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ABSTRACT

Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, applica-
tion of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli
detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through
the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing
for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks
are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to
subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte
Carlo (MCMC) algorithm, which exploits a data augmentation trickand MCMC updates from nonconjugate Bayesian nonparametric methods.
We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.

KEYWORDS: Bayesian statistics; competing risks; discrete failure time models; discrete time-to-event data; grouped survival data; local-global

Markov chain Monte Carlo.

1 INTRODUCTION

Time-to-event data are common in many applications such as fi-
nance, medicine, and engineering with examples including time
to payment and survival and failure times. Most approaches to
survival data consider continuous event times. Nevertheless, it
is more and more common to record time-to-event data on a
discrete scale (eg, patient-reported outcomes or time to preg-
nancy measured in number of menstrual cycles it takes a couple
to conceive). See Schmid and Berger (2020) for further exam-
ples. Discrete recording of the timings of events (Allison, 1982)
may occur when time is truly discrete, or when continuous time
is partitioned into nonoverlapping intervals (corresponding, for
instance, to days, weeks, or months) and only the interval in
which an event occurs is recorded (King and Weiss, 2021). This
special case of interval censoring is usually referred to as grouped
time and, in this work, we consider discrete survival models
that arise as probabilistic grouped versions of continuous-time
frailty models from survival analysis (see, eg, Hougaard, 1986,
1995; Andersen et al.,, 1993, Chapter IX; Hougaard et al., 1994;
Kalbfleisch and Prentice, 2002). Indeed, direct application of
continuous-time methods to discretely recorded data may result
in biased estimation (Lee et al., 2018).

Moreover, our focus is on discrete survival data in the pres-
ence of multiple, competing risks that can cause an event. Tra-
ditional analyses often consider a single risk with events due to
other risks, for example, other causes of death, treated as censor-

ing. However, this generally violates the common assumption of
independent censoring (Schmid and Berger, 2020). Moreover,
such analyses can lead to misestimation of hazards and covari-
ate effects (Andersen et al., 2012). Here, we consider data from
the Medical Information Mart for Intensive Care IV (MIMIC-
IV, Johnson et al.,, 2023) database on length of stay in an in-
tensive care unit (ICU), typically reported discretely in days.
While the MIMIC-IV database documents admission and dis-
charge times down to the minute, it is reccommended to perform
survival analysis using discrete day units. This approach is pre-
ferred because admission and discharge times within a single day
are significantly determined by hospital protocols and staff de-
cisions, rather than purely reflecting the patients’ health condi-
tions. The study considers 3 competing events that can termi-
nate an ICU stay: discharge to home (69.0%), transfer to another
medical facility (21.4%), and in-hospital death (6.1%).

The 2 main approaches for competing risks with discrete
times are cause-specific hazard functions and the subdistribu-
tion hazard model (Schmid and Berger, 2020). The latter is
more suitable when interest is in one out of many risks. The
first approach usually exploits methods from generalized linear
models (GLMs), enabling maximum likelihood estimation,
variable selection, and other methods from GLMs, such as in
Tutz (1995) and Mést et al. (2016). Our work places itself
within this approach, focusing on scenarios with few risks
and thus considering cause-specific hazards, that is, a hazard
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function for each risk, introducing dependence across risks by
building on recent advances in change point analysis.

A characteristic of traditional discrete survival models as com-
pared to GLMs is that they present unconstrained baseline haz-
ards. This leads to a large number of parameters to estimate and,
as a consequence, to unstable estimation, especially if for certain
time points the number of events is small. To improve stability,
regularization ofhazard functions has been proposed. See, for ex-
ample, Luo et al. (2016), Heyard et al. (2019), and Mést et al.
(2016). Fahrmeir and Wagenpfeil (1996) and King and Weiss
(2021) employ random walks to smooth the hazard function. In
all these works, cause-specific baseline hazards are treated inde-
pendently. Vallejos and Steel (2017) focus on risk-specific co-
variate selection, still assuming independence across risks. On
the other hand, dependence across risks is plausible since mul-
tiple hazards can be affected by changes to the individual across
time, and as such should be incorporated in the model.

