq. 21 is able to approximate the oscillation period in all the considered
condition, even when the nonlinear effects change the period value of about 12
times. The difference between the period computed by the multibody model and
eq. 21 is always below the 10% of the computed period as shown in Fig. 4, with
much smaller errors when R/L is small or as the radius of gyration grows.

While Fig. 3 shows that eq. 21 is able to approximate the period, it also shows
that the error in the prediction of the period is not acceptable for a direct uti-
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Fig. 3: Oscillation periods of the trifilar pendulum for different motion amplitudes
computed by the multibody model and by the approximated formula of eq. 21. a)
Simulations with data of Table 1. b) Mass increased four times. c) Mass decreased
four times.

Table 1: Simulation data

Parameter Value

Mass of the carrying plate (m0) 5 kg
Mass of the body under investigation (m1) 23.203 kg
Moment of inertia of the carrying plate (J0) 0.1 kgm2

Moment of inertia of the body under investigation (J1) 0.3035 kgm2

Radius of gyration of the system (ρ) 0.12 m
Length of the cables (L) 1.5 m
Diameter of the cables 1.5 mm
Fill factor of the cables 0.6
Torsional stiffness of the cables (k) 0.05 Nm
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Fig. 4: Oscillation period errors of the approximated formula of eq. 21. a) Simula-
tions with data of Table 1. b) Mass increased four times. c) Mass decreased four
times.

lization of eq. 21 for the measurement of the moment of inertia. In fact, for some
combination of the parameters, given approximation error in the period, a direct
inversion of eq. 21 will lead to large errors in the measurement of the moment of
inertia. A calibration procedure is thus necessary.

3 Calibration procedure

This section aims to the definition of a calibration procedure, based on eq. 21, for
the measurement of the moment of inertia of a rigid body by the trifilar pendulum
in large oscillations. The proposed procedure is based on the one presented in [18],
but with significant differences due to the large oscillations here considered.

By algebraic manipulation of eq. 21, the following expression of the moment
of inertia can be derived
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J = −1

2
Aθ20 +

BT 2

4π2

(
1 +

3

4
Cθ20

)
+
kT 2

4π2
(22)

By remembering m = m0 + m1, J = J0 + J1 and the expressions of A and
B (eq. 12 and eq. 13), from eq. 22 the moment of inertia J1 of the body under
investigation can be computed as

J1 = −J0 −
m0R

4θ20
L2

− R4θ20
L2

m1+

+

(
m0gR

2

4π2

(
1 +

3

4
Cθ20

)
+

k

4π2

)
T 2 +

gR2

4π2

(
1 +

3

4
Cθ20

)
m1T

2
(23)

By defining

P1 (θ0) = −J0 −
m0R

4θ20
L2

(24)

P2 (θ0) = −R
4θ20
L2

(25)

P3 (θ0) =
m0gR

2

4π2

(
1 +

3

4
Cθ20

)
+

k

4π2
(26)

P4 (θ0) =
gR2

4π2

(
1 +

3

4
Cθ20

)
(27)

eq. 23 can be rewritten as

J1 = P1 (θ0) + P2 (θ0)m1 + P3 (θ0)T 2 + P4 (θ0)m1T
2 (28)

Eq. 28 is a key achievement of the paper. This equation shows that the moment
of inertia is a linear function of the quantities m1, T 2 and m1T

2. With respect to
the similar expression found in [18], the additional quantity m1 has been identified.
Also, the four coefficients of eq. 28 are not constant but depend on the oscillation
amplitude θ0. From a calibration point of view, this means that the calibration
tests and the actual measurements have all to be performed for the same motion
amplitude.

For small angles, eq. 28 reduces to

J1 = −J0 +

(
(m0 +m1)gR2

4π2
+

k

4π2

)
T 2 (29)

Eq. 29 is composed by the well known formula for the computation of the
moment of inertia from the measurement of the period for small oscillations plus
the contribution of the torsional stiffness of the cables (if to be considered).

