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213-1

\

301

## BB 8:
func procl(q)

varl ;= call chketRecei\fe(St1:i)
J=

var? 1= j.q
branch var?

False

306

304
\

## BB 5:
vard :=resl+2

resl ;= vard
vard :=call proc2(resl,)
function_end

## BB 3:
var3 ;= call funl(i,)
resl ;= varl
ji=1.1

FIG. 3
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213-2

311

## BB 13:
func proc2(t)

## BB 10:
var6 = call fun2(t,)
res2 = var6
var7 := call MoveAbsI(res2,
vars :=+100
j:=var8
function_end

FIG. 4
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DETECTING UNSECURE DATA FLOW IN
AUTOMATION TASK PROGRAMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 62/981,953, filed on Feb. 26, 2020, which
is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates generally to device security,
and more particularly but not exclusively to automation task
programs.

2. Description of the Background Art

As its name indicates, an automation task program (“task
program’) comprises instructions that are executed by a
device to perform a particular task. In the context of indus-
trial robots, a task program comprises instructions that when
executed cause a robot to perform a mechanical task, such
as welding, pick-and-place, transport, assembly, or other
manufacturing-related task on a factory floor. Task programs
for industrial robots are also referred to herein as “industrial
robot programs.”

An industrial robot program is written in an Industrial
Robot Programming Language (IRPL). An IRPL is inher-
ently different from general-purpose programming lan-
guages, such as C/C++, C#, Go, Python, and PHP program-
ming languages. First, different industrial robot vendors
have different, proprietary IRPLs. That is, an IRPL is
typically domain-specific and proprietary to one vendor.
Second, the semantic of a typical IRPL is typically unique
and different from general-purpose programming languages.
Third, an IRPL, compared to general-purpose programming
languages, typically has fewer features that make it easier
for the programmer to avoid introducing vulnerabilities
(e.g., string manipulation, cryptographic primitives). These
and other differences make it difficult to evaluate the security
of industrial robot programs using techniques employed for
programs written in a general-purpose programming lan-

guage.
SUMMARY

In one embodiment, an automation task program is
inspected for unsecure data flow. The task program is parsed
to generate a parse tree, which is visited to generate control
flow graphs of functions of the task program. The control
flow graphs have nodes, which have domain-agnostic inter-
mediate representations. The control flow graphs are con-
nected to form an intermediate control flow graph. The task
program is deemed to have an unsecure data flow when data
is detected to flow from a data source to a data sink, with the
data source and the data sink forming a source-sink pair that
is indicative of an unsecure data flow.

These and other features of the present invention will be
readily apparent to persons of ordinary skill in the art upon
reading the entirety of this disclosure, which includes the
accompanying drawings and claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a logical diagram of an automation system in
accordance with an embodiment of the present invention.
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FIG. 2 is a logical diagram of a task program analyzer in
accordance with an embodiment of the present invention.

FIGS. 3 and 4 are graphical representations of control
flow graphs of functions of an example task program, in
accordance with an embodiment of the present invention.

FIG. 5 is a graphical representation of an intermediate
control flow graph that includes the control flow graphs of
FIGS. 3 and 4, in accordance with an embodiment of the
present invention.

FIG. 6 is a graphical representation of the intermediate
control flow graph of FIG. 5, showing data flow analysis in
accordance with an embodiment of the present invention.

FIG. 7 is a flow diagram of a method of detecting
unsecure data flow in a task program in accordance with an
embodiment of the present invention.

FIG. 8 is a logical diagram of a computer system in
accordance with an embodiment of the present invention.

The use of the same reference label in different drawings
indicates the same or like components.

DETAILED DESCRIPTION

In the present disclosure, numerous specific details are
provided, such as examples of systems, components, and
methods, to provide a thorough understanding of embodi-
ments of the invention. Persons of ordinary skill in the art
will recognize, however, that the invention can be practiced
without one or more of the specific details. In other
instances, well-known details are not shown or described to
avoid obscuring aspects of the invention.