The main methodological contribution of this work lies in
modeling explicit and interpretable dependencies across risks.
We introduce a multivariate change point model for baseline haz-
ards, which offers 2 key advantages (Kozumi, 2000). Firstly, it
reduces the number of parameters, promoting parsimony. Sec-
ondly, it accommodates the variability in hazard rates across
different survival times. We adopt a Bayesian approach, assign-
ing priors on the number and location of overall change points,
thereby inducing marginal dependence among them. For each
overall change point, we use a multivariate Bernoulli prior to de-
termine which risks are involved, a method previously applied
in time series analysis (Dobigeon et al.,, 2007; Harlé et al., 2016).
‘We term our approach the multivariate Bernoulli detector, build-
ing on prior work by Harlé et al. (2016).

Change points have been widely studied in continuous sur-
vival analysis (eg, Matthews and Farewell, 1982; Goodman et al.,
2011) but less so in the discrete case: Kozumi (2000) consid-
ers a single risk modeled via a Markov chain with a prespeci-
fied number of change points, while Wang and Ghosh (2007)
use posterior predictive checks for change point detection, with-
out allowing for covariates in the model. On the other hand,
we allow for covariates in the model and perform cause-specific
variable selection. Moreover, we estimate the number of change
points, testing for the presence and location of change points us-
ing Bayes factors or posterior probabilities.

The paper is structured as follows. Section 2 introduces the
model and describes a tailored Markov chain Monte Carlo
(MCMC) sampler. Section 3 discusses an application to the ICU
data. Section 4 compares our approach with existing ones. We
conclude the paper in Section 5.

2 MODEL

2.1 Setup and notation

We follow the notation in Tutz and Schmid (2016). Let
T; denote the time to event for individual i € {1, ..., n},
where n is the number of individuals. In the discrete-time
setting, T; € {1, ..., tmax + 1} for some maximum time .
The random variable T; can, for instance, arise as the dis-
cretization, also known as grouping (Kalbfleisch and Pren-

tice, 2002), of a latent continuous time TS into tp, + 1 in-
tervals [wy, w1), (@1, w,), ..., [@,,00) with wy = 0. In
this case, there is a one-to-one correspondence between the
set of integers {1, ..., tnax + 1} and the intervals of the real
line where the continuous-time random variables T/ are de-
fined. As such, the interpretation of T; =t + 1 is simi-
lar to censoring, in the sense that the event will occur at
time t >ty (ie, TS > @y, ) and fye + 1 is simply a “la-
tent time” that groups together individuals for which it is
known that the even has not occurred up to time fy,y.
The time-to-event distribution is usually characterized by the
overall hazard function A(t | 6;)) =P(Ti=t| T, >1t,6;) =
P{Tf € [wi—1, o) | Tf > wy—y, 6;} for some vector of param-
eters 0;.

Additionally, we assume that observations are subject to cen-
soring. That means that only a portion of the observed times
can be considered as exact survival times. Let C; be the censor-
ing time of individual i. C; assumes values in {1, . . ., tmax}, with
T; and C; independent (random censoring). Moreover, we as-
sume that the censoring mechanism is noninformative, that is,
it does not depend on any parameters used to model the event
times (Schmid and Berger, 2020). Let §; = 1[T; < C;] beacen-
soring indicator, where 1[-] denotes the indicator function, and
t; = min(T;, C;) the observed time.

We consider competing risks with m different types of
events. For instance, the events can correspond to death
due to m different causes. Then, R; € {1, ..., m} denotes
the event type experienced by individual i at time T}, for
which we observe a value r; only in the absence of censor-
ing, that is, §; = 1. Finally, the cause-specific hazard func-
tion is A.(t|0;) =P(T;=t, Ry =r| T, > t,0;) such that
ME16) = Y 1t 1 6).

2.2 Likelihood

We assume independence across individuals such that the likeli-
hood is a product over individual-specific terms. For ease of ex-
planation, we consider the likelihood contribution of 1 individ-
ual and drop subscripts i in the remainder of this section unless
otherwise specified. Under the assumption that Cisindependent

of T and 0, the likelihood for 6 is given by

P(T=t, R=r|0)P°P(T>t]|0)"°

t—4

= a0 [T -2a10) (1)

