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Abstract. Peripheral neuropathies represent a significant challenge in medicine, 
often inadequately addressed by conventional treatments. This work proposes a 
method for transferring information between implanted devices using galvanic 
currents. Diseases like nerve lesions causing facial palsy could be addressed by 
transmitting signals from a healthy to a damaged nerve via intra-body communi-
cation. A spike detection algorithm enables highly efficient data compression, 
with a compression factor up to 13000, extracting only the essential information 
required for nerve stimulation and minimizing transmission size. Experimental 
validation demonstrated effective communication up to 10 cm, with peak currents 
of 3 mA, compliant with ICNIRP safety guidelines. This innovative approach 
offers new prospects for restoring normal movements and improving the quality 
of life for affected patients. 

Keywords: Electroneurographic signal (ENG), Galvanic Current, Intra Body 
Communication, Spike Detection. 

1 Introduction 

Peripheral neuropathies represent a significant challenge in the field of medicine, af-
fecting millions of people globally. Peripheral neuropathies are among the most com-
mon neurological diseases with an incidence of 77 individuals per 100,000 inhabitants 
per year. They have a prevalence of 1 to 12% in all age groups with a peak of up to 
30% in the elderly [1]. The market is expected to reach $9.7 billion by 2025 and the 
annual growth rate between 2020 and 2025 has been 9.1% [2]. Furthermore, the scien-
tific community has shown more and more interest in studying these issues. The num-
ber of scientific publications has increased exponentially in recent years [3]. The moti-
vation for this increase is the constant growth in the rate of occurrence of peripheral 
nerve injury (PNI) in the population. Lifestyle and the aging of the population are in-
creasingly leading to this trend. Peripheral nerve injuries can have different triggering 
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factors, such as traumatic events, pathological conditions, work and sports accidents or 
injuries during daily activities. The recovery process of PNI is complex, characterized 
by a dedicated prognosis and a gradual recovery. This often results in impaired sensory 
and motor functions and, in some cases, permanent disability [4]. This not only de-
creases the overall quality of life of those affected but also amplifies the health burden 
on society. Despite advances in understanding the mechanisms underlying damage and 
regeneration, achieving complete functional recovery remains largely unsatisfactory for 
most patients. In fact, conventional treatments often fail to completely resolve related 
problems. In response to this challenge, the use of implanted devices emerges as a 
promising solution to address neuropathies. Only a strong collaboration between the 
world of medicine and the world of engineering will be able to permanently resolve 
currently incurable pathologies. One possible application concerns the use of implanted 
devices to treat pathologies such as facial paresis arising following a facial stroke. Stud-
ies suggest that facial paresis occurs in approximately 25% of ischemic or hemorrhagic 
stroke patients. The incidence of facial paresis after a stroke varies depending on the 
location of the stroke [5]. There are various therapeutic approaches for the management 
of post-stroke facial paresis. These include drug therapy, physical rehabilitation, and in 
some cases surgery. It is important to act immediately with rehabilitation to improve 
functional outcomes in patients with post-stroke facial paresis [6]. Advanced rehabili-
tation techniques, such as functional electrical stimulation and virtual reality-based 
therapy, are showing promising results in improving the recovery of patients with post-
stroke facial paresis [7]. In the case of unsatisfactory recovery, it is possible to resort to 
implanted devices to guarantee recovery of functionality [8, 9]. An example that allows 
to show this application is reported in [10]. Using stable intracorporeal communication, 
such as that offered by the galvanic coupling (GC) technique, electroneurographic 
(ENG) signals could be recorded upstream of the lesion and sent to the compromised 
area. Intrabody communication (IBC) is more secure than other means of communica-
tion in terms of data protection. It also offers greater stability than other technologies 
such as Bluetooth, where communication can often be interrupted. Furthermore, data 
transmitted via galvanic current are properly preprocessed, as explained in this paper, 
real-time transmission could be ensured. This combination of security, stability and 
potential real-time application makes intrabody communication an innovative and 
promising solution to improve the quality of life of patients suffering from peripheral 
neuropathies and other medical conditions. In the case of partial facial paresis, signals 
could hypothetically be taken from the healthy side of the face through an implanted 
device that samples the signal from the facial nerve. The signals are then sent to the 
side affected by hemiparesis where a second device will proceed to carry out neuro-
modulation for motor restoration. For a better understanding of the application, we re-
port Fig.1. By taking advantage of the facial symmetry of expressions, movement is 
restored on the pathological side. Only necessary information is transmitted between 
the two devices, minimizing the amount of data sent. To optimize communication, a 
spike detection approach is used, followed by various compression techniques to reduce 
the data size. Currently, there are no dedicated compression algorithms that use a spik-
ing-based  approach  to  compress  ENG  signals.  Some examples of data compression  
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Fig. 1 Schematic representation of the GC communication mechanism used for facial paresis 
[11].           
 