FIG. 1 is a logical diagram of an automation system 150
in accordance with an embodiment of the present invention.
In the example of FIG. 1, the automation system 150 is that
of an industrial facility, such as a factory. The automation
system 150 includes one or more robots 151, a server 170,
and an evaluation system 160. The robots 151, the server
170, the evaluation system 160, and other devices of the
automation system 150 communicates over a computer
network 155, which may be wired or wireless.

A robot 151 may comprise a commercially-available
industrial robot, such as those from the ABB Robotics
company, KUKA Robotics company, and other industrial
robot vendors. A robot 151 may include one or more
moveable members, such as arms, end effectors, and other
movable mechanical structures. A robot 151 may include a
control module 152 with a processor that executes instruc-
tions of a task program 153 to cause the robot 151 to move
a moveable member to perform an automated task, such as
to build a product, dispense liquid, transport or move a load,
or other industrial automation task. The control module 152
may be integrated in the housing of the robot 151 or in a
separate housing that is directly connected to the robot 151.

In the example of FIG. 1, the task program 153 is an
industrial robot program that is written in a proprietary,
domain-specific IRPL. The task program 153 is in source-
code, human-readable form. The task program 153 may be
written in the RAPID robot programming language, the
KRL robot programming language, or other programming
language for industrial robots. The task program 153 may be
loaded onto the control module 152 of the corresponding
robot 151 directly (e.g., from a local storage or input port of
the control module 152) or over the computer network 155.

The server 170 may comprise computer hardware and
associated software for providing file storage or other ser-
vice to the robots 151. In the example of FIG. 1, the server
170 includes a storage device 171 that may store task
programs 153 for loading onto the robots 151 over the
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computer network 155. The storage device 171 may also
store configuration files for the robots 151.

An unsecure data flow is flow of data, from a data source
to a data sink, that creates a vulnerability in a robot 151. A
data source is an instruction or a function that may receive
untrustworthy data, whereas a data sink is an instruction or
a function that operates on received data. In the present
disclosure, “function” includes a procedure, a subroutine, or
other callable code block in a task program. As can be
appreciated, a function may comprise a plurality of instruc-
tions.

An unsecure data flow in a task program 153 may cause
a robot 151 to move a moveable member (e.g., swing an
arm) in an unsafe manner during operation, creating a
physical safety issue that may harm personnel who work in
the vicinity of the robot 151. An unsecure data flow may also
make the task program 153 susceptible to inadvertent pro-
gramming errors. Additionally, an unsecure data flow poses
a security risk that may be exploited by an attacker to
maliciously control the robot 151 or to attack other devices
connected to the computer network 155.

Unsecure data flow may make the robot 151 vulnerable to
externally-received untrustworthy data, such as data from
outside the task program 153. For example, a task program
153 may receive external inputs from files, communication
interfaces (e.g., computer network 155, serial communica-
tion bus, fieldbuses), a user interface of a teach pendant, or
other external input source. Such external inputs to the robot
151 can be exploited by an attacker. For example, data files
can be tampered with by malicious third-parties (e.g., con-
tractors); inbound communication data can originate from
compromised devices on the computer network 155 or other
endpoints; and user interfaces of teach pendants can be
manipulated by an insider.

Table 1 below summarizes example external inputs that
may be exploited by an attacker.

TABLE 1

Intended
Legitimate Use

Example

External Input Attack Scenario

File Static data from
configuration files

Dynamic real-time data

By a contractor

From untrusted
networks or
endpoints

By an Insider

Inbound Communication
(e.g., Network, serial,
field bus)

Teach Pendant (i.e., user
interface Forms)

Operator-supplied data

The inventors identified at least four categories of sensi-
tive data sinks, which may be an instruction or function that
may render a task program vulnerable. “Data sinks” and
“data sources” are also simply referred to herein as “sinks”
and “sources”, respectively.

A first category of sensitive data sinks comprises instruc-
tions or functions that perform movement commands. More
particularly, the first category of sensitive data sinks receives
data that are used to control the trajectory of a moveable
member of a robot. Data sinks of the first category are
widely used as a way to control or influence a robot’s
movement from an external program. For example, MELFA
robots from the Mitsubishi Electric company support an Mxt
(move external) instruction, which allows a robot to be
controlled by way of User Datagram Protocol (UDP) pack-
ets containing information about robot position. Similarly,
the ABB Robotics company provides the Robotware Exter-
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4

nally Guided Motion option, which allows an external
device to perform direct motion control of the robot.