I=1

and we specify A,(t | 0) and thus A(f | 6) according to the
multinomial logit model, which is the most popular for categori-
calresponses (Tutzand Schmid, 2016). Specifically, A, (t | 6) =
eXP(’?rt)/{l + ZZZI eXP(Upt)}; where Mrt = Oyt + xTBr is a
cause- and time-specific linear predictor, and 6 = {n,;}. The in-
tercept o4 represents the cause-specific baseline hazard. The
p-dimensional vector B, = (B, ..., Byy) consists of the
cause-specific regression coefficients of the covariates in the p-
dimensional vector ¥ = (x1, ..., x,). Such likelihood specifi-
cation is also known as proportional continuation ratio model
(Tutz and Schmid, 2016) as increasing x; by one unit increases
the cause-specific odds by the factor exp(,;). Note that, when
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r=1and 8§ =1, A,.(t | 0) corresponds to ¢; defined in Sec-
tion 2.5, and the considerations on prior specification there dis-
cussed will be relevant when building a change point model on
Uyt

2.3 The multivariate Bernoulli detector

We propose a model on the baseline hazards that is flexi-
ble, yet has interpretable structure. Specifically, the sequence
Q1 ..., Oy, isset to follow a piecewise constant function. We
do so through a change point model with dependence across
risks r. In our setup, a change point corresponds to a time point
where the hazard of at least 1 risk  changes. We specify a hierar-
chical prior on the change points, which has 3 main components:
(i) a prior on the number of change points; (ii) a prior on the lo-
cation of change points; and (iii) a prior on which risks (at least
1) have a change point at that particular time location, given that
a change point at time t occurs.

2.3.1 Prior specification on overall change points

In this section, we describe prior specification on the number
and location of change points. Let &ty = (¢, . . ., &y ). Then,
v: = 1[a; # o;—;] indicates whether there is an overall change
point att € {1, ..., tmay}, that is, if the hazard of at least a risk
changes at time t. Furthermore, K = ), _ ; denotes the num-
ber of change points. Here, 7 defines the set of possible change
point locations. We specify the priorony = (y1, ..., .. ) hi-
erarchically, by specifying a prior p(K) on the number of change
points and then p(y | K) as this provides explicit regularization
on K: iid. y; would imply a binomial distribution on K.

To motivate the next model development, consider the bot-
tom plots in Figure 2, where 2 observations with ¢, = 7 out of
500 are not used when inferring change points. Then, the lack
of observations at time t = 7 results in spurious change points
at that time location and the next. We restrict our inference to
avoid such sensitivity to a few observations: To aid identifiabil-
ity, considering the flexibility of the underlying time-varying ge-
ometric distribution, which is discussed in Section 2.5, we only
allow change points forasubset of times 7 C {1, ..., fya) such
that ; = 0if t ¢ 7. Firstly, as it is typical in change point ap-
plications, we do not allow change points at the support bound-
ary, in our case t = 1 and t = t;,x. Moreover, we do not allow
a change point at time t if both ¢ and t — 1 have no observed
events as the data lack information on which of the 2 time points
would be a change point. Also, we do not allow change points
at a time ¢ with no observed events if both neighboring times
t — 1 and t + 1 have observed events, because this would lead
to spurious change points due to the flexibility of the underly-
ing time-varying geometric, as seen in Figure 2 (bottom row).
On the other hand, we prefer to introduce parsimony in the esti-
mation of change points to improve interpretability. We explore
the effect of the restriction on change point locations in a simu-
lation study in Web Section E.4. There, the restriction (i) does
not deteriorate inference, even if the true change point is not in
T (ii) avoids spurious change points at time locations without
observed events.

We assume a geometric distribution with success probabil-
ity 7 truncated to K < |7 | as prior on the number of change
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points. We denote such prior as Geo|7(7x ). For the locations
of overall change points given K, we use the uniform distribution
on possible configurations p(y | K) = 1/ (lp) .Insummary, the
joint prior on the number and location of change points has a hi-
erarchical specification: p(K, y) = p(K) p(y | K).

2.3.2 Cause-specific change point configuration
In this section, we discuss the prior on which risks present a jump
in the hazard, given the vector y. Let z,; = 1[a,y # @,;—1)] be
an indicator variable denoting if a change point occurs at time ¢
for risk r. If there is no change point at ¢ for any r, then ¥, = 0
and z,; = 0.If 4, = 1, thenz,; = 1 for at least one r.

