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Abstract—Cyber-Physical Systems are more and more em-
ployed to implement smart environments also in safety-critical
scenarios. We here propose a novel system-level design approach
capable at considering two relevant aspects of such systems:
i) elaborations together with sensing and actuation need to be
placed in the zones where cyber-physical interactions take place,
and ii) fault tolerance mechanisms have to be incorporated to tol-
erate device failures. The proposed design approach identifies the
optimal instantiation of the system architecture and deployment
of the applications to minimize the monetary cost of the solution
while guaranteeing resource requirements and fault tolerance.
Experimental results show that the proposed approach reduces
up to 20% the solution cost w.r.t. a straightforward hardening
baseline with a computationally viable execution time.

I. INTRODUCTION

Nowadays the pervasiveness of mobile and embedded sys-
tems and the growing processing and communication capa-
bilities of modern devices have led to a paradigm shift in
the Internet of Things (IoT) scenario. Namely, data process-
ing is not offloaded in Cloud anymore, but it is performed
through the Edge/Fog computing [1], where computations are
performed directly in edge nodes of the distributed Cyber-
Physical System (CPS). This trend has increased the possi-
bilities in employing IoT applications in several scenarios to
design smart environments, including those having realtime
and safety-critical requirements.

The design of CPSs for safety-critical applications presents
two main issues. On the one hand, the installation of edge
nodes requires an accurate planning for defining the optimal
positions in the environment. Indeed, the applications have
to interact with the surrounding environment; therefore, they
need to be executed on edge nodes specifically located in the
position where the cyber-physical interaction should take place
(e.g., a person detection application has to be executed in the
room where video surveillance is required). On the other hand,
fault tolerance mechanisms have to be introduced to allow the
system to provide the service even in case of failures of edge
nodes. Indeed, nodes may fail for several reasons, spanning
from battery discharges or lack of connectivity to damages
caused by the surrounding environment (e.g., bad weather
conditions or accidental human activity). However, even if
there is a large body of literature on Fog/Edge computing [1],
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[2], very few approaches have considered the planimetry-
aware CPS design [3], [4] and the hardening of CPSs [5], [6].
Indeed, we claim that these two requirements have to be jointly
considered and in a cost-effective way by instantiating and
configuring a distributed computing platform with the minimal
number of the cheapest edge nodes.

Given these motivations, in this paper we propose a system-
level design approach to implement fault tolerant CPSs for
smart environments. The approach is obtained as an ex-
tension of the Mixed Integer Linear Programming (MILP)
formulation presented in [4] by introducing application-level
fault tolerance requirements. Our approach instantiates a CPS
architecture, composed of edge nodes, on a instrumented and
cabled physical planimetry, and maps a distributed application
on such an architecture taking into account processing and
communication requirements, cyber-physical interactions and
fault tolerance requirements. Application-level fault tolerance
is achieved by hardening the critical components of an applica-
tion through the active-standby technique [7]. The goal of the
proposed approach is to identify the best system configuration
minimizing the monetary cost of the selected architecture
while guaranteeing resource requirements and fault tolerance.
A systematic evaluation on a large set of problems have
demonstrated the effectiveness of the proposed solution; the
proposed approach reduces up to 20% the solution cost w.r.t.
a considered hardening baseline with similar execution time
of the MILP solver.

The text is organized as follows. Sec. II presents the system
model. Sec. III and IV describe the proposed approach and
the optimization engine, respectively. Sec. V discusses the
experimental results, and Sec. VI draws conclusions.

II. FAULT TOLERANT CPS MODEL

We model a CPS in three layers (as in Figure 1): the
environment, the computing architecture and the application.

A. Environment

The environment is modeled by means of its floor plan as
shown in the bottom-most part of Figure 1. The environment
is assumed to be already wired to install edge nodes in specific
positions referred to as spots, each one characterized by the co-
ordinates and the available connection (up/downlink bands)1.
Moreover, the environment is assumed to be divided in zones
where cyber-physical interactions (sensing or actuation) are

1For the sake of brevity, a single connection type is considered but the
system model can be extended to support several types in each spot.
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Fig. 1: System model and synthesis.

required to be performed. Each zone is defined in terms of a
polygon on the planimetry, and based on its shape and position
will include a certain number of spots.