A second category of sensitive data sinks comprises
instructions or functions that perform file and configuration
handling. Tainted data received from a sensitive data source
(e.g., network socket) may be used as part of the filename
parameter of a file open or configuration open instruction
without validation. This vulnerability enables a network
attacker to control the name of the configuration file to be
opened and read, allowing the attacker to access confidential
information (e.g., intellectual property) stored in files or to
modify information in configuration files. If the robot con-
trol module has a structured file system rather than a flat file
system, this vulnerability may also lead to the classic
directory traversal vulnerability.

A third category of sensitive data sinks comprises instruc-
tions or functions that perform file and configuration modi-
fication. Orthogonal to the second category of sensitive data
sinks, untrustworthy data may be used as the content to be
written in configuration files or passed as parameter to
configuration setting functions. If data is not sanitized (e.g.,
checked against a white list or against an acceptable range),
an attacker may overwrite configuration values in an unex-
pected and potentially unsecure way.

A fourth category of sensitive data sinks comprises
instructions or functions that are called by name. More
particularly, some IRPLs have the capability of resolving, at
runtime and programmatically (e.g., by “late binding”), the
names of the functions to be called. For example, a devel-
oper may use, in the RAPID robot programming language,
the % fun_name % instruction in order to call a function,
where “fun_name” is a variable containing the function to be
called. If the fun_name variable originates from an untrusted
data source and there is no input validation, the task program
is vulnerable; an attacker may subvert the control flow of the
task program, with varying effects according to the seman-
tics of the loaded module.

Table 2 below summarizes the above-described sensitive
data sinks by functionality.

TABLE 2

Data Sink Functionality —Intended Legitimate Use Attacker Goal

Unintended robot
movement
Data exfiltration

Movement Programmatically
maneuver the robot

File and Configuration Read arbitrary files

Handling

File and Configuration =~ Write configuration Implant a backdoor
Modification

Call by Name Write parametric and Divert the control

generic code flow

Besides the presence of vulnerabilities, the complexity of
IRPLs renders them susceptible to be used as a way to codify
malicious functionalities. Malicious code, which are also
referred to herein as “malware”, may steal information, drop
and execute second-stage malware, or perform other mali-
cious actions in the automation system 150. The inventors
identified at least two cases of malicious functionalities that
can be implemented in an IRPL.

A first case is the information stealer malware. This is
particularly relevant in industrial settings because both the
configuration parameters and the task programs residing on
the robot control module are considered high valuable
intellectual property and are thus attractive targets for
attackers. An information stealer malware may, for example,
exfiltrate confidential information from local files through an
outbound connection.
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A second case is the dropper malware. This piece of
malware allows the attacker to download and execute a
second-stage malware. In one embodiment, the task program
analyzer 161 is able to detect a dropper malware as a pattern.
More particularly, the task program analyzer 161 may detect
malware based on flow of data from a sensitive data source
to a sensitive data sink, which is also referred to herein as a
“source-sink pair”.

Table 3 below provides a summary of malware, including
their actions, sensitive data source, and sensitive data sink.

TABLE 3
Malware Malicious Action Data Source Data Sink
Information Exfiltration File Outbound network
stealer Exfiltration Config Outbound network
Harvesting Directory list File
Dropper Download Communication  File (code)
Execute File (Code) Call by name

In the example of FIG. 1, the evaluation system 160
comprises computer hardware and associated software for
detecting unsecure data flow in task programs 153. The
evaluation system 160 may include a task program analyzer
161, which in one embodiment comprises instructions that
are stored in a memory of the evaluation system 160 and
executed by a processor of the evaluation system 160 to
cause the evaluation system 160 to detect unsecure data flow
in task programs 153. More particularly, the task program
analyzer 161 may receive a task program 153 (see arrow
181), evaluate the task program 153 for unsecure data flows
(see arrow 182), and generate a result of the evaluation as an
output 152 (see arrow 183). The output 152 may indicate
whether or not the task program 153 has an unsecure data
flow. In one embodiment, the task program analyzer 161
performs data flow analysis between predetermined sensi-
tive data sources and predetermined data sinks. The sensitive
data sources may be defined as taint sources and the sensi-
tive data sinks may be defined as taint sinks. The task
program analyzer 161 may detect unsecure data flow in the
task program 153 when data flow from a taint source to a
taint sink that have been defined as a source-sink pair
indicative of unsecure data flow. The source-sink pair may
be indicated in the output 152.