algorithm for ENG signal are reported in [12, 13]. This work focuses on signal pro-
cessing to reduce data weight, enabling IBC experimentation in an efficient way. This 
paper introduces a novel thresholding algorithm for compressing ENG signals, adapted 
for intra-body communication, and provides an in-depth analysis of its effectiveness in 
spike detection and data reduction. Furthermore, it presents experimental validation of 
signal integrity for distances up to 10 cm and discusses the trade-offs inherent in the 
compression process. Through this approach, the goal is to develop an innovative solu-
tion to address peripheral neuropathies, offering new perspectives to improve quality 
of life of patients suffering from these conditions. 

2 Intra Body Communication 

Communication between devices using GC currents, known as intra-body communica-
tion, has attracted growing interest in various sectors, especially in medical applica-
tions. This method involves transmitting signals across or along the body surface, al-
lowing the use of both superficial and implanted devices. It relies on the human body's 
ability to conduct electrical currents to send signals within the body [14, 15]. A voltage 
applied between the transmitter electrodes generates an alternating current that propa-
gates through the body tissues until it reaches the receiver electrodes. This method is 
effective because the current can spread through body fluids, however, its efficiency 
depends on tissue dielectric properties, such as electrical conductivity and relative per-
mittivity, and the frequency of the delivered current. The properties of biological tissues 
directly influence the propagation of electric current through the human body [16]. In-
deed, the conductivity and permittivity of tissues are dependent on the delivery fre-
quency. These values can influence the distribution of the electrical current and its abil-
ity to pass through different tissue layers. A shorter wavelength can make the signal 
more susceptible to phenomena such as scattering, especially if the wavelength be-
comes comparable to the size of body tissues [17]. Furthermore, high frequencies can 
lead to different behaviors than low frequencies in signal propagation through the body. 
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These parameters are crucial to understand how galvanic currents behave within the 
human body and are fundamental for the design and optimization of GC communica-
tion systems. For example, muscle tissue is known to be particularly efficient in trans-
mission, while adipose tissue and bone are less effective in this process. The physio-
logical characteristics of the patients must therefore be taken into consideration in the 
design phase. The optimal frequency range that should be used generally varies from 
10 kHz to 100 MHz, with particular use of low frequencies to reduce current absorption 
and keep the local temperature low [18]. Power consumption is a critical parameter, 
especially in intracorporeal applications, where it is essential to minimize consumption 
to extend the operational life of the device. Reducing energy consumption can involve 
using less complex communication protocols, optimizing transmitter and receiver effi-
ciency, and adjusting the device duty cycle. In GC technology, the energy needed to 
transmit data is equal to 1.28 nJ/bit. Current and voltage limits are strictly regulated to 
ensure safety. The reference standard for secure communication is IEEE 802.15.6 [19]. 
The data rate is another key factor, as it represents the transmission speed of the system. 
This strongly depends on the bandwidth, which in turn is influenced by the frequency 
and properties of the transmission medium, such as conductivity and attenuation of the 
signal. The complexity of the required modulation scheme and power constraints can 
further limit the data rate. In our application, it is possible to reach a maximum trans-
mission speed of a few Mbit/s in the most optimal case [19]. Signal attenuation is re-
lated to loss of power as the signal propagates through body tissues. This phenomenon 
is influenced by various factors, including tissue composition and signal frequency. 
Modeling attenuation is essential to understand how the signal behaves during trans-
mission. Generally, an attenuation of 65dB and an error of 1.8 mW/cm2 are observed 
using GC [19]. Transmission is also influenced by the connection distance, which rep-
resents the maximum distance within which communication remains reliable and effi-
cient. Since each application may have different requirements in terms of minimum 
transmission path length, the link distance helps discriminate between the different 
techniques available. Specifically, the GC allows communication up to 15 cm maxi-
mum distance [19]. Finally, the concept of Maximum Permissible Exposure is crucial 
to ensuring the safety of intra-body applications. Defining the maximum level of safe 
exposure to electromagnetic fields, this parameter is determined experimentally and 
considers several factors such as frequency, power density and duration of exposure 
[19]. Compared to other IBC techniques, in GC technology the information is confined 
within the body, guaranteeing safety and privacy, with low signal dispersion, limiting 
any external interference. The simplicity of the system, which does not require external 
ground electrodes, leads to lower costs and allows the creation of implantable devices 
that can be positioned directly in the patient's region of interest, reducing physical and 
psychological discomfort [8]. The use of galvanic currents for communication offers 
numerous advantages, including low signal dispersion, protecting patient privacy and 
the possibility of using implantable systems. However, limitations such as transmission 
speed which is generally lower than other techniques such as Bluetooth, and sensitivity 
to electrode placement should be considered [20]. To solve this problem, it is possible 
to reduce the amount of data to be transmitted by using a preprocessing approach, as 
will be discussed in this paper. 
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3 Literature models 