From eq: 28 and by supposing to measure n bodies (n ≥ 4) with known mass
mi, i = 1...n, and inertia Ji, i = 1...n, the following linear system can be written
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J1 = P1

(
θ0
)

+ P2

(
θ0
)
m1 + P3

(
θ0
)
T 2
1 + P4

(
θ0
)
m1T

2
1

J2 = P1

(
θ0
)

+ P2

(
θ0
)
m2 + P3

(
θ0
)
T 2
2 + P4

(
θ0
)
m2T

2
2

...

Jn = P1

(
θ0
)

+ P2

(
θ0
)
mn + P3

(
θ0
)
T 2
n + P4

(
θ0
)
mnT

2
n

(30)

where θ0 is the motion amplitude equal for all tests. Eq. 30 can be rewritten in
matrix form as

b = Ka (31)

being

b =


J1
J2
...
Jn

 , K =


1 m1 T

2
1 m1T

2
1

1 m2 T
2
2 m2T

2
2

...
...

...
...

1 mn T
2
n mnT

2
n

 , a =


P1

(
θ0
)

P2

(
θ0
)

P3

(
θ0
)

P4

(
θ0
)

 (32)

The vector of the estimated parameters â =
[
P̂1

(
θ0
)
P̂2

(
θ0
)
P̂3

(
θ0
)
P̂4

(
θ0
)]T

can be obtained from the solution of the system of eq. 31 as [2]

â =
(
KTK

)−1
KTb (33)

and the measured moment of inertia Jb of the body under investigation of mass
mb is given by

Jb = P̂1

(
θ0
)

+ P̂2

(
θ0
)
mb + P̂3

(
θ0
)
T 2
b + P̂4

(
θ0
)
mbT

2
b (34)

where Tb is the measured period of oscillation for the body at the oscillation
amplitude θ0

3.1 Coefficients sensitivity analysis

In Fig. 5, the percentage difference in the moments of inertia if computed by eq.
29 (expression of the moment of inertia for small oscillation angles) or by eq. 28
(expression of the moment of inertia for large oscillation angles) is depicted as
function of motion amplitude. The graphs have been derived for four combination
of the radius of gyration (ρ) and of the ration R/L. In each graph, the contribution
of each term of eq. 28 is indicated in a different color (expressions of the coefficients
in eq.s 24-27).

The figure shows that the percentage difference in the computation of the
moment of inertia by the two formulae increases as the radius of gyration decreases
and the ration R/L increases, i.e the difference increases as the dependence of the
period on the motion amplitude is more relevant (see also Fig. 3). When a large
radius of gyration or a small ratio R/L is considered, most of the difference is
due to the terms P3 (θ0) and P4 (θ0) (Fig. 5a, 5c and 5d). These two terms are
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Fig. 5: Percentage difference in the moments of inertia if computed by eq. 29
(expression of the moment of inertia for small oscillation angles) or by eq. 28
(expression of the moment of inertia for large oscillation angles) as function of
motion amplitude. Colors refer to the contributions of each coefficient of eq. 28.

related to the nonlinear terms of the potential energy of the heave motion of the
mass of the pendulum. When a small radius of gyration and a large ratio R/L
are considered (Fig. 5b), the most influential terms are P1 (θ0) and P2 (θ0). These
terms are related to the kinetic energy of the heave motion of the mass of the
pendulum. In fact, for a large ration R/L the vertical velocity of the pendulum
grows increasing the fraction of kinetic energy related to the motion of the mass.
At the same time, if the radius of gyration is small, the kinetic energy related
to the rotational motion of the pendulum is relatively small with respect to the
kinetic energy related to its vertical motion. When these two conditions are present
(Fig. 5b), the kinetic energy related to the vertical motion cannot be neglected,
as usually done [14,18].

3.2 Virtual calibration

In this section a numerical calibration of the trifilar pendulum is performed in order
to evaluate the capability of eq. 28 of actually measure the moment of inertia for
large oscillations of the motion of the pendulum, i.e. the identifiability properties
of the proposed model [21]. Also, the performances of the calibration model of eq.
28 are compared with the calibration formula proposed in [14,18] in which the
term proportional to m is not considered.