In response to detecting an unsecure data flow in a task
program 153, one or more corrective actions may be per-
formed to prevent the task program 153 from being executed
by arobot 151. More particularly, the task program 153 may
be put into quarantine, deleted, further analyzed for correc-
tion, etc. An alert, such as by email, log entry, visual
indicator, alarm, etc. may also be raised in response to
detecting an unsecure data flow.

FIG. 2 is a logical diagram of the task program analyzer
161 in accordance with an embodiment of the present
invention. In the example of FIG. 2, the task program
analyzer 161 comprises a plurality of parsers 210 (i.e.,
210-1, 210-2, . . ., 210-n), a control flow graph (CFG)
generator 212, an intermediate control flow graph (ICFG)
generator 214, and a dataflow analyzer 216. In one embodi-
ment, the task program analyzer 161 is a source code static
analyzer. That is, the task program analyzer 161 evaluates
the source code of a task program 153 statically, i.e., not at
runtime.

In one embodiment, the task program analyzer 161
includes a parser 210 for each IRPL that is recognized by the
task program analyzer 161. For example, the task program
analyzer 161 may include a parser 210-1 for parsing a task
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6

program written in the RAPID robot programming lan-
guage, a parser 210-2 for parsing a task program written in
the KRL robot programming language, etc.

A parser 210 is configured to receive a task program 153
(see arrow 201) and parse the objects (e.g., functions, data,
variables) of the task program to identify the syntactic
relationships of the objects to each other according to the
grammar of a particular IRPL. In the example of FIG. 2, the
parser 210 outputs a parse tree 211 (see arrow 202), which
represents the syntactic relationships between objects of the
task program 153.

In one embodiment, a parser 210 is implemented using the
ANTLR Parser Generator. As can be appreciated, other
parser generators may also be employed without detracting
from the merits of the present invention. The ANTLR Parser
Generator may be used to generate a lexical analyzer and a
parser from a specification of a corresponding IRPL. gram-
mar. Grammars of an IRPL. may be developed from infor-
mation available in reference manuals of the IRPL, by
looking at existing task programs written in the IRPL, etc.
As a particular example, the official language reference for
the RAPID robot programming language includes portions
of the extended Backus-Naur form (EBNF) grammar, which
may be ported to the ANTLR Parser Generator to generate
the parser 210-1 for the RAPID robot programing language.

In one embodiment, the CFG generator 212 is configured
to generate a plurality of CFGs 213, a separate CFG 213 for
each function of a parsed task program 153. In the example
of FIG. 2, the CFG generator 212 visits the parse tree 211 of
the parsed task program 153 (see arrow 203) to build one or
more CFGs 213 (see arrow 204) in memory. Each node of
a CFG 213, which is also known as a “basic block™, contains
a list of instructions. These instructions in the nodes of the
CFG 213 are expressed in a language-independent, simpli-
fied, intermediate representation. That is, the instructions in
the nodes of the CFG 213 are domain-agnostic and not
specific to a particular IRPL. In one embodiment, the
intermediate representations do not preserve the complete
semantics of the instructions, but only their data flow. This
is because, in one embodiment, the data flow is all that is
needed for subsequent taint analysis performed using the
dataflow analyzer 216.

A modular approach may be taken to make the task
program analyzer 161 easily extensible to recognize differ-
ent IRPLs. As a particular example, the parser 210 and the
CFG generator 212, which may be implemented using the
ANTLR Parser Generator visitor pattern, are tailored for a
specific IRPL; the rest of the components of the task
program analyzer 161 may be used for different IRPLs. A
CFG may be simplified by running a set of IRPL-agnostic
simplification passes, such adding CFG edges at “goto”
statements, enforcing a single exit point/return for the CFG
of each function, eliminating dead code blocks, etc.