The absence of comprehensive alternatives has prompted the development of analytical 
models in scientific literature. In vivo experiments are often costly, and tissue phantoms 
do not fully replicate the variability of human tissue characteristics. Numerous studies 
have demonstrated the effectiveness of galvanic current communication in various ap-
plications. For example, [21] developed a finite element model for GC communication, 
simulating signal transmission through different body tissues. Furthermore, [22] con-
ducted simulations using a multilayer body model to analyze the transmission of gal-
vanic current in different regions of the body. An example of a complete electrical 
model for GC communication, reported in [23] Fig.2, would include a circuit for each 
individual tissue layer modeled as two-dimensional. This model incorporates imped-
ance elements that represent different current paths, considering tissue composition, 
electrode contact impedance, voltage and current distribution. It thus offers detailed 
information on the behavior of galvanic current transmission through different body 
tissues. These analytical models form the basis for a more detailed understanding of 
IBC channels and allow an accurate evaluation of system performance. Furthermore, 
they introduce the possibility of considering the interaction between electrodes and tis-
sues, providing a complete overview of signal propagation within the human body. 
Some preliminary studies have been conducted leveraging experimental data to evalu-
ate the measured impulse response in ex-vivo chicken tissue and in-vivo human tissue, 
although in a limited frequency range up to 100 kHz [14]. Experimental results demon-
strate that the channel is relatively flat in the frequency range of interest, thus offering 
the opportunity to simplify the design of an IBC transceiver.   

 
 
 

 
  
Fig. 2 Tri dimensional representation of a multilayered tissue model for GC IBC [23]. 
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4 IBC Method  

IBC represents a promising solution for enabling secure and efficient data transfer be-
tween implantable devices. However, the large amount of data generated by ENG sig-
nals poses significant challenges for real-time transmission and processing. This section 
outlines the methods developed in this work to address these challenges, focusing on 
signal compression and experimental validation of the communication setup. For the 
communication study, ENG data from the University of Newcastle were used [24]. 
Briefly, raw ENG signals have been taken from 3 different rats using different soma-
tosensorial stimulation. Those includes proprioceptive signals of dorsiflexion (prop -30 
-20 -10) and plantarflexion (prop +30 +20 +10), touch (100g, 300g) and pain (heel and 
outertoe). The signals are sampled at 30kHz, and the signal stimulation consists of sev-
eral time alternation of stimulation (time ON) and rest (time OFF). Further data details 
are available in [8]. After initial preprocessing, the signal was reduced and transmitted 
from the source device to the receiver. 
 