For this analysis, the same multibody model described in Sect. 2.1 is used.
For the virtual calibration, 10 bodies are considered, whose mass and inertia are
reported in table 2. The first body represents the tare of the test rig and have
null mass and inertia. Of the ten bodies of table 2, eight are used for the actual
calibration of the test rig parameters (eq. 28). The other two bodies (bodies 5 and
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Table 2: Mass and inertia of the bodies used for the calibration of the test rig.

Body number Mass [kg] Inertia [kg2] Radius of gyration [m]

1 (only tare) 0 0 -
2 1.615 0.0257 0.126
3 3.321 0.0423 0.113
4 3.321 0.0837 0.159
5 19.972 0.3321 0.129
6 19.972 0.2197 0.105
7 21.588 0.3487 0.127
8 21.588 0.2454 0.107
9 23.203 0.4158 0.134
10 23.203 0.3035 0.114

8) are used as verification, i.e. their inertia is computed by eq. 34 and compared
to the nominal value to compute the error.

In Fig. 6 the results of the virtual calibration of the test rig based on eq 28
are reported for different values of the ratio R/L and of the radius of gyration
ρ. The percentage error is computed with respect to the full scale of the test rig,
considered equal to the maximum inertia considered in the calibration. The ratio
R/L has been varied by keeping fixed L at its nominal value of table 1 and changing
R accordingly. The radius of gyration has been varied by keeping the values of the
masses of the calibration bodies at their nominal values of table 2 and multiplying
by 9 their moments of inertia. The figure shows that the identifiability error due
to the structure of the proposed model is low in all the considered conditions. In
particular, the larger error, of the order of 0.1% of the full scale of the test rig, is
found for a very high value of the ration R/L, a small radius of gyration ρ and
large oscillation angles (Fig. 6b). This situation is the most demanding situation,
in which a very high dependence of the oscillation period has to be expected from
the oscillation angle as shown in Fig. 3. If the ration R/L is reduced or if the
radius of gyration is increased, a large reduction of the error is shown (Fig. 6a, 6c
and 6d).

In [18], a calibration procedure similar to the one proposed in Sect. 2 has been
presented where the term function of m and the dependency on the amplitude
have been neglected. Recently in [14], the same formula has been reproposed but
showing that all the tests have to be performed with the same amplitude. The
calibration formula, if m is neglected and for the same amplitude for all tests,
reads [14]

J1 = C1 + C2 (θ0)T 2 + C3 (θ0)m1T
2 (35)

where C1, C2 and C3 can be determined with a procedure similar to the one
of eq.s 30-eq 33. In Fig. 7 the results of the virtual calibration of the test rig based
on eq 35 are reported for different values of the ratio R/L and of the radius of
gyration ρ. The figure shows that this model gives the same results of the model of
eq. 28 when the ration R/L is small (Fig. 7a and 7c). If this ratio grows, even for
a relatively small value of R/L equal to 0.3, the model of eq. 35 shows decisively
larger errors (Fig. 7b and 7d). These errors are mitigated as ρ grows (Fig. 7d.). This
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Fig. 6: Percentage errors in the virtual calibration of the test rig based on eq 28 for
different values of the ratio R/L and of the radius of gyration ρ. Test rig data in
table 1 and calibration masses data in table 2. The percentage error is computed
with respect to the full scale of the test rig.

analysis shows that the term proportional to m has to be considered to correctly
measure the moment of inertia for all the parameters combination, especially if
R/L is large. It can be concluded that the model of eq. 28 is distinguishable from
the model of eq. 35 [21].