The ICFG generator 214 is configured to generate an
ICFG 215 (see arrow 206), which connects the CFGs 213
together at function calls (see arrow 205). In one embodi-
ment, to build the ICFG 215, the ICFG generator 214 visits
the CFG 213 of each function and replaces nodes that have
calls to functions defined in the same module (i.e., functions
where the CFG 213 is available) with two CFG edges:

(a) a first edge from the instruction immediately preceding
the call to the entry basic block of the called CFG. To
properly model the data flow from the function calls’
actual parameters to the function’s formal parameters,
additional assignment nodes may be added along this
first edge; and
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(b) a second edge from the exit basic block of the called
CFG to the instruction following the call. Additional
nodes may be added to correctly propagate the returned
value to the caller, as well as to propagate the value of
any output parameter declared as such in the function
prototype.

With the above procedure, the ICFG generator 214 is used
to build an extended control and data flow graph of all the
functions in the target task program 153 being evaluated.

In one embodiment, the dataflow analyzer 216 is config-
ured to analyze flow of data through the ICFG 215 to detect
vulnerabilities caused by unsecure data flow in the task
program 153. The dataflow analyzer 216 may perform a
forward-only datatlow analysis for taint tracking, which
propagates taint information from sensitive data sources
(e.g., inbound network data) towards all the basic blocks
(i.e., nodes) in the task program 153. Any input parameter of
instructions and functions defined as data sinks (e.g., coor-
dinates passed to robot-movement functions) may be
checked to determine if the input parameter was tainted and
by which data source. For each node in the ICFG 215 and
for each variable, the analysis algorithm may compute the
set of “taints”, i.e., the set of data sources that influenced the
value of the variable.

A work-list based iterative algorithm may be used by the
dataflow analyzer 216 to compute the result of the datatlow
analysis. More particularly, the dataflow analysis may be
defined by a carrier lattice that represents the taint informa-
tion computed for each node of the ICFG 215, and by a
transfer function that defines how the taint information is
propagated according to the semantics of each instruction.
Elements in the carrier lattice may be the set of data sources
that taint each variable. The transfer function may be defined
as a function that propagates the taint information from the
variables used by the instruction to the variables defined by
the instruction. For example, the transfer function for a
binary operation adds, to the taint information of the result,
the union of the taint information of the two operands.

A function call may refer to another function that is not
present in the task program being analyzed. For example, a
function call may be to library functions or to functions
defined in a file not available to the dataflow analyzer 216.
In that case, because the datatlow analyzer 216 does not
have the function’s CFG, the behavior of the function may
be approximated by assuming that the function uses all
parameters to compute the return value, if any. Hence, the
default transfer function for the function call adds, to the
taint information of the return value, the union of the taint
information of all the parameters. However, there are library
functions that may not work this way. More particularly, a
library function may have output parameters and also accept
parameters that do not influence the result in a security-
sensitive way. To address this, function calls to library
functions may be modeled in an IRPL-specific fashion. That
is, for each supported IRPL and for each library function,
parameters that are considered inputs and parameters that
are considered outputs may be specified for taint propaga-
tion purposes.

The transfer function employed by the dataflow analyzer
216 may support the concept of sanitization, i.e., an opera-
tion that removes the taint from a variable. This reflects the
behavior of functions that are used for input sanitization or
functions that change the handled resource. For example, to
monitor for data that is written (e.g., in the case of exfiltra-
tion) to a user-controlled file, the Close instruction may be
considered as a sanitizer, because further uses of the same,
closed file descriptor would necessarily refer to a different
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file. The dataflow analyzer 216 may support a set of sani-
tizers that are defined in a configuration data 217.

In one embodiment, unsecure data flow to be detected in
task programs are defined in terms of source-sink pairs. The
source-sink pairs for detecting unsecure data flow may
defined in the configuration data 217, which is input to the
dataflow analyzer 216 (see arrow 208).