Letz; = (zy, - - -, Zmt )- Conditionally on y; = 1, we assume
that z; follows a multivariate Bernoulli distribution (eg, Teugels,
1990). An m-dimensional binary vector z; can assume 2" possi-
ble values corresponding to a combination of z,; € {0, 1}. The
multivariate Bernoulli distribution is then parameterized by a
2"-dimensional vector, whose elements correspond to the prob-
ability of each particular outcome (ie, configuration). In our
case, when modeling z; given y; = 1, we exclude the configu-
ration of all zeros, that is, z,; = 0 for every r. Thus, z; can as-
sume only 2" — 1 possible values. We denote such distribution
as Bero (¥), where ¥ denotes the (2™ — 1)-dimensional vector
of configuration probabilities. In summary, the prior specifica-
tion for z; is

[Bero(w) ity =1
@l n :30 ify, =0

where J is a point mass at the zero vector. We refer to the joint
prioron (K, p, z) as multivariate Bernoulli detector, where z =

t
{zt}tn;xl .

2.4 Further prior specification

Model specification is completed by specifying independent
prior distributions on &, and f,. We specify a prior on &, con-
ditionally on the number and location of change points. Since
a = (ay, ..., ot,tm) is a piecewise constant function for each
risk r, assuming constant values between change points, let o,
denote the unique value of ¢+ over each time interval for risk
r. Note that for each risk, a change point can be activated or not,
with the only constraint that a change point needs to be activated
for at least 1 risk. We assume o, ~ N (j1q, 0 ) independently
across £ and r.

Furthermore, to identify important effects, we assume a
variable selection prior for the regression coefficients, 8, =
(Brs -, Brp), which allows for risk-specific variable selec-
tion. Here, we consider a spike-and-slab prior (Mitchell and
Beauchamp, 1988): ,; ~ g3 N (0, Gé) + (1 — 7p) 8, where
7g is the prior inclusion probability. We use the hyperprior
g ~ U(0, 1). In the application in Section 3, some variables
are grouped as they are dummy variables associated with a cat-
egorical covariate. We modify the prior accordingly to perform
groupwise variable selection as detailed in Web Appendix B. We
note that other possible prior choices are available in the lit-
erature to perform variable selection, such as shrinkage priors
(Bhadra et al., 2019), which offer computational advantages at
the cost of depending on arbitrary thresholds to identify relevant
effects.
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FIGURE 1 Probability mass function of the time-varying geometric distribution: visualizations of Equation 2 with t,,,x = 15 and success
probabilities (i) ¢ = 0.25 fort < Sand ¢, = 0.5 otherwise; (ii) ¢ = Ofort < Sort > 11,and ¢, = 0.5 otherwise; and (iii) ¢ = 0.1 for

t <5,¢; =0.5fort > 11,and ¢y = 0 otherwise.

In the simulation studies and the application on ICU data, we
set the parameters as follows: Ué =1, mx = 0.5, all elements
of ¥ equalto 1/(2™ — 1), iy = —9, and 0 = 3. The partic-
ular prior choice for o, derives from the interpretation of the
model in terms of the time-varying geometric. In Section 2.5, we
highlight the importance of shrinking the probabilities ¢; toward
zero. This is equivalent, in absence of covariates, to shrinking
exp(a,)/{1 + exp(a},)} toward zero and, consequently, o},
toward —9. Roughly speaking, a N'(—9, 3) on a’, is equivalent
to a Beta(0.01, 1) prior on ¢, which is shown to have a good
performance in Section 2.5. Finally, we note that we could spec-
ify a prior on ¥ to favor sparsity or a large number of change
points.

2.5 Rationale behind modeling strategy
Prior specification for the parameters governing the multivariate
Bernoulli detector (see Section 2.4) is derived from the follow-
ing considerations. In the uncensored (§ = 1) single-risk (m =
1) case, the distribution of the time to event in the discrete case is
a time-varying geometric distribution (Landau and Zachmann,

2019) with time-varying success probability ¢, = A(t | 6), that
is,

¢t l_[;;i(l - ¢1)’ t=1,..., tmax (2)
Mo =¢), t=twt+1l

The time-varying geometric is fully flexible in that it can rep-
resent any distribution on {1, ..., tmax + 1} by appropriately
choosing ¢, (Mandelbaum et al., 2007). It is analogous to the
piecewise exponential distribution in continuous survival anal-
ysis (Gamerman, 1991), if we assume a change point model
for the ¢;. See Figure 1 for widely varying realizations of the
distribution for certain {¢};. This flexibility should be taken
into account when inferring ¢. It relates to the potential lack of
stability of unconstrained estimation of baseline hazards men-
tioned in Section 1. For instance, there is a separate parame-
ter ¢, for each time point, but we might not have observed
an event at each time point. To avoid such overpameteriza-
tion, some subsequent ¢; can be assumed to be equal to each
other, as in Figure 1, resulting in a change point model: A
change point is a time ¢ for which ¢, # ¢;_;. Moreover, given