4 Experimental calibration

The trifilar pendulum utilized for the experimental tests is shown in Fig. 8. The
distance R is 0.162 m, the mass of the plate is 6.134 kg, its moment of inertia 0.086
kgm2 and the radius of gyration 0.118 m. Three lengths of the cables have been
considered: 0.976 m, 0.757 m and 0.446 m. The three corresponding ratios R/L are
0.166, 0.214 and 0.362. The cable lengths have been measured after the pendulum
has been assembled. Such lengths result from the the assembling process, in which
cable lengths have been adjusted to guarantee the horizontality of the plate.

The picture shows that the cables are clamped to the plate and to the support
structure, so a structural torsional stiffness is present. The torsional stiffness of
the cables has not been measured but has been roughly estimated around 0.05
Nm/rad for the unloaded pendulum. The precise knowledge of the value of the
cable stiffness is not required, as it will be determined during the calibration
procedure and included in the coefficient P1 (θ0) of eq. 28. Also, as the cables are
made by wire ropes, their torsional stiffness depends on the actual tension [23].
This dependence is mostly proportional to the load, i.e. for the trifilar pendulum to
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Fig. 7: Percentage errors in the virtual calibration of the test rig based on eq 35 for
different values of the ratio R/L and of the radius of gyration ρ. Test rig data in
table 1 and calibration masses data in table 2. The percentage error is computed
with respect to the full scale of the test rig.

the mass of the pendulum. This dependence can be easily included in the coefficient
P2 (θ0) of eq. 28 and thus considered in the proposed calibration model.

The carrying plate has 8 calibrated holes disposed along a rectangle as shown in
Fig. 8c. These holes are used to position calibrated masses (2 of about 10 kg and 4
of about 0.8 kg) at known locations in order to obtain the 10 bodies of table 2. The
six masses used for the calibration have been manufactured in stainless steel with
tight tolerances and accurately weighted and measured after manufacturing. The
masses have a cylindrical shape and have a cylindrical centering surface with the
diameter correspondent to the diameter of the positioning holes of the plate. The
masses are used for the calibration of test rigs for the measurement of the inertia
properties of rigid bodies [5], are part of a quality certification process according
to the ISO 9001 standard [9] and approved by a third party certification agency.
The calibrated masses employed for the calibration and configured to obtain the
inertia properties of body 9 of Table 2 are shown in Fig. 8b.

The alignment of the centre of gravity of the bodies is guaranteed by the
machined holes and verified by a balancing method [19,17,15]. The carrying plate
is instrumented by a gyro (full scale 300 o/s) to measure the yaw oscillations and
two monoaxial capacitive accelerometers (full scale 3 g) to check the lateral motion
of the plate (Fig. 8a). The motion amplitude has been obtained by integrating the
gyro signal. No centering device to avoid lateral displacements of the pendulum is
present. The horizontality of the plate has been measured by a precision level and
is within ±0.1o in all directions for all the considered cable lengths.
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Fig. 8: Trifilar pendulum. a) Test rig view and instrumentation. b) Calibrated
masses configured for body 9 of Table 2. c) Location of the calibrated holes on the
plate (calibrated holes highlighted by red circles).

For each calibrated masses configuration of Table 2 and each cable length, from
5 to 10 tests have been performed. In each test, the pendulum has been displaced
from rest of about 50o and then released. The motion has been acquired at 2000
Hz. Each test has been acquired until the motion amplitude has reduced below 5o.
In this way, from the acquired data, different motion amplitudes can be considered
for the calibration of the test rig. The damping has been computed for all tests by
a logarithmic decay approach and, depending on the actual calibrated mass and
cable length, values between 0.02% and 0.17% of the critical damping have been
found. These values are quite small and do not have any effect on the period of
the pendulum. The accelerometer signals have been examined to check if evident
lateral motions were present. In none of the tests significant lateral motions have
been found, meaning than lateral motions are not relevant when large oscillation
amplitudes are considered. A reasonable attention of the operator is sufficient
to keep such motions small, and negligible, with respect to the large oscillations
considered.