 
4.1 Experimental setup  

To implement the hardware communication between the two devices, a scheme is re-
ported in Fig. 3. Two laptop PCs and two external sound cards, the Creative Sound 
BlasterX G6, were used. Indeed, since GC frequency range (1 kHz - 100 MHz) includes 
the frequencies of the signals supported by the common sound cards, we exploit such 
feature to use such simple platform. This card combines a virtual 7.1 DAC, with max-
imum values of 130dB and 32-bit/384kHz, and an Xamp headphone amplifier. It con-
nects directly to a laptop USB-C input via a cable and requires no additional power 
source. This device allows separation between the input and output channel for micro-
phones and earphones. By connecting the card to a computer, you can set it as a trans-
mitter (TX) or receiver (RX) for communication. To carry out the communication, each 
cable was connected to a sound card using the audio jack on one side and to two button 
superficial electrodes on the other.  Each sound card is then connected to a PC while 
the electrodes are placed on a piece of chicken tissue to simulate biological conditions. 
Figure 3  illustrates  how  the  setup  would  be  applied  to  a  human body in real-world  

 

  
 
Fig. 3 Illustrative setup for GC communication on a human body [25]. 
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scenarios. The surface button electrodes used are FIAB's PG10C, which, although de-
signed for recording cardiac signals, are employed here for intra-body communication 
purposes. It is important to consider the specific characteristics of the headphone jack 
plug and how the audio cable carries the audio signal. A headphone cable, once con-
nected, creates an electrical circuit that carries the audio signal from the source (the 
computer) to the headphones or any device connected to the other end of the cable (the 
electrodes). The cables used to transmit and receive the audio signal are characterized 
by TS connectors, which have only the tip and sleeve. These types of plugs are associ-
ated with unbalanced mono headphone signals. In the cable with this type of plug, there 
are two wires: the signal and the ground wire. The tip is connected to the signal wire 
while the sleeve serves as the ground wire. During the experiment, specific MATLAB 
code was run on each PC to transmit and receive the audio signal. Constant parameters 
ensure correct communication between devices. Some of these parameters are: 0.3 kHz 
carrier frequency, 96 kHz sample rate, 16-sample oversampling, and order 2 QAM 
modulation. Regarding the transmitter, after setting the parameters, the structure of the 
modulation filter is defined. The filter is a raised cosine FIR with R roll-off. The ENG 
signal is loaded, quantized and converted to binary using BPSK. The sequence is di-
vided into preamble and main data. QAM modulation, oversampling, application of the 
FIR filter, and amplitude modulation with carrier frequency fc are then performed. Fi-
nally, the modulated audio signal is sent with the MATLAB audioplayer object. As 
regards the receiver, the parameters coincide with those of the transmitter. After setting 
the parameters and loading the original signal, the received signal is recorded using 
audiorecorder. It is demodulated, a SRRC FIR filter is applied and later downsampled. 
Carrier synchronization corrects any phase errors. The correlation technique aligns the 
signal in time, and a Wiener filter equalizes the signal, according to [18]. Different 
evaluation parameters such as BER, MSE bit, SNR and error probability for BPSK can 
be calculated to analyze the transmission efficiency. Before starting the transmission 
using galvanic technology, a careful evaluation of the value of the injected current was 
conducted to ensure the safety of the experimental setup, both for the application on the 
current skin and for any more complex future developments. To verify the safety of the 
experimental setup some preliminary assessments for the contact current are performed. 
To conduct these measurements, we used the Teledyne Lecroy Wavemaster 8330HD 
oscilloscope, an instrument capable of detecting voltage across a predetermined resis-
tor. In our procedure, a section of the wire connected to the signal electrode was cut off 
and replaced with a 1 Ohm resistance. Through this resistance, we measured the volt-
age, which, according to Ohm's law (V=IR), allowed us to directly obtain the value of 
the current. On the transmitter side, the sound card was connected to the laptop via the 
USB-C port, while the wire, where the electrodes are attached, was connected to the 
headphone input of the sound card. Using the oscilloscope, we recorded the potential 
difference across the two exposed portions between the wire and the resistor as shown 
in Fig. 4. To test the worst-case scenario, the frequency on which the transmission was 
set was equal to 96 kHz and the volume level for the communication was set at 80% of 
the maximum, which represents the higher level used during the experiments. The 
safety limit was extracted from ICNIRP guidelines for contact currents and for our spe-
cific values was determined as 19.2 mA [26]. When the signal is transmitted, the 
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maximum value and the peak-to-peak value were obtained as 3 mA and 5.8 mA respec-
tively. Therefore, both the values were largely compliant with the guidelines and our 
setup was labeled as safe and secure. Currently, the experimental setup uses non-im-
planted devices with surface electrodes applied to chicken tissue, limiting its direct ap-
plicability to implantable configurations. Future work will address this limitation by 
adapting the system for fully implantable scenarios. This approach ensured an accurate 
evaluation of the current injected into the system, providing a solid basis for the safety 
of the experiment and for future application development. 
  