P(T=t|{p}) = {
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FIGURE 2 Time-varying geometric simulation: posterior probabilities ( x ) and Bayes factors (@) for the presence of a change point with a
uniform prior (left column, ¢} ~ 1/(0, 1)) and regularization toward zero (right column, ¢} ~ Beta(0.01, 1)) when simulating data without
(top row) and with (middle and bottom rows) a change point. The bottom row uses the data from the middle row without the observations
with t; = 7. Some Bayes factors are outside the plotting range. The dashed lines are drawn in correspondence of the true change point.

the flexibility of the time-varying geometric, different combi-
nations of {¢;} can lead to a satisfactory fit of a data set, lead-
ing to identifiability problems. As such, we impose prior reg-
ularization by a priori shrinking the value of ¢, toward zero.
We further motivate our prior choice in the following simulation
study.

We simulate n = 500 times t; from Equation 2 with t,,, =
1000 using 2 different settings for ¢». We consider a scenario
without change points with ¢ = 0.5 and a scenario with a sin-
gle change point given by ¢ = 0.5 for t < 4 and ¢ = 0.25
for t > S. For this last scenario, we also consider the data after
removal of observations with t; = 7, which we discuss in Sec-
tion 2.3.1 in relation to the prior constraints on change point
location. To understand how the prior on ¢ can affect infer-
ence on change points, we compare 2 priors within a Bayesian
change point model defined as follows: We specify a uniform

prior over all possible change point configurations among the ¢.
Let ¢ denote the unique value of ¢; over each time interval de-
limited by the change points. Conditionally on a change point
configuration, we choose a prior on ¢;. Then, the likelihood in
Equation 2 completes the model. We fit this model with t,,, =
max; t;, such that t,,,, = 9 for the data with no change point and
tmax = 14 for the data with a change point. We compare pos-
terior inference obtained with a uniform prior, ¢} ~ U(0, 1),
and with a prior that shrinks the parameters toward zero,
¢; ~ Beta(0.01, 1).

Figure 2 shows the inference on change points. The uni-
form prior (left column) leads to the detection of too many
change points, especially at larger t. Regularization to-
ward zero using ¢} ~ Beta(0.01, 1) (right column) yields
more accurate posterior inference without spurious change
points.
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2.6 Posterior computation using local-global MCMC

To devise an MCMC scheme to perform posterior inference, we
exploit the representation of the likelihood in Equation 1 as a
multinomial logistic regression (Tutz and Schmid, 2016), using
a data augmentation trick. This results in the availability of con-
jugate updates, leading to more eflicient mixing and preventing,
at the same time, large changes in the configuration of change
points, resulting in more eftective local moves. The latent vari-
ables associated with the data augmentation are highly corre-
lated with the change points, and, as such, it is difficult to explore
the change points space conditionally on the latent variables. To
counterbalance this drawback, we also devise global moves of
change points conditionally on the observed data. Such moves
are based on ideas from the Bayesian nonparametric literature
(Dahl, 2005; Martinez and Mena, 2014; Creswell et al., 2020).
Finally, from the MCMC output, we can derive Bayes factors to
test for the presence of change points using the Savage-Dickey
ratio (Dickey, 1971; Verdinelli and Wasserman, 1995) (see Web
Appendix C for details).

We refer to the resulting hybrid algorithm as “local-global
MCMC” borrowing the terminology from Samsonov et al.
(2022). Here, we provide a brief explanation of our MCMC
strategy in relation to previous work. Web Appendix D details
the algorithm.

2.6.1 Local MCMC with data augmentation

We exploit the data augmentation representation of a multi-
nomial logistic regression in terms of Gumbel latent variables
by McFadden (1974) and Frithwirth-Schnatter and Frithwirth
(2007). Then, the augmented likelihood is Gaussian, which en-
ables convenient MCMC updates. Importantly, conditionally on
the z,, the &, have a Gaussian prior such that they can be in-
tegrated out from the augmented posterior, enabling efficient
updates of z,; and y; without having to specify Metropolis—
Hastings proposals for o%.