As a particular example pertaining to the KRL robot
programming language for KUKA industrial robots, func-
tions that receive data from the computer network via the
KUKA Ethernet KRL extension, functions starting with
eki_get (e.g., eki_getreal), and functions belonging to the
KUKA Ethernet KRIL XML package (e.g., EKX_Getlnte-
gerElement) may be defined as sensitive data sources.
Instructions involving movements, such as ptp, lin, and circ,
may be defined as sensitive data sinks. As another particular
example pertaining to the RAPID robot programming lan-
guage for ABB robots, the SocketReceive (i.e., Str and
RawData) instruction may be defined as a sensitive data
source. Functions involving movement, file and configura-
tion-handling, and late binding, such as those with Move,
Open, OpenDir, SaveCfgData, WriteCfgData, Load, and
CallByVar instructions, may be defined as sensitive data
sinks. In general, sensitive data sources may be paired with
sensitive data sinks to form predetermined source-sink pairs
that are indicative of unsecure data flow.

To detect malware, source-sink pairs may be defined
using data sources and data sinks that are shown in Table 3
above, for example.

Unsecure data flow is detected in a task program 153
when data flow from a data source to a data sink that are
defined as a source-sink pair. The dataflow analyzer 216 may
generate an output 152 (see arrow 209) that indicates the
result of evaluation of the task program 153 for unsecure
data flow. The output 152 may indicate whether or not the
task program 153 has one or more unsecure data flows and,
when the task program 153 is detected to have an unsecure
data flow, the corresponding source-sink pair.

As a particular example, to detect exfiltration of data in
the RAPID robot programming language, taint information
propagation from the ReadRawBytes instruction (and other
device read instructions) to the SocketSend instruction may
be monitored. The ReadRawBytes instruction and the Sock-
etSend instruction may be defined as a source-sink pair.
Unsecure data flow that is potentially by malware is detected
when the taint information propagates from a function with
the ReadRawBytes instruction to a function with the Sock-
etSend instruction.

An example operation of the task program analyzer 161 is
now described with reference to FIGS. 3-6. The example
operation evaluates a target task program that has the
following source code:

MODULE TestModule2
PROC procl(num q)
VAR num i;
SocketReceive \Str:=i;
FOR j FROM 1 TO q DO
resl := funl(i);
ENDFOR
resl = resl + 2;
proc2(resl);
ENDPROC
PROC proc2(num t)
VAR num j;
res2 := fun2(t);
MoveAbs]J res2;
j =]+ 100;
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-continued

ENDPROC
ENDMODULE

The target task program has two functions, namely func-
tions procl and proc2. The target task program is written in
the RAPID robot programming language. The target task
program is parsed with a corresponding parser 210. The
parsing of the target task program generates a parse tree,
which is input to the CFG generator 212 to generate a CFG
for each of the functions procl and proc2.

FIG. 3 is graphical representation of a CFG 213-1 of the
function procl and FIG. 4 is a graphical representation of a
CFG 213-2 of the function proc2. The CFG 213-1 has nodes
301-305. Similarly, the CFG 213-2 has nodes 311 and 312.

The ICFG generator 214 generates an ICFG 215-1 (see
FIG. 5) that connects the CFG 213-1 of the function procl
to the CFG 213-2 of the function proc2. FIG. 5 is a graphical
representation of the ICFG 215-1. The function proc1 makes
a call to the function proc2 (see FIG. 3, arrow 306), which
is reflected by the node 321 of the ICFG 215-1. The ICFG
generator 214 generates a first edge 341 from the instruction
of the node 321 to the node 322, which is the entry basic
block of the function proc2. The ICFG generator 214 also
generates a second edge 342 from the node 323, which is the
exit basic block of the function proc2, to the end of the ICFG
215-1. If another instruction follows the function proc2, the
edge 342 would be connected to that instruction.

FIG. 6 is a graphical representation of the ICFG 215-1,
showing data flow analysis performed by the dataflow
analyzer 216 in the example operation. In the example
operation, a source-sink pair for detecting an unsecure data
flow has the SocketReceive instruction as the data source
and the MoveAbsJ instruction as the data sink. The Sock-
etReceive instruction is sensitive in that it receives data over
a computer network, and the MoveAbsJ instruction is sen-
sitive because it involves robot arm movement. Accordingly,
an execution path from a function with the SocketReceive
instruction to another function with the MoveAbsJ instruc-
tion is deemed to be an unsecure data flow.