 
4.2 Data compression method  

The pipeline used to carry out data reduction consists in the creation of an algorithm 
capable of reducing the information content of the ENG signal to its essential charac-
teristics. Spikes represent the key points of the ENG signal to encode neural activity 
and are essential for transmission and classification. In this work, we developed a 
thresholding algorithm inspired by previous studies [27], specifically adapting it to im-
prove  spike  detection  and  compression  performance  for  intra-body communication  

 

 

 
  
Fig. 4 a) Experimental setup for contact current registration; b) Correspondent result obtained. 
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applications. In particular, the individual action potentials (APs) are identified, which 
represent the building block of the signal. The identification of this activity is associated 
with the presence of nervous activity [8]. To evaluate the consistency of the algorithm, 
a downsampling of the signal at 15 kHz, 10 kHz and 5 kHz compared to the original 30 
kHz was proposed, to analyze the performance at different frequencies. The algorithm 
was developed and executed on MATLAB R2023b. In order to identify the action po-
tential, two thresholds are used, as reported in Fig. 5.a. Both thresholds are implemented 
in the positive and negative range to ensure a comprehensive detection of the spikes. 
The lower threshold is calculated by estimating the absolute median value of noise in-
trinsic to the signal (such as thermal noise).  
 
The lower threshold is defined as follows: 
  

Lower Threshold Value = 4 ×
Median (|x|)

0.6745
 

(1) 
where x represents the ENG signal at times of inactivity. The median value is calculated 
to exclude any noise from electronic equipment. This threshold will be much more ac-
curate if it is possible to carry out the calculation only on non-activity traces. This guar-
antees to consider selectively the portion of the signal purely associated with noise. If 
the recordings include periods of activity alternating with periods of non-activity, as 
was the case in the six signals studied, this estimate will be less accurate. In case of 
inaccurate noise estimation, it is possible to reduce the factor 4 in Eq. (1) to lower val-
ues, such as 3.5 or 3. A lower threshold would allow to detect a higher number of spikes 
covered by noise. However, this approach implies a trade-off, as some of the detected 
spikes may be just noise. This choice requires a careful evaluation of the application 
context and the specific needs of the algorithm. 
 
