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A B S T R A C T  

Time-to-eve n t data are often re c orde d on a dis cre te s cale with multip le, compe ting risks as pote n ti al caus es for the eve n t. In this con text, a pplica- 
tion of con tin uous survival analysis methods with a single risk suffers from bi as ed est imat ion . Therefore, we propos e the m ultiva riate Be rnoulli 
det ect or for competing risks with dis cre te times invo lving a multiv ari ate change point model on the cause-spec i fic b aseline ha zar ds. Thr ough 

the prior on the n umbe r of cha nge poin ts a nd their location, we impose depe nde nc e betw e en ch a nge poin ts across risks, as wel l as al lowing 
for dat a -drive n lea rning of their n umbe r. The n, c ondition ally on these ch a nge poin ts, a m ultiva riate Be rnoulli prior is used to infe r which risks 
are inv olv e d. Focus of pos te rior infe re nc e is cause-spe c i fic hazar d ra te s and de pe nde nc e across risks . Such depe nde nce is ofte n prese n t due to 

s ubje ct-spe c i fic chan ges a cross time th at affe ct all risks. Full pos te rior infe re nce is pe rformed throu gh a t ailored local -global Ma rkov chain Mon te 
Carlo ( MCMC ) algorithm, which exploits a data augme n tation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. 
We i l lus trate our model in sim ul ation s and on ICU d ata , compar ing its pe rforma nce with existing approaches. 

KEY W OR DS : Bayesian stat ist ics; compet ing ri sks; di s cre te failure time model s; di s cre t e time-t o-eve n t da ta; gr oupe d s urviv al d ata; local-glo bal 
Markov chain Monte Carlo. 
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1 I N T R O D U C T I O N 

ime-to-eve n t data are common in many app lication s such as fi-
 anc e, me dicine, and en gineerin g with examples including time

o payme n t a nd survival a nd failure times. Mos t a pproaches to
urviv al d ata con side r con tin uous eve n t times. Neve rthe le ss, it
s more and more common to re c ord time-to-ev e n t data on a
is cre te s cale ( eg, patie n t- re port ed out comes or time to preg-
 ancy meas ure d in n umbe r of me ns trual cycles it t ake s a couple

o c onc eiv e ) . Se e Schmid a nd Be rge r ( 2020 ) for furthe r exa m-
 les. Dis cre te re c ording of the timings of eve n ts ( Allison, 1982 )
 ay oc c ur when time is truly d is cre te, or whe n con tin uous time

s part it ione d into nonov erl apping interv als ( corresponding, for
ns ta nce, to days, w e eks, or mon ths ) a nd only the in te rval in

hich an event occ ur s is r ecor ded ( King and Wei ss, 2021 ) . Thi s
peci al cas e of in te rval ce nsoring is usually r eferr ed to as grouped
ime and, in this w ork, w e c on sider dis cre te surviv al models
hat arise as probabil istic grou pe d v ersions of c on tin uous-time
 railty models f rom s urvival an alysis ( se e, e g, Houga ard, 1986 ,
995 ; Ande rse n et al., 1993 , Cha pte r IX; Hougaa rd et al., 1994 ;
albfleisch and Prentic e, 2002 ) . Inde e d, dire ct application of

on tin uous-time methods to dis cre tely re c orde d data may result
n bi as e d estim ation ( Le e et al., 2018 ) . 

More ov er, our focus is on dis cre te surviv al d a ta in the pr es-
 nce of m ultip le, compe ting risks that can cause an event. Tra-
ition al an alyses often c onsider a single risk with ev e n ts due to
the r risks, for exa mple, othe r causes of dea th, tr ea ted as cen s or-

e c eiv e d: August 21, 2023; Revised: May 23, 2024; Accepted: July 24, 2024 
The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ) , wh

he original work is properly cited. 
ng. How ev e r, this ge ne rally vio l ates the common as sumption of
ndepe nde n t ce n s oring ( Schmid a nd Be rge r, 2020 ) . More ov er,
 uch an alys es can lead to mis est imat ion of haza rds a nd cova ri -
te effects ( Ande rse n et al., 2012 ) . He re, w e c on sider d a ta fr om
he Me dical Inform ation Ma rt for In te nsive Ca re IV ( MIMIC-
V, Jo hn s on e t al., 2023 ) d atabas e on length of stay in an in-
e nsive ca re unit ( ICU ) , typically r eported discr etely in days.

hile the MIMIC-IV d atabas e docume n ts admission a nd dis-
harg e times do wn t o the minut e, it is re c ommende d to perform
 urvival an alysi s using di s cre te d ay units. Thi s approach i s pre-
erre d be caus e admis sion and dis charge times within a single d ay
 re si gnifica n tly dete rmined b y hospital protocols a nd s t a ff de-
isions, rathe r tha n purely reflecting the patie n ts’ health condi -
ions . The study c onsiders 3 c ompeting ev e n ts that ca n te rmi -
ate a n ICU s tay: discha rge to home ( 69.0% ) , tra nsfe r to a nothe r
ed ical facil ity ( 21.4% ) , and in-hospital death ( 6.1% ) . 
The 2 main approaches for competing risks with dis cre te

imes are cause-spec i fic haza rd functions a nd the subdis tribu-
ion hazard model ( Schmid and Ber ger, 2020 ) . T he la t ter is

ore suitable when interest is in one out of many risks. The
rs t a pproach usually exp loits me thods from ge ne r aliz ed linear
odels ( GLMs ) , en abling m aximum l ikel ihood est imat ion,

 ari ab le s election, and other methods from GLMs, such as in
utz ( 1995 ) a nd Mös t et al. ( 2016 ) . Our work p l aces its elf
ithin this approa ch, focusin g on sc en arios with few risks
 nd th us conside ring cause-spec i fic h azards, th at is, a hazard
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
ich permits unre stricted re use, dis tribution, a nd reproduction in any me dium, provide d 
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function for each risk, introducing depe nde nce across risks by
building on re c e n t adva nces in change point an alysis . 