In the example operation, the SocketReceive instruction is
present in the function procl (see also FIG. 3, node 302) and
the MoveAbsl] instruction is present in the function proc2
(see also FIG. 4, node 312). During data flow analysis, data
is detected to flow from the SocketReceive instruction of the
function procl to the MoveAbsl] instruction of the function
proc2 (FIG. 6, arrows 401-404). Accordingly, the target task
program 153 is detected to have an unsecure data flow.

FIG. 7 is a flow diagram of a method 700 of detecting
unsecure data flow in a task program in accordance with an
embodiment of the present invention. The method 700 may
be performed by the task program analyzer 161 to evaluate
a task program prior to the task program being loaded to a
robot 151.

In the example of FIG. 7, a task program to be evaluated
for unsecure data flow is received (step 701) in the evalu-
ation system 160. There, the task program analyzer 161
parses the task program for readily identification of the
objects of the task program and their relationships (step
702). In one embodiment, the parsing of the task program
generates a parse tree that is visited (i.e., traversed) by the
task program analyzer 161 to identify functions of the task
program and generate a CFG for each of the functions (step
703). The task program analyzer 161 generates an ICFG that
connects together the CFGs of the functions according to

20

25

30

35

40

45

50

55

60

65

10

their calling relationships (step 704). In one embodiment,
unsecure data flows are defined as source-sink pairs. The
task program analyzer 161 monitors data flow between
predetermined data sources and data sinks (e.g., in the
ICFG) and detects presence of unsecure data flow when data
is detected to flow from a data source to a data sink that are
designated as a source-sink pair for detecting an unsecure
data flow (step 705).

Although the above embodiments are described in the
context of industrial robots, one of ordinary skill in the art
will appreciate that, in light of the present disclosure, the
present invention may be applied to other special-purpose
devices that execute domain-specific programming lan-
guages. For example, the present invention is equally appli-
cable to a network of Internet-of-Things (I0T) devices from
different vendors. Such IOT devices may execute task
programs that are written in different, special-purpose pro-
gramming languages. In that case, task programs for the IOT
devices may be evaluated for one or more unsecure data flow
in the same manner as described above. More specifically, a
task program for an IOT device may be parsed, a parse tree
of the parsed task program may be visited to generate CFGs
for each function of the task program, an ICFG of the CFGs
may be generated, and data flow of the ICFG may be
analyzed to detect an unsecure data flow code sequence as
described above for task programs of industrial robots.

Referring now to FIG. 8, there is shown a logical diagram
of a computer system 100 that may be employed with
embodiments of the present invention. The computer system
100 may be employed as the evaluation system 160 or
another computer described herein. The computer system
100 may have fewer or more components to meet the needs
of a particular cybersecurity application. The computer
system 100 may include one or more processors 101. The
computer system 100 may have one or more buses 103
coupling its various components. The computer system 100
may include one or more user input devices 102 (e.g.,
keyboard, mouse), one or more data storage devices 106
(e.g., hard drive, optical disk, solid state drive), a display
screen 104 (e.g., liquid crystal display, flat panel monitor),
a computer network interface 105 (e.g., network adapter,
modem), and a main memory 108 (e.g., random access
memory). The computer network interface 105 may be
coupled to a computer network, which in this example is the
computer network 155.

The computer system 100 is a particular machine as
programmed with one or more software modules, compris-
ing instructions stored non-transitory in the main memory
108 for execution by the processor 101 to cause the com-
puter system 100 to perform corresponding programmed
steps. An article of manufacture may be embodied as com-
puter-readable storage medium including instructions that
when executed by the processor 101 cause the computer
system 100 to be operable to perform the functions of the
one or more software modules. In one embodiment where
the computer system 100 is configured as the evaluation
system 160, the software modules comprise a task program
analyzer 161.