The upper threshold is formulated as follows: 
 

Upper threshold Value = N × STD(x) 
(2) 

Where x is the signal in which nervous activity is present, and N is a multiplier factor 
of the standard deviation. This factor is used to ensure that at least 99% of the AP pop-
ulation falls within the established thresholds. The statistical value associated with this 
measure varies between 4 and 6.5. Once the thresholds were determined, a first selec-
tion was made. However, included peaks can present problems. Assuming, as described 
in [27], that the duration of a single AP is 3.3 ms, no anomaly must be present for each 
peak within this time window. If, within the 3.3 ms range, the values exceed the upper 
threshold, they must be excluded as they are considered ripples of the noise to be can-
celed. Alternatively, if there are multiple peaks within the threshold in the window, 
only the largest should be selected. By carrying out this process, as shown in Fig. 5.b, 
it will be possible to correctly select the positions of the central peaks of the APs. The 
obtained spikes are as shown in Fig. 5c. Once the peaks of interest have been identified,  



10 

 

 

 
     
Fig. 5 a) Pipeline used for spikes data compression algorithm; b) Spike between upper and lower 
thresholds, red and blue are discarded while green are the correct ones; c) Shapes of the final 
extracted APs at 30 kHz and 5 kHz respectively. 
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it is possible to obtain three different outputs with different information content and 
length: 

 
 Index vector: collects the positions of the indices of the central peak associated 

with the selected APs. It contains unsigned integers in ascending order. 
 

 Zero count vector: A vector of the same length as the original, composed only 
of zeros and ones corresponding to the location of an AP. Since the probability 
of finding a one is very low compared to the total length of the signal, further 
processing is done to reduce the length. Starting from the created binary vec-
tor, it is possible to create a new encoding that indicates the position of the 
current zero and the number of zeros that follow it, thus reducing the final 
length of the vector. 

 
 Signature vector: Contains the x(t) values of all temporal signatures associated 

with the final peaks. Each signature is sequentially separated by three zeros 
and the location of the central peak to distinguish them. 

 
The compression process aims to reduce the length of the data while maintaining es-
sential information, such as spikes, which are essential for classification. Unnecessary 
elements are eliminated. During communication the compressed signal remains intact 
and undistorted up to a distance of 10 cm between the electrodes, while greater dis-
tances require further analysis. The compression ratio (CR), as described in [12, 13], 
allows to quantify the different final signal length. We can define: 

  
v = [vଵ, vଶ, … , v୬] 

(3) 
as the vector containing with n samples of the original signal, 
 

𝑣′ = [𝑣′ଵ, 𝑣′ଶ, … , 𝑣′] 
(4) 

as a vector containing m samples after compression. We therefore define the length 
reduction factor as 

𝜀 =
𝑚

𝑛
 

(5) 
and the ratio between the size of the data types in bits (integer, double, float, …) as  
 

λ =
size of vᇱdata type [bits]

size of v data type [bits]
 

(6) 
Therefore, in the end the CR turns out to be: 
 

CR = ε ∙ λ 
(7) 
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It is important to remember that the signal will have to be sent via electrodes. To dis-
tinguish the various values, they must fall within the available quantization of the de-
vice used. In the case of a 16-bit device, capable of providing up to 65 535 values, it is 
necessary to divide the data into packets respecting the maximum value supported by 
the device. Furthermore, it should be taken into consideration that with this code it is 
not possible to recover the original signal following compression, since much of the 
original ENG content has been discarded. However, the transformed signal can be used 
as encoding for classification algorithms, such as Spiking Neural Networks [28]. Fi-
nally, to obtain the optimal multiple of the standard deviation (STD) for the upper 
threshold, a statistical analysis was performed. By calculating the probability of finding 
a peak on the total signal (or only on the useful portion of interest), it is possible to 
estimate the optimal N value by identifying the plateau. This approach allows for the 
determination of a threshold that balances the inclusion of relevant spikes  while  min-
imizing  the  influence of noise. Probability values are calculated as follows: 
 

𝑃ଵ =
# 𝐴𝑃

𝑛
 

(8) 