A cha racte ris tic of traditional dis cre te surviv al models as com-
pared to GLMs is that they prese n t uncons trained baseline haz-
ard s. Thi s lead s to a la rge n umbe r of pa ra mete rs to es timate a nd,
as a con s equence, to un stab le est imat ion, espec ially i f for certain
time points the number of events is sm all. To improv e stability,
r egulariza tion of hazard functions has been proposed. See, for ex-
amp le, Luo e t al. ( 2016 ) , Heyard e t al. ( 2019 ) , a nd Mös t et al.
( 2016 ) . Fahrmeir and Wagenpfeil ( 1996 ) and King and Weiss
( 2021 ) e mplo y ra ndom walks to smooth the haza rd function. In
all these w orks, cause-spe c i fic baseline haza rds a re treated inde-
pe nde n tly. Vallejos a nd Ste el ( 2017 ) focus on risk-spe c i fic co-
v ari ate s elect ion, st i l l ass uming independenc e across risks. On
the other h and, dependenc e across risks is p l ausib le since m ul -
tiple hazards can be affe cte d by changes to the individual across
time, and as such should be incorporated in the model. 

The main me thodo lo g ical contribution of thi s work lies in
model ing expl icit a nd in te rpre tab le depe nde ncies across risks.
We introduce a multiv ari ate change point model for baseline haz-
a rds, which offe rs 2 key adva n t age s ( Kozumi, 2000 ) . Firstly, it
re duc es the n umbe r of pa ra mete rs, promoting pa rsimony. Sec-
ondly, it ac c ommod ates the v ari ability in hazar d ra tes acr oss
diffe re n t survival times. We adopt a Bayesian approach, assign-
ing priors on the n umbe r a nd location of ov erall ch a nge poin ts,
the reb y inducing m argin al dependenc e among them. For each
ov erall ch ange point, w e use a multiv ari ate Bernoulli prior to de-
termine which risks are inv olv e d, a method previously applied
in time series an alysis ( D obige on et al., 2007 ; Harlé et al., 2016 ) .
We term our approach the multiv ari ate Bernoulli de t ect or, build-
ing on prior work by Harlé et al. ( 2016 ) . 

Cha nge poin ts have bee n widely s tudied in con tin uous sur-
vival analysis ( eg, Ma t thews and Fare we ll, 1982 ; Goodman et al.,
2011 ) but less so in the discrete case: Kozumi ( 2000 ) consid-
ers a single risk modeled via a Markov chain with a prespeci-
fied n umbe r of cha nge poin ts, while Wa ng a nd Ghosh ( 2007 )
use pos te rior pre dictiv e che cks for ch a nge poin t detection, with-
out allowing for cov ari ates in the model. On the other hand,
we allow for cov ari ates in the model and perfor m cause-spec i fic
v ari ab le s election . Moreove r, we es timate the n umbe r of cha nge
poin ts, tes ting for the presence and location of change points us-
in g B ayes fa ct ors or post erior probabilities. 

The pa pe r is s tructure d as follows . Se ction 2 introduc es the
mode l and de scribe s a t ailore d Markov ch ain Mon te Ca rlo
( MCMC ) s amp ler. Section 3 dis cus s es an application to the ICU
data. Section 4 compares our approach with existing ones. We
conclude the pa pe r in Section 5 . 

2 M O D E L  

2.1 Setup and notation 

We follow the notation in Tutz and Schmid ( 2016 ) . Let
T i denote the time to eve n t for individual i ∈ { 1 , . . . , n } ,
where n is the number of individuals. In the dis cre te-time
s e tting, T i ∈ { 1 , . . . , t max + 1 } for some maximum time t max .
The ra ndom va riable T i ca n, for ins ta nce, a rise as the dis-
cr etiza tion, also known as grouping ( Kalbfleisch and Pren-
tice, 2002 ) , of a late n t con tin uous time T 

c 
i in to t max + 1 in-

tervals [ ω 0 , ω 1 ) , [ ω 1 , ω 2 ) , . . . , [ ω t max , ∞ ) with ω 0 = 0 . In
thi s case, there i s a one-to-one c orrespondenc e betw e en the 
s e t of in tege rs { 1 , . . . , t max + 1 } and the intervals of the real
line where the cont inuous-t ime random v ari ab les T 

c 
i are de- 

fine d. As s uch, the in te rpr eta tion of T i = t max + 1 is simi-
lar to cen s oring, in the s en s e that the eve n t wi l l occur at
time t > t max ( ie, T 

c 
i ≥ ω t max ) and t max + 1 is simply a “la- 

te n t time” that groups to ge ther individuals for which it is 
known that the even has not occurred up to time t max . 
T he time-to-e ve n t dis tribution is usually cha racte rized b y the 
ov erall h azard function λ(t | θi ) = P (T i = t | T i ≥ t, θi ) = 