Systems and methods for detecting unsecure data flow in
task programs have been disclosed. While specific embodi-
ments of the present invention have been provided, it is to
be understood that these embodiments are for illustration
purposes and not limiting. Many additional embodiments
will be apparent to persons of ordinary skill in the art reading
this disclosure.
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What is claimed is:

1. A method of detecting unsecure data flows in task
programs, the method comprising:

receiving a task program for controlling motion of an

industrial robot, the task program being written in an
industrial robot programming language;

parsing the task program to generate a parse tree;

generating a plurality of separate control flow graphs for

functions of the task program, each of the control flow
graphs comprising a plurality of basic blocks, each of
the basic blocks comprising domain-agnostic interme-
diate representations;

generating an intermediate control flow graph that con-

nects the control flow graphs together;

detecting data flow from a data source to a data sink in the

intermediate control flow graph, the data source and the
data sink forming a predetermined source-sink pair that
is indicative of an unsecure data flow; and

in response to detecting the data flow from the data source

to the data sink in the intermediate control flow graph,
deeming the task program to have the unsecure data
flow.

2. The method of claim 1, wherein generating the plurality
of separate control flow graphs includes visiting the parse
tree.

3. The method of claim 1, wherein the data source is an
instruction for receiving an external input to the task pro-
gram and the data sink is an instruction for moving a
moveable member of the industrial robot.

4. The method of claim 3, wherein the moveable member
of the industrial robot is a robot arm.

5. The method of claim 1, further comprising:

preventing the task program from being executed by the

industrial robot in response to deeming the task pro-
gram to have the unsecure data flow.

6. A system for detecting unsecure data flows in task
programs, the system comprising at least one processor and
a memory, the memory storing instructions that when
executed by the at least one processor cause the system to:

receive a task program, the task program being written in

a programming language for a special-purpose device;
parse the task program to generate a parse tree of the task
program;
visit the parse tree to generate a first control flow graph for
a first function of the task program and a second control
flow graph for a second function of the task program;

detect data flow from a data source to a data sink between
the first and second control flow graphs, the data source
and the data sink forming a predetermined source-sink
pair that is indicative of an unsecure data flow; and

in response to detecting the data flow from the data source
to the data sink, prevent execution of the task program
by the special-purpose device,

wherein the special-purpose device is an industrial robot.
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7. The system of claim 6, wherein the data source is an
instruction for receiving an external input to the task pro-
gram and the data sink is an instruction for moving a
moveable member of the industrial robot.

8. The system of claim 6, wherein the instructions stored
in the memory, when executed by the at least one processor,
further cause the system to:

generate an intermediate control flow graph that connects

the first control flow graph to the second control flow
graph; and

detect the unsecure data flow in the intermediate control

flow graph.

9. The system of claim 6, wherein each of the first and
second control flow graphs comprises a plurality of basic
blocks, and each of the basic blocks comprises domain-
agnostic intermediate representations.

10. A method of detecting unsecure data flows in task
programs, the method comprising:

receiving a task program, the task program being written

in a programming language for a special-purpose
device;

parsing the task program to generate a parse tree of the

task program;

visiting the parse tree to generate a first control flow graph

for a first function of the task program and a second
control flow graph for a second function of the task
program;

detecting data flow from a data source to a data sink

between the first and second control flow graphs, the
data source and the data sink forming a predetermined
source-sink pair that is indicative of an unsecure data
flow; and

in response to detecting the data flow from the data source

to the data sink in the intermediate control flow graph,
deeming the task program to have the unsecure data
flow,

wherein the special-purpose device is an industrial robot.

11. The method of claim 10, wherein the data source is an
instruction for receiving an external input to the task pro-
gram and the data sink is an instruction for moving a
moveable member of the industrial robot.

12. The method of claim 10, wherein the programming
language is an industrial robot programming language.

13. The method of claim 10, wherein each of the first and
second control flow graphs comprises a plurality of basic
blocks, with each of the basic blocks comprising domain-
agnostic intermediate representations.

14. The method of claim 10, further comprising:

generating an intermediate control flow graph that con-

nects the first control flow graph to the second control
flow graph; and

detecting the unsecure data flow in the intermediate

control flow graph.
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