B. Computing Architecture

The computing architecture (middle part of Figure 1) is
composed of a number of distributed edge nodes. Each node
is a commercial board, retrieved by a given vendor repository
and installed in a specific spot. The board is characterized in
terms of processing/storage capabilities (i.e. amount of CPU,
RAM and disk), cyber-physical peripherals (list of sensors and
actuators) and monetary cost. Based on the specific installation
spot, each node is able to interact with the surrounding area
and to communicate with the rest of the distributed platform
according to the available connection band.
Fault tolerance aspects: Nodes may experience failures caus-
ing interruption of service due to several reasons (e.g. battery
discharge, break out, network disconnection, etc.). Thus, we
here adopt the single node fail-silent fault model [8] since
it effectively represents failures in the considered scenario;
the node either provides the correct service, or provides no
service at all. Finally, we assume a single node to fail at a
time; this assumption is totally realistic if we consider that
in common working conditions (i.e. no radioactive or harsh
environments, as at the ground level) failures are assumed to
be i) independent and ii) far (in time) from each other so that
upon the occurrence of a second failure, the system has already
recovered from the previous one [7].

C. Application

The application (or the set of applications) to be executed
by the system is organized as a set of distributed and co-
operating tasks, which is classical of the IoT domain. The
application is therefore modeled with a direct acyclic graph,
called a task graph, where nodes represent tasks and edges
represent data exchange from a task to another one. Each task
is characterized by the resources required for its execution:
i) processing and storage (i.e. CPU, RAM and disk quotas),
and ii) cyber-physical (i.e. the list of sensors and actuators).
Moreover, each task is also annotated with the specific zone
it has to interact with (for sensing/actuation purposes), if

any. On the other hand, each edge is characterized by the
required uplink/downlink band. As a note, at the considered
abstraction level, specific application time requirements can be
expressed by translating delay constraints into computing and
communication requirements, thus to ensure task completion
and data transmission within a certain deadline.
Fault tolerance aspects: In a CPS, specific tasks implemented
by the application may expose mission- or safety-critical re-
quirements. On the other hand, other tasks may not be relevant
from the safety point of view. Therefore, tasks are labeled as
critical or non-critical; the former ones are mandatory to be
executed while the latter ones can be skipped on necessity.

III. FAULT TOLERANT CPS SYNTHESIS

Given as input i) an application task graph (or a set of task
graphs), ii) a board repository, and iii) an environment floor
plan, the nominal system synthesis problem is defined as the
identification of the optimal solution in terms of

• architecture instantiation – the selection of a set of edge
nodes from the board repository and their deployment in
the selected spots, and

• application mapping – for each application task, the se-
lection of the node that will have in charge its execution,

such that the monetary cost of the instantiated architecture is
minimized and all cyber-physical constraints are satisfied:

• at most one node can be installed in a spot,
• each task is mapped on one and only one node providing

all required sensors/actuators,
• each task is mapped on a spot that is comprised in the

specific zone needed by the cyber-physical requirements
of the task,

• each node provides processing and storage resources
greater or equal to the sum of the requirements of all
the mapped tasks,

• each node is mapped on a spot that provide communica-
tion band greater or equal to the sum of the requirements
of all the mapped tasks.

Fault tolerant synthesis: To guarantee fault tolerance under
the single fail-silent fault model, we adopted the active-
standby technique [7]. This technique replicates each critical
task to have a standby counterpart, mapped on a different node,
that is executed only in case the active counterpart cannot work
due to a node failure. From a global point of view, when a node
fails, the tasks mapped on it are distributed on an alternative set
of nodes in the architecture. The task graph is also enhanced
so that the edges incorporate the communication requirements
due to the restoring of the task state from the failed node to
the one executing the standby counterpart. Thus, the synthesis
problem is extended as follows:

• each critical task in the nominal application, together with
its incoming and outcoming edges, is duplicated to obtain
an active task and a standby one,

• the standby task must be mapped on a different node w.r.t.
the active task.

On the other hand, non-critical tasks are not hardened since it
is not mandatory to guarantee their completion.
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TABLE I: MILP variables, sets and parameters.

Sets
S the set of available spots sk
Tnc the set of non-critical tasks tj
Tc the set of active (A) and standby (S) tasks; for each critical task j

we have tAj , t
S
j ∈ Tc

B the set of edge node bi
R the set of resource types, i.e., R = {cpu, ram, disk}
C communication directions, i.e., C = {up, down}
W the set of replica types, i.e., W = {A,S}

Parameters
Bcosti cost of edge node bi
Bresi,r number of resources on edge node bi of type r ∈ R
Scomk,c bandwidth of spot sk in direction c ∈ C