P { T 

c 
i ∈ [ ω t−1 , ω t ) | T 

c 
i ≥ ω t−1 , θi } for some v e ctor of pa ra m- 

eters θi . 
Addition ally, w e ass ume th at o bs erv ation s are subj ect to cen- 

s oring. That mean s that only a portion of the o bs erv e d times 
ca n be conside red as exact surviv al times. Le t C i be the cen s or- 
ing time of individual i . C i as sumes v alues in { 1 , . . . , t max } , with
T i and C i indepe nde n t ( ra ndom ce n s orin g ) . Moreo ver, we as-
s ume th at the c en s oring me ch ani sm i s noninform ativ e, th at is,
it does not depend on any parameters used to model the eve n t 
times ( Schmid a nd Be rge r, 2020 ) . Let δi = 1 [ T i ≤ C i ] be a cen-
soring indica tor, wher e 1 [ ·] denotes the indica tor function, and 

t i = min (T i , C i ) the o bs erv e d time. 
We c onsider c ompeting risks with m diffe re n t types of 

eve n ts. For ins ta nce, the eve n ts ca n corr espond to dea th 

due to m diffe re n t causes. The n, R i ∈ { 1 , . . . , m } de notes
the eve n t type expe rie nc e d by individual i at time T i , for 
which we o bs erve a value r i only in the absence of cen s or- 
ing, that is, δi = 1 . Finally, the cause-spec i fic hazard func- 
tion is λr (t | θi ) = P (T i = t, R i = r | T i ≥ t, θi ) such that 
λ(t | θi ) = 

∑ m 

r=1 λr (t | θi ) . 

2.2 Li keli ho o d 

We assume indepe nde nce across individuals such that the l ikel i- 
hood is a product over individual-spec i fic ter m s. For eas e of ex- 
p l an ation, w e c onsider the l ikel ihood contribution of 1 individ- 
ual and drop subscripts i in the re mainde r of this section unless 
otherwise spec i fied . Under the assumpt ion that C is indepe nde n t 
of T and θ , the l ikel ihood for θ is given by 

P (T = t, R = r | θ ) δ P (T > t | θ ) 1 −δ

= λr (t | θ ) δ
t−δ∏ 

l=1 

{ 1 − λ(l | θ ) } ( 1 ) 

and w e spe c i fy λr (t | θ ) a nd th us λ(t | θ ) ac c ording to the
multinomi al lo git model, which is the mos t popula r for categori - 
cal respon s es ( Tutz and Schmid, 2016 ) . Spec i fically, λr (t | θ ) = 

exp (ηrt ) / { 1 + 

∑ m 

ρ=1 exp (ηρt ) } , where ηrt = αrt + x 

� βr is a 
cause- and time-spec i fic l inear pred ictor, and θ = { ηrt } . The in- 
tercept αrt re pre se n ts the cause-spec i fic baseline hazard. The 
p-dimension al v e ctor βr = (βr1 , . . . , βr p ) c onsists of the 
cause-spec i fic r egr ession coefficie n ts of the cov ari ates in the p- 
dimension al v e ctor x = (x 1 , . . . , x p ) . Such l ikel ihood spec i fi-
cation i s al so known as proportion al c on tin ua tion ra tio model 
( Tutz and Schmid, 2016 ) as increasing x j by one unit increases 
the cause-spec i fic odds by the fact or exp (βr j ) . Not e that, when 
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 = 1 and δ = 1 , λr (t | θ ) corresponds to φt defined in Sec-
ion 2.5 , and the con sideration s on prior spec i fication there dis-
us s ed wi l l be releva n t whe n building a cha nge poin t model on
rt . 

2.3 Th e mult ivar iate Ber noulli det ect or 
e propose a model on the b aseline ha zar ds tha t is flexi-
 le, ye t has in te rpre tab le structure. Spec i fically, the sequence
r1 , . . . , αr,t max is s e t to fo llow a pie c ewise c ons ta n t function. We
o so through a cha nge poin t model with depe nde nce across
isk s r . In our s e tup, a cha nge poin t corresponds to a time point
here the hazard of at least 1 risk r ch anges . We spe c i fy a hierar-

hical prior on the cha nge poin ts, which h as 3 m ain c ompone n ts:
 i ) a prior on the n umbe r of change points; ( ii ) a prior on the lo-
ation of change points; and ( i i i ) a prior on which risks ( at least
 ) h av e a ch a nge poin t a t tha t pa rticula r t ime locat ion, giv en th at
 change point at time t occ ur s. 