More recently, other augmentations have been proposed in the
literature (see, for instance, Held and Holmes, 2006; Frithwirth-
Schnatter and Frithwirth, 2010; Polson et al., 2013; Linderman
etal,, 2015). We do not opt for them because they do not provide
a convenient augmented likelihood in the presence of multiple
risks.

2.6.2 Global MCMC

Augmented data can strongly reflect the change points of the cur-
rent state of the MCMC chain, resulting in local MCMC up-
dates to the change point parameters z,; and ;. Therefore, we
also consider MCMC moves without data augmentation, that is,
based on the original data, to enable more global change point
updates and explore better posterior space.

Specifically, we exploit the fact that change points induce a par-
tition of time into intervals and apply ideas from Bayesian non-
parametrics (Dahl, 2005; Martinez and Mena, 2014; Creswell
et al., 2020) to deal with nonconjugate updates. This allows for
more global moves at the cost of having to specify Metropolis—
Hastings proposals for a’,. Alternating between local and global
MCMC steps allows for better mixing and convergence of the
algorithm.

We demonstrate the performance of our approach in simula-
tion studies. Web Appendix E presents simulation studies with a
wide range of scenarios and comparison with alternative models.
We find that the multivariate Bernoulli detector generally results
in the most accurate estimation. Prior shrinkage of baseline haz-
ards can result in estimation bias, which is a common feature of
Bayesian shrinkage priors and the bias-variance trade-off they in-
duce (eg, Polson and Sokolov, 2019).

3 APPLICATION TO ICU LENGTH OF STAY

3.1 Data description and analysis

We apply our model to data on ICU stays from the MIMIC-IV
database (Johnson et al., 2023) with length of stay as outcome
(Meir and Gorfine, 2023).

See Web Appendix A for a detailed data description. We con-
sider m = 3 competing risks: discharge to home, transfer to an-
other medical facility, and in-hospital mortality. Length of stay is
recorded in days with the longest uncensored time being 28 days.
We analyse n = 25159 ICU stays with 17 357 discharged to
home, 5379 transferred, 1529 deaths, and 894 censored. We in-
clude the following covariates: demographics, variables related
to the ICU stay (eg, whether it is a repeat admission), and lab
tests from the first day. Most covariates are categorical with 2 or
more levels. Representing them as dummy variables leads to a
total of p = 36 predictors.

We fit our model with t,,,, = max; t; = 28 days using 200 000
MCMC iterations, discarding the first 50000 as burn-in. The
trace plots in Web Figure 14 suggest satisfactory convergence.

3.2 Posterior inference on the baseline hazards

The posterior probability of absence of overall change points
is zero as well as the Bayes factor (see Web Appendix C). Fig-
ure 3 summarizes inference on the baseline hazards (see Web
Figure 15 for corresponding Bayes factors). The hazard func-
tions differ markedly between risks: the hazard of discharge to
home is high in the first 2 weeks, but not on the first day in the
ICU. The hazard of a transfer to another medical facility is low-
est during the first few days. Finally, the hazard function for in-
hospital mortality does not vary substantially across the length of
stay.

3.3 Posterior inference on the regression coeflicients
The regression coefficients f8,; capture cause-specific covariate
effects on length of stay. The spike-and-slab prior provides ex-
plicit inference on whether there is a covariate effect through the
posterior probability of B,; # 0. Posterior inclusion probabili-
ties for each risk are shown in Figure 4. In Figure S, we report
posterior inference on regression coefficients. Finally, we remark
that the results on the baseline hazards and covariate effects are
in line with those obtained in Meir and Gorfine (2023).

4 COMPARISON WITH OTHER MODELS

We compare our results on the ICU data to those obtained from
maximum likelihood estimation and a more recent alternative,
namely the model by King and Weiss (2021).