Pre-Processing Parameters
mi,j ,m

w
i,j binary parameter set to 1 if and only if edge node bi has all

sensors and actuators required by task tj , t
w
j

zj,k, z
w
j,k binary parameter set to 1 if and only if spot sk is

included in all zones with which task tj , t
w
j requires to interact

resi,j,r,k number of resources of type r required by the non-critical task tj
on edge node bi installed in spot sk; +∞ if task tj cannot be
executed on edge node bi

resA
i,j,r,k number of resources of type r required by the active task tAj

on edge node bi installed in spot sk; +∞ if task tj cannot be
executed on edge node bi

comj,c required bandwidth of the non-critical task tj in direction c ∈ C
comA

j,c required bandwidth of the active task tAj in direction c ∈ C

Variables
xi,k,j binary variable set to 1 if and only if the non-critical task

tj ∈ Tnc is hosted on edge node bi installed in the spot sk
xw
i,k,j binary variable set to 1 if and only if the twj ∈ Tc task is hosted

on edge node bi installed in the spot sk , where w ∈W
yi,k binary variable set to 1 if and only if the edge node bi is

installed in spot sk

IV. OPTIMIZATION ENGINE

The synthesis process discussed in the previous section
defines a large space of possible solutions due to the many
alternative choices in i) the architecture instantiation, both
in terms of the selection of the edge nodes from the board
repository and of nodes deployment in the available spots, and
ii) in the mapping of the tasks on the instantiated architecture
by fulfilling all requirements (cyber-physical, processing and
communication, and fault tolerance requirements). To auto-
mate such design space exploration we exploited a Mixed
Integer Linear Programming (MILP) formulation, that we then
solved with a commercial optimization engine. The MILP
formulation, presented in Tables I and II, has been obtained as
an extension of our previous work [4], where fault tolerance
issues had not been taken into account. Briefly, the model
inherits binary parameters for sensor-to-node (m), task-to-zone
(z), and edge-to-spot (y) mappings, and same constraints (C2-
C5) to enforce task allocation, edge node placement and CPS
requirements, as in [4]. In the following, we introduce the
novel fault tolerance-related aspects of the MILP formulation,
highlighted in grey in the tables. In details, we divide the
original set of tasks into two sets: the set of non-critical tasks
Tnc and the set of critical tasks Tc. For each critical task,
Tc contains both the active and the standby replicas. Both
active and standby task replicas are characterized in terms
of resource and communication requirements by the same
parameters resA

i,j,r,k and comA
i,c; moreover, each active and

standby task replica is modelled by its own allocation binary
variable xA

i,k,j and xS
i,k,j , respectively, as illustrated in Table I.

TABLE II: MILP model constraints and optimization function.

Cost function
C1 min

∑
bi∈B

∑
sk∈S

Bcosti · yi,k

Task allocation
C2a

∑
bi∈B,sk∈S

xi,k,j = 1 ∀tj ∈ Tnc

C2b
∑

bi∈B,sk∈S
xw
i,k,j = 1 ∀twj ∈ Tc

Edge node placement
C3

∑
bi∈B

yi,k ≤ 1 ∀sk ∈ S

C4a yi,k ≤ xi,k,j ∀bi ∈ B, ∀sk ∈ S,∀tj ∈ Tnc

C4b yi,k ≤ xw
i,k,j ∀bi ∈ B, ∀sk ∈ S,∀twj ∈ Tc

Cyber-physical requirements
C5a (mi,j + zj,k) · xi,k,j = 0 ∀bi ∈ B, ∀sk ∈ S,∀tj ∈ Tnc

C5b (mw
i,j + zwj,k) · x

w
i,k,j = 0 ∀bi ∈ B, ∀sk ∈ S,∀twj ∈ Tc

Processing requirements

C6
∑

tj∈Tnc

resi,j,r,k · xi,k,j +
∑

twj ∈Tc

resA
i,j,r,k · x

w
i,k,j ≤

≤ Bresi,r ∀bi ∈ B, ∀sk ∈ S,∀r ∈ R, ∀w ∈W
Communication requirements

C7
∑

tj∈Tnc

comj,c · xi,k,j +
∑

twj ∈Tc

comA
j,c · xw

i,k,j ≤

≤ Scomk,c ∀bi ∈ B, ∀sk ∈ S,∀c ∈ C,∀w ∈W
Fault tolerance

C8 xA
i,k,j + xS

i,k,j = 1 ∀bi ∈ B, ∀tAj , tSj ∈ Tc, ∀sk ∈ S

New modeling constraints due to fault tolerance requirements
are introduced in Table II. Specifically, the constraints C6 and
C7 now take into account the resource and communication
requirements for all active and standby task replicas in Tc,
since, in the worst case scenario, all standby task replicas
will end up replacing their active counterparts. Moreover,
the requirement on the mapping of the standy task replica
on different nodes w.r.t. the corresponding active tasks is
modeled by the new constraint C8. The remaining part of the
formulation handles the nominal architecture instantiation and
application mapping as in [4].