2.3.1 P ri o r speci ficati o n o n ov erall change po ints 
n this se ction, w e describe prior spec i fication on the n umbe r
nd location of ch ange points . Let αt = (α1 t , . . . , αmt ) . Then,
t = 1 [ αt � = αt−1 ] indicates whether there is an overall change
oint a t t ∈ { 1 , . . . , t max } , tha t is, if the hazar d of a t least a risk
hanges at time t . Furthermore, K = 

∑ 

t∈T γt denotes the num-
er of change points. Here, T defines the s e t of pos sib le change
oint locations. We spec i fy the prior on γ = (γ1 , . . . , γt max ) hi-
 ra rchically, b y spec i fying a prior p(K) on the n umbe r of cha nge
oin ts a nd the n p(γ | K) as this provides explicit r egulariza tion
n K: i .i .d . γt would imply a binomial distribution on K. 
To motivate the next model developme n t, conside r the bot-

om plots in Figure 2 , where 2 o bs erv ation s with t i = 7 out of
00 are not used when inferring ch ange points . Then, the lack
f o bs erv ation s a t time t = 7 r es ults in spurious ch a nge poin ts
 t tha t time loca tion and the next. We res trict our infe re nce to
v oid s uch s en sitivity to a few o bs erv ation s: To aid ide n tifiabil -
t y, considering the flexibilit y of the underlying time-varying ge-
metr ic distr ibution, which is d isc usse d in Se ction 2.5 , w e only
llo w chang e points for a subs e t of times T ⊂ { 1 , . . . , t max } such
hat γt = 0 if t / ∈ T . Firstly, as it is typical in change point ap-
 lication s, we do not allow cha nge poin ts at the support bound-
ry, in our case t = 1 and t = t max . More ov er, w e do not allow
 cha nge poin t at time t if both t and t − 1 h av e no o bs erv e d
ve n ts as the data lack information on which of the 2 time points
ould be a change point. Also, we do not allow change points

t a time t with no o bs erv e d ev ents if both neighboring times
 − 1 and t + 1 h av e o bs erv e d ev e n ts, be cause this w ould lead
o spurious cha nge poin ts due to the flexibility of the underly-
n g time-varyin g geome tric, as s ee n in Fi gur e 2 ( bot tom r ow ) .

n the other h and, w e prefer to introduce parsimony in the esti-
 ation of ch a nge poin ts to improve in te rpre tability. We exp lore

he effect of the restriction on cha nge poin t locations in a simu-
ation study in Web Section E.4. There, the restriction ( i ) does
ot det eriorat e infe re nc e, ev en if the true ch a nge poin t is not in
 ; ( ii ) avoids spurious change points at time locations without
 bs erv e d ev ents . 
We assume a geometr ic distr ibution with success probabil-

ty πK truncated to K ≤ |T | as prior on the n umbe r of cha nge
oin ts. We de note s uch prior as Ge o |T | (πK ) . For the locations
f ov erall ch ange points giv en K, w e use the uni for m distribution
n pos sib le configuration s p(γ | K) = 1 / 

(|T | 
K 

)
. In s umm ary, the

oint prior on the number and location of change points has a hi-
 ra rchical spec i fication: p(K , γ ) = p( K) p( γ | K) . 

2.3.2 Ca use-spe ci fic change point configu ra tion 

n this se ction, w e d isc uss the prior on which risks prese n t a jump
n the h azard, giv en the v e ctor γ . Let z rt = 1 [ αrt � = αr(t−1) ] be
 n indicator va riable de noting if a cha nge poin t occ ur s at time t
or risk r. If there is no change point at t for any r, then γt = 0
nd z rt = 0 . If γt = 1 , then z rt = 1 for at least one r. 
Let z t = (z 1 t , . . . , z mt ) . Conditionally on γt = 1 , we assume

hat z t follows a m ultiva riate Be rnoull i d istribution ( eg, Te u ge ls,
990 ) . An m - dimensional b inary vector z t can assume 2 

m possi-
 le v alue s corre sponding to a c ombin ation of z rt ∈ { 0 , 1 } . The
 ultiva riate Be rnoull i d i stribution i s the n pa ra mete rized b y a
 

m -dimension al v e ctor, whose ele me n ts correspond to the prob-
bility of each pa rticula r outc ome ( ie, c onfiguration ) . In our
ase, when modeling z t giv en γt = 1 , w e exclude the configu-
ation of all zer os, tha t is, z rt = 0 for every r. Thus, z t can as-
ume only 2 

m − 1 pos sib le v alues. We denote such distribution
s Ber 0 (ψ) , where ψ denotes the (2 

m − 1) -dimensional vector
f configura tion pr obabilities . In s umm ary, the prior spe c i fica-

ion for z t is 

z t | γt ∼
{

Ber 0 (ψ) if γt = 1 

δ0 if γt = 0 

here δ0 is a point mass at the zero v e ct or. We refer t o the joint
rior on (K , γ, z ) as m ultiva riate Be rnoulli det ect or, where z =
 z t } t max 

t=1 . 

2.4 Fu rth e r p rio r sp eci fication 

odel spec i fication is comp le ted by spec i fying indepe nde n t
r ior distr ibutions on αrt and βr . We spec i fy a prior on αrt con-
itionally on the n umbe r a nd location of change points . Sinc e
r = (αr1 , . . . , αrt max ) is a pie c ewise c ons ta n t function for each

isk r, assuming cons ta n t values betw e en ch ange points, let α 
r� 

enote the unique value of αrt over each time in te rval for risk
. Note that for each risk, a change point can be activated or not,
ith the only cons train t th at a ch a nge poin t ne e ds to be activated

or at least 1 risk. We assume α 
r� ∼ N (μα, σ 2 

α ) indepe nde n tly
cross � and r. 
Furthe rmore, to ide n tify importa n t effe cts, w e ass ume a

 ari ab le s election prior for the r egr ession coefficie n ts, βr =
(βr1 , . . . , βr p ) , which allows for risk-spec i fic v ari ab le s e lec -
ion. Here, w e c onside r a spike-a nd -slab prior ( Mitchell and
eauchamp, 1988 ) : βr j ∼ πβ N (0 , σ 2 