5 Spike detection results and discussion 

To accommodate the reduced throughput capacity of communication via galvanic cur-
rents, compression techniques based on the use of AP sensing have been implemented. 
First, the optimal value of the parameter N was determined, which acts as a multiplier 
to establish the optimal upper threshold. By setting N between 4 and 6.5, we observed 
the change in the number of peaks in the useful signal portions. As visible in Fig. 6 the 
tests carried out on three different rats’ signals show that the number of peaks reaches 
a plateau for all stimulus categories and subjects after a value of N equal to 5.5. Inter-
estingly, including the whole signal or only the parts with useful neural activity pro-
duces different probability results. This suggests that activity is indeed associated with 
useful periods and that the estimation works best when the inactive and active portions 
of the signal can be separated. The N value of 5.5 allows you to limit the loss of peak 
values, while ensuring a significant reduction in data load. Focusing on the different 
types of stimulation, as illustrated in Fig. 7, for nociceptive stimuli, the multiples range 
of 4 to 6.5 does not work correctly because the thresholds values are reversed. Interest-
ingly, the code does not detect any peaks until the multiple reaches a value of 8.4. To 
address this issue, the lower threshold was set as the median of all lower thresholds, 
since the noise is essentially constant. Instead, for the higher thresholds, the highest was 
chosen. In a real-time application, in fact, it is not possible to implement multiple 
thresholds, but only one that can cover all the results. With these two thresholds, the 
number of APs selected per category is equally distributed for all stimulus categories, 
demonstrating the effectiveness of the method. An additional study was conducted by 
performing downsampling, as illustrated in Fig. 8. Length compression performance 
using 5 kHz resulted to be far less efficient than with 10 kHz and 15 kHz. Since spike 
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Fig. 6 Mean values of zero-output length, total spike probability (ON+OFF) and probability over 
time activity (ON) for proprioception ±30° at 30 kHz sampling. 
 

 
 
Fig. 7 Thresholds values for the different classes of signals for Animal 1 at 30 kHz. 
 

 
 
Fig. 8 Mean length of the zero-output for different sampling frequencies. 
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Fig. 9 Inverse of compression ratio for proprioception ±30° at 30 kHz. 

 
detection relies on distinguishing between one sample and its neighbors, a reduced sam-
pling rate leads to a binary vector with a higher frequency of spikes overall. For this 
reason, the sampling frequency that best optimized the reduction of the parameters was 
found to be 10kHz. These results allow us to set the parameters, specific for each sub-
ject, to implement and evaluate the effectiveness of the compression algorithms. Fig. 9 
shows the inverse of the compression factor, which indicates the compression level 
achieved. A higher number indicates greater compression. The most effective algorithm 
in compressing signals was Index Vector, with a value of 13 824, followed by Zero 
Count Vector with a value of 6 703, and finally Signature Vector with a value of 159. 
These values are significantly higher compared to other compression algorithms imple-
mented in [12, 13], where the maximum compression factor achieved was equal to 8. 
All algorithms can be considered effective, with greater attention to Index Vector in 
case you want to perform extreme compression or Signature Vector in case you want 
to preserve part of the information. 

6 Conclusion 

The use of galvanic currents for data communication between implantable devices of-
fers significant potential advantages, as demonstrated in experiments on chicken tissue, 
and could enable safe and reliable transmission of information within the human body. 
While the proposed method demonstrates promising results, it is currently validated 
only for distances up to 10 cm, with further analysis needed for larger ranges. The com-
pression algorithm prioritizes spikes, potentially discarding other relevant signal fea-
tures. Moreover, in vivo validation and optimization for long-term energy efficiency 
remain open challenges. It would be interesting to explore the implementation of human 
IBCs in different body districts, supported by finite element simulations. The imple-
mentation of IBCs in areas such as arms, face, legs and abdomen would also allow to 
evaluate the efficiency of communication in relation to intrinsic variables between sub-
jects, such as body mass index and constitution. This approach could expand the tech-
nology's applicability to various medical conditions, enhancing safety and enabling 
broader clinical use of IBC systems. Another promising area is the use of spiking neural 
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networks for the classification of data transmitted in real time. The use of galvanic cur-
rents for intra-body communication represents a rapidly evolving field of research with 
the potential to revolutionize the treatment of peripheral neuropathies and other medical 
conditions, paving the way for new therapies and significant improvements in patient 
care. 
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