202 1sNBny g1 uo 1sonB Aq 8EEZEL//S.09BIN/E/08/910IE/SOLIBWOIG/WOS"dNO"OlWapED.//:SANY WOy PapEojumMoq



Overall Home
S I xxx © Ixx
¥ x ¥ X
e < T x
= ]
33 53 A
o o
LI s
E° x N © x
a A=t
N ] X N x
o x o x
Xxxxxxy\)‘x\ry > xxx)e(m)‘xy
e T T T 1 e T T T 1
0 5 10 15 20 25 0 5 10 15 20 25
ICU length of stay t (days) ICU length of stay ¢t (days)
<
c
S o QS
S o 7
c
=]
2 o
T o | I
© o
N =
= 5 v
o ¥ !
2 o
s ©
> [
g o ]
=3 o
(&) ©
o
o T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25

ICU length of stay t (days) ICU length of stay t (days)

Biometrics, 2024, Vol. 80,No.3 e 7

Transfer Death
O o e
o _| ¥ @
£l £l
8- LER
o o
o« o«
e £°
Y <Y
o | o | x
X
X
xxx xxxx X
e T T T 1 e T T T 1
0O 5 10 15 20 25 0O 5 10 15 20 25
ICU length of stay t (days) ICU length of stay t (days)
o | o
) )
o | o _|
i i
3 3
CHE g CHE
o _| o ]
i i
° | I
T T
T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25

ICU length of stay t (days) ICU length of stay t (days)

FIGURE 3 ICU data: posterior inference on the overall (left column) and cause-specific (other columns) baseline hazards. The top row
displays the posterior probabilities for the presence of a change point. The bottom row shows posterior inference for the cumulative hazard
function for x; = 0 and the baseline hazard parameter «,;. Black lines represent posterior means and shaded areas correspond to 95% credible

intervals.

4.1 Maximum likelihood estimation

‘We maximize the likelihood in Equation 1 using the R package
nnet (Venables and Ripley, 2002) as the likelihood is equiv-
alent to a multinomial logistic regression (Tutz and Schmid,
2016). The resulting inference is shown in Web Figures 16 and
17. Estimates of «; are less smooth than for our model but
are otherwise similar. Estimates of B, are in agreement with
ours.

4.2 Semi-parametric model by King and Weiss (2021)

We also compare our model with the Bayesian semi-parametric
model by King and Weiss (2021), which also involves multi-
ple risk and a flexible model for the hazard function. For sim-
plicity of explanation in what follows, we denote with ;; a con-
tinuous covariate j for individual i and with dy a dummy vari-
able corresponding to a level of a categorical covariate. King
and Weiss (2021) specify a multinomial logit model for dis-
crete survival analysis with competing risks with 1, = o,y +

27;1 fﬁrj(x,vj) + Zidzl Bk dir, where p° and pd denote the
number of continuous and dummy variables, respectively. More-
over, &, = Bor + far(t) for intercepts By, and functions f,,
and fg,j, which are object of inference. Note that in their ap-
proach, King and Weiss (2021) include every level of a cate-
gorical covariate. The functions f,, and fg,; are inferred using
a Gaussian Markov random field prior. For prior specification
and parameter choice, we follow the recommendations in Ap-
pendix C of King and Weiss (2021) for uninformative priors.
We fit the model using the R package brea (King, 2017) using

50 000 burn-in MCMC iterations followed by 200 000 recorded
iterations.

The resulting inference is shown in Web Figures 19-21. The
estimates of baseline hazards are in line with our model, though
not as smooth. The nonlinear covariate effect of age is consistent
with the linear effect from our model, but positive association of
age and transfer hazard only appears at an older age. The other
covariate effects are also similar to the results from our model.
See Figure S.

S DISCUSSION

In this work, we focus on the estimation of the hazard function of
competing risks in the context of discrete survival. We assume a
change point model for the hazard function, with cause-specific
change points, introducing dependence among change point lo-
cations across risks. In our approach, both number and location
of change points are random. We refer to our model as multivari-
ate Bernoulli detector. Dependence across risks provides an at-
tractive way for regularization of baseline hazards since changes
to an individual’s condition across time might affect multiple
cause-specific hazards simultaneously. Our approach is widely
applicable and interpretable. The data augmentation enables the
use of any prior on regression coefficients making the MCMC
updates more eflicient. The simulation study and the real data
application show that posterior inference on change points with
dependence across risks is effective, with favorable comparisons
with a frequentist approach and the Bayesian semi-parametric
model by King and Weiss (2021).