β ) + (1 − πβ ) δ0 , where
β is the prior inclusion probability. We use the hyperprior
β ∼ U (0 , 1) . In the application in Section 3 , some variables

r e gr ouped as they a re dummy va riables associated with a cat-
 gorical c ov ari ate. We modify the prior ac c ordingly to perform
roupwis e v ari ab le s election as de tailed in Web Appendix B. We
ote that other pos sib le prior choices are av ail ab le in the lit-
ra tur e to perform v ari ab le s ele ction, s uch as shr inkage pr iors
 B ha dra et al., 2019 ) , which offer c omputation al adva n t age s at
he cost of depending on arbitrary thresholds to identify relevant
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FIG URE 1 Pro bability mas s funct ion of the t ime-v arying geome tr ic distr ibut ion: visualizat ions of Equat ion 2 with t max = 15 and s uc c ess 
probabilities ( i ) φt = 0 . 25 for t ≤ 5 and φt = 0 . 5 otherwise; ( ii ) φt = 0 for t ≤ 5 or t ≥ 11 , and φt = 0 . 5 otherwise; and ( i i i ) φ = 0 . 1 for 
t ≤ 5 , φt = 0 . 5 for t ≥ 11 , and φt = 0 otherwise. 
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In the simulation studies and the application on ICU data, we
s e t the pa ra mete rs as follows: σ 2 

β = 1 , πK = 0 . 5 , all ele me n ts
of ψ equal to 1 / (2 

m − 1) , μα = −9 , and σ 2 
α = 3 . The partic-

ular prior choice for α 
r� derives from the interpr eta tion of the

model in terms of the time-va rying geometric . In Section 2.5 , we
hi ghli gh t the importa nce of shrinking the probabilities φt toward
zero. Thi s i s equivale n t, in abse nc e of c ov ari at es, t o shrinking
exp (α 

r� ) / { 1 + exp (α 
r� ) } toward zero and, con s eque n tly, α 

r�
toward −9 . Roughly speaking, a N (−9 , 3) on α 

r� is equivale n t
to a Beta (0 . 01 , 1) prior on φt , which is shown to h av e a good
pe rforma nce in Section 2.5 . Finally, we note that we could spec-
ify a prior on ψ to favor sparsity or a large number of change
points. 

2.5 Ratio nale be hind mode ling st rategy 
Prior spec i fication for the pa ra mete rs gove rning the m ultiva riate
Bernoulli det ect or ( se e Se ction 2.4 ) is deriv e d from the follo w -
ing con sideration s. In the uncen s ored ( δ = 1 ) single-risk ( m =
1 ) case, the distribution of the time to eve n t in the dis cre te cas e is
a time-varying geometr ic distr ibution ( Landau and Zachmann,
2019 ) w ith time-vary ing s uc c ess probability φt = λ(t | θ ) , that 
is, 

P(T = t | { φl } l ) = 

{
φt 

∏ t−1 
l=1 (1 − φl ) , t = 1 , . . . , t max ∏ t−1 

l=1 (1 − φl ) , t = t max + 1 
. ( 2 ) 

The time-v arying geome tric is fully flexib le in that it can rep- 
rese n t a ny dis tribution on { 1 , . . . , t max + 1 } b y a ppr opria tely
choosing φt ( Mandelb a um et al., 2007 ) . It is analogous to the 
pie c ewise expone n tial dis tribution in con tin uous survival a nal - 
ysis ( Ga me rma n, 1991 ) , if w e ass ume a ch a nge poin t model
for the φt . See Figure 1 for w idely vary ing r ealiza tions of the 
dis tribution for ce rtain { φt } t . This flexibility should be taken 

into ac c ount when inferring φt . It r ela t es t o the pote n ti al l ack of
s tability of uncons trained es t imat ion of b aseline ha za rds me n- 
tione d in Se ction 1 . For ins ta nce, the re is a sepa rate pa ra me-
ter φt for each time point, but we might not h av e o bs erv e d 

a n eve n t at each time poin t. To av oid s uch ov e rpa mete riza-
tion, s ome subs eque n t φt can be assumed to be equal to each 

othe r, as in Fi gur e 1 , r es ulting in a ch a nge poin t model: A
cha nge poin t is a time t for which φt � = φt−1 . More ov er, giv en 
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FIG URE 2 Time-v arying geome tric simul ation: pos te rior probabilities ( ×) and B ayes fa ctors ( •) for the presenc e of a ch a nge poin t with a 
uni for m prior ( left column, φ 

� ∼ U (0 , 1) ) and r egulariza tion towar d zer o ( right column, φ 
� ∼ Beta (0 . 01 , 1) ) when simulating data without 