V. EXPERIMENTAL RESULTS

We performed a set of experimental evaluations of the
proposed MILP formulation by means of the IBM ILOG
CPLEX optimization solver [9]. To have a large set of test
cases, we implemented a synthetic problem generator similar
to the one in [4] defining realistic planimetries and applications
and related characterizations to describe the overall smart
environment. In particular, each problem is defined with a
planimetry of approximately 100 zones, 200 spots and 300
tasks. In each problem, we have generated n different appli-
cations, each one having a task graph similar to the one defined
in [4], and we have partitioned the zones into subsets, each
one associated to a single application. Each task graph has
been defined to have a number of tasks with cyber-physical
requirements proportional to the number of zones associated
to the application. We varied n in {5, 10, 20} by associating to
each application approximately {20, 10, 5} zones, respectively.
In this way, we have obtained large planimetries with a
variable internal complexity in terms of applications dimension
and cyber-physical requirements. The board repository and the
board parameters have been borrowed from [4].

We tagged the generated problems several times, each time
with different fault tolerance requirements. In particular, these
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Fig. 2: Synthesis cost when varying the number of applications
n and the criticality level r.

requirements have been modeled with a criticality level r,
representing the amount of critical tasks in the considered
application. We varied the value of r as follows: 0%, 25%,
50%, 75%, and 100%. In particular, when r = 0% there is no
fault tolerance requirement (as in [4], while r = 100% the case
where entire application requires fault tolerance mechanisms.
Overall, for each number of application n and criticality
level r, we generated 10 different problems.

To analyze the effectiveness of our approach, we defined
a baseline in which all applications requires 100% fault
tolerance and the zones in the planimetry do not share spots
(similarly to the baseline in [4]). This represents the common
practice of a designer that, to dominate the complexity of the
synthesis problem, manually defines a solution to the fault
tolerance-agnostic problem acting on each zone separately, and
subsequently introduces fault tolerance by duplicating nodes
and mapped tasks in each zone with a straightforward method.

Figure 2 reports the experimental results, in terms of the
average costs of the various solutions for different values of
the number of applications n and criticality levels r, together
with the baseline costs for each application scenario. For each
value of n, it is possible to notice how the cost of the solutions
decreases with the lowering of the criticality level in an almost
linear way spanning from 0.90× when p = 75% down to
0.43× when p = 0% w.r.t. p = 100%: this confirms that the
proposed approach is able to tailor the hardening process and
the architecture instantiation based on the specific needs of the
specific problem, without any over-provisioning.

At the same time, if we compare the results obtained with
a different number of applications n, we notice that a larger
number of applications results in higher costs; varying n from
5 to 20 results in an average +23% cost increase across
different r values. Indeed, with a larger value of n, the defined
problem generator reduces the number of tasks associated to
each applications since the planimetry size is kept almost
constant; in turn, there is a decrease of the number of spots
shared across different applications that can be exploited by
the approach to reduce the number of installed boards.

The comparison against the baseline shows how our syn-
thesis strategy outperforms the manual common practice also
in the scenario with p = 100%, ranging from 1.13× with
n = 20 up to 1.20× with n = 5. Differently from the baseline,
our approach is able to opportunistically exploit spots placed
in the intersection among zones to to pack together tasks
having cyber-physical interactions with the various involved
areas; in this way, a lower number of boards may be installed
to host both active and standby tasks. This observation is

also confirmed by the fact that the baseline presents a cost
that is higher than 2× the case without any fault tolerance
requirements (p = 0%), even if the adopted hardening tech-
nique is the task duplication. This is because our approach is
capable of accommodating multiple applications on the same
spot; therefore, by placing redundant tasks on boards installed
on spots in zones that are of interest for multiple tasks, our
approach allows to reduce the overall costs.

To compare the performance of the MILP engine, the
baseline problem solution computation requires approximately
from 1 to 3 minutes on average, i.e., at most 2.29× the time
required to solve the problem with no fault tolerance as in [4].
In the worst-case scenario, i.e., with p = 100%, our solution is
computed approximately from 3 to 9 minutes, with at most a
3.47× slowdown. Thus, we may assume the proposed solution
to be computationally affordable.

VI. CONCLUSIONS

This paper has presented a novel system-level design ap-
proach for implementing CPSs for smart environments having
fault tolerance requirements. The MILP engine aims at min-
imizing the monetary cost of the solution by properly i) se-
lecting devices composing the architecture, ii) installing them
in the environment planimentry, iii) duplicating and deploying
the application tasks on them while guaranteeing both cyber-
physical and fault tolerance requirements. Experimental results
show that our proposed solution is computationally viable and
can reduce the total cost of the synthesis up to 20% compared
to straightforward hardening baseline. As future work, we will
extend the approach to handle multiple faults.
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