202 1sNBny g1 uo 1sonB Aq 8EEZEL//S.09BIN/E/08/910IE/SOLIBWOIG/WOS"dNO"OlWapED.//:SANY WOy PapEojumMoq



8 e  Biometrics, 2024, Vol. 80, No. 3

Anion gap
Bicarbonate
Calcium total
Chloride
Creatinine
Glucose
Magnesium
Phosphate
Potassium
Sodium

Urea nitrogen
Hematocrit
Hemoglobin
MCH

MCH concentration
MCV

Platelet count
RDW

Red blood cells
White blood cells
Insurance

Marital status
Ethnicity
Admission number
Night admission
Sex

Direct emergency
Recent admission

Age

FIGURE 4 ICU data: posterior inclusion probabilities for each covariate and risk. MCH stands for mean cell hemoglobin, MCV for mean

e m m m e e m - — — — — 4
| R LR R LR T 1
e |
| R LR R LR 1
I e |
| R LR R LR 1
I e —
| R LR R LR 1
I e —
| R LR R LR 1
I e —
| R LR R LR 1
I [

| R LR R 1
e m m m e e e e — - — — —
R R L R l
———— - ———— = 4

| R LR 1
I e [
| R LR R LR 1
I e —
| R LR R LR 1
I e —
R R Lt R 1
I e -
R L e L L E LR 4
e e [

| R LR R R |
I e —
| R LR R LR 1
===l

R R |
I e —
| R LR R LR 1
I e ]
| R LR R LR 1
e e -
R L e L L E LR 1

I e —
| R LR R LR 1
I e —
| R LR R LR 1
I e —
| R LR R LR 1
I e —
| R LR R LR 1
I e —
| R LR R LR i

H

e e - - - - - — -

[ e T q

e - - - - - — 4

[ e R T T [

e e - - - - - - — -

[ e T q

—— Home

— — Transfer

---- Death

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Posterior inclusion probability

corpuscular volume, and RDW for red blood cell distribution width.

202 1sNBny g1 uo 1sonB Aq 8EEZEL//S.09BIN/E/08/910IE/SOLIBWOIG/WOS"dNO"OlWapED.//:SANY WOy PapEojumMoq



Anion gap
Bicarbonate

Calcium total
Chloride

Creatinine

Glucose

Magnesium
Phosphate
Potassium

Sodium

Urea nitrogen
Hematocrit
Hemoglobin

MCH

MCH concentration
MCV

Platelet count

RDW

Red blood cells
White blood cells
Insurance: Medicare
Insurance: other
Marital status: married
Marital status: single
Marital status: widowed
Ethnicity: black
Ethnicity: Hispanic
Ethnicity: other
Ethnicity: white
Admission number: 2
Admission number: 3+
Night admission

Sex: female

Direct emergency
Recent admission

Age

Biometrics, 2024, Vol. 80, No.3 e

be--@ -

[
bec-@ oo

— i
—_—— —— — —
pocemccnaann @-cccecmcenn |

———i
- —— % — — — 4
beceoetatn Py 4

—e—i
roce--1

Home
Transfer
Death

1 1 T T T T
-0.4 -0.2 0.0 0.2 04

Regression coefficient 3,

0.6

FIGURE § ICU data: posterior means (dot) and 95% credible intervals (lines) of the regression coefficients for each risk. The categorical
predictors are coded as dummy variables as detailed in Web Appendix A. MCH stands for mean cell hemoglobin, MCV for mean corpuscular

volume, and RDW for red blood cell distribution width.

9

202 1sNBny g1 uo 1sonB Aq 8EEZEL//S.09BIN/E/08/910IE/SOLIBWOIG/WOS"dNO"OlWapED.//:SANY WOy PapEojumMoq



10 e  Biometrics, 2024, Vol. 80, No. 3

The proposed model can be easily extended to accommo-
date more complex scenarios, for example, inclusion of recurrent
event processes as outcomes (see, eg, King and Weiss, 2021),
of time-varying covariates, or semi-competing risk structure. In
this work, we employ the multinomial logit model, which is a
popular choice for the analysis of discrete competing risks. It
closely relates to multinomial logistic regression and offers com-
putational advantages. Nevertheless, the multivariate Bernoulli
detector can be used with other likelihoods, such as multino-
mial probit models or multiple time series. Finally, we note that
we could apply the same computational strategy even for change
point models in continuous time by restricting the split points to
the locations of the events.

SUPPLEMENTARY MATERIALS

Supplementary material is available at Biometrics online.

Web Appendices and Figures referenced in Sections 2, 3, and
4, and the code to implement the model are available with this
paper at the Biometrics website on Oxford Academic. The code
is also available at https://github.com/willemvandenboom/mv
b-detector.
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