( top row ) and with ( middle and bottom rows ) a change point. The bottom row uses the data from the middle row without the o bs erv ation s 
with t i = 7 . Some Bayes factors are outside the plotting range. The dashed lines are drawn in correspondence of the true change point. 
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he flexibility of the time-varying geometric, diffe re n t combi -
ations of { φt } can lead to a satisfactory fit of a data set, lead-

ng to ide n tifiability pro b lem s . As s uch, w e impose prior re g -
la rization b y a pr ior i shr inking the v alue of φt tow a rd ze ro.
e further motivate our prior choice in the following simulation

tudy. 
We simulate n = 500 times t i from Equation 2 with t max =

000 using 2 diffe re n t s e ttings for φt . We consider a sc en ario
ithout change points with φt = 0 . 5 and a sc en ario with a sin-

le cha nge poin t give n b y φt = 0 . 5 for t ≤ 4 and φt = 0 . 25
or t ≥ 5 . For this last sc en ario, w e also consider the data after
emoval of observations with t i = 7 , which we d isc uss in Sec-
ion 2.3.1 in r ela tion to the prior cons train ts on cha nge poin t
ocation. To unde rs ta nd how the prior on φt can affect infer-
nce on change points, we compare 2 priors within a Bayesian
ha nge poin t model defined as follows: We spec i fy a uni for m
rior over all pos sib le change point configurations among the φt .
et φ 

� denote the unique value of φt over each time in te rval de-
imited by the cha nge poin ts. Conditionally on a change point
 onfiguration, w e choose a prior on φ 

� . Then, the l ikel ihood in
quation 2 comp le te s the mode l. We fit this mode l with t max =
ax i t i , s uch th a t t max = 9 for the da ta with no change point and

 max = 14 for the data with a change point. We compare pos-
e rior infe re nc e obtaine d with a uni for m prior, φ 

� ∼ U (0 , 1) ,
nd with a prior that shrinks the pa ra mete rs towa rd ze ro, 
 
� ∼ Beta (0 . 01 , 1) . 
Figure 2 shows the inference on change points. The uni-

orm prior ( left column ) leads to the detection of too many
ha nge poin ts, especially at la rge r t . Regula rization to-
a rd ze ro using φ 

� ∼ Beta (0 . 01 , 1) ( ri gh t column ) yields
or e accura t e post erior inference without spurious change

oints. 



6 � Biometrics , 2024, Vol. 80, No. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/3/ujae075/7732338 by guest on 18 August 2024
2.6 Poste rio r co mputatio n u sing loc a l-globa l M CM C 

To devise an MCMC scheme to perform posterior inferenc e, w e
exploit the r epr ese n tation of the l ikel ihood in Equation 1 as a
multinomi al lo g i stic r egr ession ( Tutz and Schmid, 2016 ) , using
a dat a au gme n t ation trick. This re sults in the av ail ability of con-
juga te upda tes, lea din g to more efficie n t mixing and preve n ting,
at the same time, large changes in the configuration of change
points, r esulting in mor e effe ctiv e local mov es . The late n t va ri -
ab les as s oci ated with the d at a au gme n tation a re hi ghly corre-
lated with the change points, and, as such, it is d iffic ult to explore
the cha nge poin ts spac e c ondition ally on the late n t va riables. To
coun te rbala nce this drawback, we also devise global moves of
cha nge poin ts c ondition ally on the o bs erv e d data. Such mov es
are based on ideas from the Bayesian nonparametric litera tur e
( Dahl, 2005 ; Ma rtínez a nd Me n a, 2014 ; Cresw ell et al., 2020 ) .
Finally, from the MCMC output, we ca n de rive Bayes factors to
test for the presence of change points using the S avag e–Dickey
r atio ( Dick ey, 1971 ; Verd inell i and Was s erman, 1995 ) ( s ee Web
Appendix C for details ) . 

We refer to the resulting hybrid algorithm as “local-global
MCMC” bor rowing the ter mino lo gy from Sam s onov e t al.
( 2022 ) . Her e, we pr ovide a brief exp l anation of our MCMC
strategy in relation to previous work. Web Appendix D details
the algorithm. 

2.6.1 Local MCMC with data augmen t ation 

We exploit the data augme n ta tion r epr ese n tation of a m ulti -
nomi al lo g i stic r egr es sion in term s of Gumbel l ate n t va riables
b y McFadde n ( 1974 ) and Früh wirth-Schna t ter and Frühwirth
( 2007 ) . The n, the augme n ted l ikel ihood is Gaus si a n, which e n-
ables c onv e nie n t MCMC updates. Importa n tly, c ondition ally on
the z rt , the α 

r� h av e a Gaus si an prior such that they can be in-
t egrat ed out from the augme n ted pos te rior, e nabling efficie n t
updates of z rt and γt w ithout hav ing to spec i fy Me tropo lis–
Hastings proposals for α 

r� . 
Mor e r e c e n tly, othe r augme n tations h av e be en propose d in the

litera tur e ( s ee, for in st ance, He ld and Holmes, 2006 ; Frühwirth-
Schna t te r a nd Frühwirth, 2010 ; Po ls on e t al., 2013 ; L inder man
et al., 2015 ) . We do not opt for them because they do not provide
a c onv e nie n t augme n ted l ikel ihood in the presence of multiple
risks. 

2.6.2 Global MCMC 

Augme n ted data can strongly reflect the change points of the cur-
re n t s tate of the MC MC chain, re sulting in local MCMC up-
dat es t o the cha nge poin t pa ra mete rs z rt a nd γt . The r efor e, we
als o con sider MC MC move s without dat a au gme n ta tion, tha t is,
based on the original data, to enable more global change point
updates and explore better posterior space. 