In Fig. 9 the measured periods for ten tests of body 1 and ratio R/L equal
to 0.214 are shown for three different motion amplitudes. The figure shows the
very good repeatability of the measurements. The measured periods fit very well
a normal distribution and the standard deviation is of the order of milliseconds.
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Fig. 9: Normal probability plot of the measured period values, body 1, R/L =
0.214. a) Motion amplitude 5o. b) Motion amplitude 25o. c) Motion amplitude
45o.

Fig. 10 shows the measured moments of inertia with respect to their reference
value. The figure has been reported for the most nonlinear condition of the tests,
represented by the higher value of the R/L ratio at the maximum considered angle.
Similar pictures can be derived for all the other tested conditions. The moments of
inertia of the eight calibration bodies and the two verification bodies all lay on the
straight line at 45o. The coefficients of the interpolating line have been computed
by considering only the eight calibration bodies and the figure shows that the two
verification bodies lay very well on the same line.

The absolute percentage error between the measured and reference values of
the moments of inertia of the verification bodies normalized with respect to the
full scale of the test rig is reported in Fig. 11. The percentage error is not function
of the oscillation angle considered and it is actually constant with the oscillation
angle. The percentage error is of the order of 0.1%, in most cases well below this
value. When the shortest cables are used, due to the clamping constraints, a s-
shape deformation of the cables was present and, especially for higher values of
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Fig. 10: Test rig linearity, R/L = 0.362, oscillation amplitude of 45o.

inertia, a slightly increase in the errors on the measurements has been found. In
all the considered cases, no dependence of the error on the amplitude can be seen.

Finally, in Fig. 12 the absolute percentage error in the calibration of the test
rig based on eq 35 and R/L = 0.362 is depicted. If a calibration formula neglecting
the term proportional to m is employed, although a relatively small error is still
obtained, a clear dependency of the calibration error on the motion amplitude
is observed. This non linear effect is more evident in the results for body 8 and
could be due to a smaller radius of gyration of this body. For highly nonlinear
motions, the three parameters calibration of eq. 35 is not able to correctly model
the system.

Conclusion

In this paper the large oscillations of the trifilar pendulum have been investigated
with the aim to derive a calibration procedure for the measurement of the moment
of inertia exploiting this kind of motion. An analytical formula relating the oscil-
lation period to the motion amplitude has been derived. This analytical model has
shown that the period of oscillation is more affected by the motion amplitude when
the radius of gyration of the pendulum is small or when the cables are relatively
short with respect to their distance.

The derived analytical formula has been employed for the definition of a cali-
bration procedure able to measure the moment of inertia when the motion is large
and the period is strongly dependent on the motion amplitude. It has been shown
that four calibration constants have to be identified for the correct calibration of
the test rig. With respect to well established calibration procedures considering
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Fig. 11: Percentage errors in the calibration of the test rig based on eq 28 for 3
different values of the ratio R/L. Test rig data in table 1 and calibration masses
data in table 2. The percentage error is computed with respect to the full scale of
the test rig. a) R/L = 0.166. b) R/L = 0.214. R/L = 0.362.

only three parameters, an additional parameter function of the mass of the body
under investigation has been found.

An experimental campaign with a trifilar pendulum with three different cables
lengths has shown that the proposed procedure is able to compensate the effects of
the large oscillation nonlinearities for angles up to 45o. For the tests, ten compact
bodies with small radii of gyration have been considered. A very good accuracy
of the order of 0.1% of the full scale of the test rig has been obtained with a
very simple hardware. In fact, in the analytical model also the contribution of
the torsional structural stiffness of the system has been included, allowing the
realization of the pendulum with clamped wires without complex spherical joints.
A very simple instrumentation composed by only one gyro is necessary for the
measurement.

Finally, it has been shown that for the shortest cable length, the nonlinear
effects of the amplitude are relevant and if a standard three parameters calibration
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Fig. 12: Percentage errors in the calibration of the test rig based on eq 35 for
R/L = 0.362. Test rig data in table 1 and calibration masses data in table 2. The
percentage error is computed with respect to the full scale of the test rig.

model is employed, a clear dependency of the accuracy with amplitude has been
found.
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