Spec i fically, we exploit the fact that change points induce a par-
t it ion of time into intervals and apply ideas from Bayesian non-
pa ra metrics ( Dahl, 2005 ; Ma rtínez a nd Me n a, 2014 ; Cresw ell
et al., 2020 ) to deal with noncon ju ga te upda tes. Thi s allow s for
more global moves at the cost of having to spec i fy Me tropo lis–
Hastings proposals for α 

r� . A lter n ating betw e en local and global
MC MC ste ps allows for better mixing and c onv ergenc e of the
algorithm. 
We de mons trate the pe rforma nce of our approach in simula- 
tion studies. Web Appendix E pres ents simul ation studies with a 
wide range of sc en arios and c omparison with altern ativ e models . 
We find that the m ultiva riate Be rnoulli det ect or ge ne rally results 
in the most accurate est imat ion. Pr ior shr inkage of b aseline ha z- 
a rds ca n re sult in e st imat ion bias, which is a common fea tur e of
Bayesian shrinkage priors and the bi as-v ari ance trade-off they in- 
duc e ( e g, Po ls on and So ko lov, 2019 ) . 

3 A P P L I C AT I O N TO  I C U  L E N GT H O F  STAY  

3.1 Data des criptio n a nd a nal ysis 
We apply our model to data on ICU stays from the MIMIC-IV 

d atabas e ( Jo hn s on e t al., 2023 ) with le ngth of s tay as outcome
( Meir and Gorfine, 2023 ) . 

See Web Appendix A for a detailed data des cription . We con- 
sider m = 3 competing ri sks: di scha rge to home, tra nsfe r to a n- 
other medical facility, and in-hospit al mort alit y. Leng th of stay is 
re c orde d in days with the longes t unce n s ored time being 28 days. 
We analyse n = 25 159 ICU stays with 17 357 disch arge d to 

home, 5379 tra nsfe rr ed, 1529 dea ths, a nd 894 ce n s ored. We in- 
clude the followin g co va riates: de mogra phics, va riable s re lated 

to the ICU stay ( eg, whether it is a r epea t admis sion ) , and l ab 

tests from the first day. Most cov ari a tes ar e ca tegorical with 2 or 
more lev els . Represe n ting the m as dummy va riables leads to a 
total of p = 36 pred ictor s. 

We fit our model with t max = max i t i = 28 days using 200 000 

MCMC iteration s, dis card ing the fir st 50 000 as burn-in. The 
trace plots in Web Figure 14 su gge st satisfactory c onv ergenc e. 

3.2 Poste rio r infe re nce o n the bas e lin e ha zards 
The pos te rior probability of absence of ove rall cha nge poin ts 
is zero as well as the B ayes fa ctor ( see We b Appe ndix C ) . Fi g-
ure 3 s umm a rizes infe re nce on the b aseline ha zards ( see Web 

Figure 15 for correspondin g B ayes fa ctors ) . The hazard func- 
tions diffe r ma rkedly betwee n risks: the hazard of discharge to 

home is high in the first 2 w e eks, but not on the first day in the 
ICU. The hazard of a tra nsfe r to a nothe r med ical facil ity is lo w -
est during the first few days . Fin ally, the h azard function for in- 
hospit al mort ality doe s not va ry subs ta n ti ally acros s the length of 
stay. 

3.3 Poste rio r infe re nce o n the r egr essio n coefficie nts 
The r egr ession coefficie n ts βr j capture cause-spec i fic cov ari ate 
effects on length of stay. The spike-and-slab prior provides ex- 
plicit infe re nce on whethe r the re is a cova ria te effect thr ough the 
pos te rior probability of βr j � = 0 . Pos te rior inclusion probabili- 
ties for each risk are shown in Figure 4 . In Figure 5 , we report 
pos te rior infe re nc e on re gression c oefficie n ts . Fin ally, w e rem ark 
that the results on the baseline hazards and cov ari ate effects are 
in line with those obtained in Meir and Gorfine ( 2023 ) . 

4 CO M PA R I S O N W I T H  OT H E R M O D E L S  

We compare our results on the ICU data to those obtained from 

maximum l ikel ihood est imat ion and a mor e r e c e n t alte rn ativ e,
namely the model by King and Weiss ( 2021 ) . 
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FIGURE 3 ICU data: pos te rior infe re nce on the overall ( left column ) and cause-spec i fic ( other co lumn s ) bas eline hazards. The top row 

disp l ays the pos te rior probabilities for the presence of a change point. The bottom row shows pos te rior infe re nce for the cum ulativ e h azard 

function for x i = 0 and the baseline hazard pa ra mete r αrt . B la ck lines r epr ese n t pos te rior mea ns a nd sh ade d areas c orr espond to 95% cr edible 
in te rvals. 
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4.1 Maxim um like lih ood est imat ion 

e maximize the l ikel ihood in Equation 1 using the R package
net ( Ve nables a nd Ripley, 2002 ) as the l ikel ihood is equiv-

le n t to a multinomial log i stic r egr ession ( Tutz and Schmid,
016 ) . The resulting infe re nce is shown in Web Figures 16 and
7. Estimates of αt are less smooth than for our model but
 re othe rwis e simil a r. Es timates of βr a r e in agr ee me n t with
urs. 

4.2 Se mi-pa ra met ric mode l by King and Weiss ( 2021 ) 
e also compare our model with the Bayesi an s e mi -pa ra metric
odel by King and Weiss ( 2021 ) , which als o invo lves m ulti -

le risk and a flexible model for the hazard function. For sim-
 licity of exp l an ation in wh at follows, w e denote with x i j a con-

in uous cova riate j for individual i and with d ik a dummy va ri -
ble corresponding to a level of a categorical cov ari ate. King
nd Weiss ( 2021 ) spec i fy a multinomial logit model for dis-
re te surviv al analysis with competing risks with ηirt = αrt +
 p c 
j=1 f βr j (x i j ) + 

∑ p d 

k=1 βrk d ik , where p 

c and p 

d denote the
 umbe r of con tin uous a nd dummy va riable s, re spe ctiv ely. More-
ver, αtr = β0 r + f αr (t ) for intercepts β0 r , and functions f αr 
nd f βr j , which are o bj ect of inference. Note that in their ap-
roa ch, Kin g and Weiss ( 2021 ) include e very le vel of a cate-
or ical covar iate. The functions f αr and f βr j ar e inferr ed using
 Gaus si a n Ma rk ov r andom field pr ior. For pr ior spec i fication
 nd pa ra mete r choic e, w e follow the re c ommend ation s in Ap-
endix C of King and Weiss ( 2021 ) for uninform ativ e priors .
e fit the model using the R package brea ( Kin g, 2017 ) usin g
0 000 burn-in MCMC iterations follow e d by 200 000 re c orde d
terations. 

The r esulting infer ence is shown in Web Figures 19-21. The
 stimate s of base line haza rds a re in line with our mode l, thou gh
ot as smooth. The nonlinea r cova riate effect of age is consis te n t
ith the linear effect from our model, but positive as s oci ation of

ge a nd tra nsfe r haza rd only a ppea rs at a n olde r age. The othe r
ov ari ate effects are also similar to the r esults fr om our model.
ee Figure 5 . 

5 D I S  C U S S  I O N 

n this w ork, w e focus on the est imat ion of the hazard function of
ompeting risks in the context of dis cre te surviv al. We as sume a
ha nge poin t model for the ha zard function, with ca use-spec i fic
ha nge poin ts, in troducing depe nde nce a mong cha nge poin t lo-
a tions acr oss risks. In our a pproach, both n umbe r a nd location
f cha nge poin ts a re ra ndom. We refe r to our model as m ultiva ri -
te Bernoulli dete ctor. D epe nde nce across risks provides an at-
ractive way for r egulariza tion of baseline hazards since changes
o an individual’s condition across time mi gh t affect m ultiple
ause-spec i fic haza rds sim ulta neously. Our a pproach is widely
pp licab le and interpre tab le. The d at a au gme n tation e nables the
se of any prior on r egr ession coefficie n ts making the MCMC
pda tes mor e efficie n t. The sim ulation s tudy a nd the r eal da ta
pplication show that pos te rior infe re nce on change points with
epe nde nce across risks is effe ctiv e, with fav orable c omparisons
ith a freque n tis t a pproach a nd the Bayesian se mi -pa ra metric
odel by King and Weiss ( 2021 ) . 
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FIGURE 4 ICU data: pos te rior inclusion probabilities for each cov ari ate and risk. MCH stands for mean cell hemo glo bin, MCV for mean 

corpus cul ar vo lume, and RDW for red blood cell distribution width. 
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FIGURE 5 ICU data: pos te rior mea ns ( dot ) and 95% credible in te rvals ( lines ) of the r egr ession coefficie n ts for e ach risk. The categ orical 
pred ictor s are c ode d as dummy v ari ab les as detailed in Web Appendix A. MCH stands for mean cell hemo glo bin, MCV for mean corpus cul ar 
volume, and RDW for red blood cell distribution width. 
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The proposed model can be easily extended to accommo-
da te mor e comp lex s c en arios, for example, inclusion of r ecurr ent
eve n t proces s es as outcomes ( se e, e g, King and Weiss, 2021 ) ,
of time-varying cov ari ates, or s emi-compe ting risk structure. In
this w ork, w e e mplo y the m ultinomi al lo g it model, which i s a
popular choice for the analysis of dis cre te compe ting risks. It
close ly re late s to multinomial log i stic r egr ession a nd offe rs com-
putational adva n tages . Nev e rtheless, the m ultiva riate Be rnoulli
det ect or can be used with other l ikel ihoods, such as multino-
mi al pro bit models or multip le time s eries . Fin ally, w e note th at
w e c ould app ly the s ame c omputation al strate gy ev en for ch ange
point models in continuous time by restricting the split points to
the locations of the eve n ts. 

S U P P L E M E N TA  RY  M AT E R I A  L S  

Supple me n ta ry mate rial is available at Biometrics online. 

Web Appe ndices a nd Fi gur es r efer enc e d in Se ctions 2 , 3 , and
4 , and the code to implement the model are av ail ab le with this
pa pe r at the Biometrics website on Oxford Acade mic . The code
i s al s o av ail ab le at htt ps://g ithub.com/willem vandenboom/m v
b-detector . 
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