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Abstract

We propose a greedy reconstruction algorithm to find the probability
distribution of a parameter characterizing an inhomogeneous spin ensem-
ble. The identification is based on the application of a number of constant
control processes during a given time for which the final ensemble magne-
tization vector is measured. From these experimental data, we show that
the identifiability of a piecewise constant approximation of the probability
distribution is related to the invertibility of a matrix which depends on the
different control protocols applied to the system. The algorithm aims to
design specific controls which ensure that this matrix is as far as possible
from a singular matrix. Numerical simulations reveal the efficiency of this
algorithm in different examples. A systematic comparison with respect to
random constant pulses is done.

1 Introduction

The identification of parameters that characterize the dynamics of a quantum
system is a fundamental prerequisite for controlling its evolution [1, 2, 3, 4,
5, 6, 7, 8] and is of practical interest for realizing specific tasks in quantum
technologies [9]. This aspect is crucial in open-loop configurations for which
the control protocols are designed without any experimental feedback from the
system during the control process [1, 2, 10, 11, 5]. In the context of quantum
systems, the problem of identifying unknown parameters (or functions) has been
explored by a large number of studies and for a variety of applications ranging
from molecular physics [12, 13, 14] and magnetic resonance [15, 16, 17, 18] to
quantum information science [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] and open
quantum systems [30, 31, 32, 33]. Some mathematical results have also been
established in this direction [34, 35, 36, 37, 38, 39, 40, 41, 42]. On the basis of
different measurement processes and specific control protocols, the goal of these
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works is generally to estimate the value of one or several parameters of the sys-
tem Hamiltonian. When controlling an ensemble of identical quantum systems,
such a parameter may vary in a given range due to experimental limitations
or uncertainties. A key example comes from the spatial inhomogeneities of the
external control [43, 44, 2, 45, 46, 47]. In this case, all the systems are not sub-
jected exactly to the same control. This aspect has to be taken into account in
the modeling of the dynamics and in the computation of the control procedure.
Robust control protocols against such inaccuracies have been developed recently
to solve this experimental issue [2, 45, 48, 49, 50, 51, 52, 53, 54, 55]. However,
the variation range of the unknown parameter is not the only crucial quantity,
the probability distribution of this parameter (i.e. the number of systems for
each value of the parameter) may play also a major role. It is generally assumed
that this probability distribution is flat or has a simple Gaussian or Lorentzian
form. In these cases, the probability distribution can be quite easily charac-
terized. However, the problem of identifying probability distributions becomes
much more difficult if these have complex structures, with e.g. several peaks,
or if no information is known about them. It is therefore essential to be able to
identify with a great precision these unknown probability distributions.

This paper aims at taking a step toward the answer to this open question
by developing a numerical algorithm, called a Greedy Reconstruction Algo-
rithm (GRA). By definition, an algorithm is said to be greedy if it takes the
best choice available at each iterative step. Greedy algorithms find generally
a sub-optimal solution, but in a computational time which may be very small
compared to the one of a global optimization procedure. Such algorithms have
been recently applied to the identification of quantum systems [56, 57] and we
propose to adapt them to the reconstruction of probability distribution. For
the sake of clarity, we focus in this study on a specific example, although our
algorithm applies to a large variety of systems. We consider the case of a spin
ensemble in Nuclear Magnetic Resonance (NMR) [44, 58, 59, 60, 61] subjected
to an inhomogeneous radio-frequency magnetic field whose range of variation
is known, but not its probability distribution. The probability distribution is
approximated by a piecewise constant function taking at most K values. The
algorithm then designs a series of K controls for GRA (or less for the optimized
version) which are, in a second step, applied to the spin ensemble. The K mea-
sured ensemble magnetization vectors at the final time are then used to identify
the probability distribution. More precisely, the identification process is related
to the invertibility of a matrix which depends on the different controls. The aim
of the algorithm is therefore to design specific control protocols which ensure
that this matrix is as far as possible from being singular. The precision of the
identification process can be understood from the eigenvalues and eigenvectors
of the matrix. In the examples analyzed in this study, constant controls will
be sufficient to find the probability distribution with a very good accuracy, but
time-dependent controls could also be used. We show that the optimization pro-
cedure of the algorithm has a unique solution and a good convexity structure
leading to fast convergence. We point out that the controls only depend on the
model system and not on the spin distribution or on the available data. The nu-
merical efficiency of the algorithms is shown on different illustrative examples,
namely a double-peak distribution and a step one. A systematic comparison
with random constant pulses is also done.

The paper is organized as follows. Section 2 describes the model system.
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Section 3 is dedicated to the theoretical framework, while the algorithm is pre-
sented in Sec. 4. The efficiency of GRA is numerically demonstrated in Sec. 5
on two standard examples, a double-peak and a step probability distributions.
Conclusion and prospective views are given in Sec. 6. A mathematical descrip-
tion of the method and the development of an optimized greedy algorithm are
reported respectively in Appendices A and B. Additional numerical results are
presented in the supplemental material [62].

2 The model system

To illustrate our study, we consider a basic control problem in NMR, i.e. a spin
ensemble subjected to an inhomogeneous radio-frequency magnetic field [43, 44,
45, 61, 46]. In a given rotating frame, we assume that all the spins have the
same resonance offset ω. Each isochromat is characterized by a Bloch vector
M(α) = [Mx,My,Mz]

ᵀ whose dynamics are governed by the following equations
of motion: 

Ṁx = −ωMy + (1 + α)ωyMz,

Ṁy = ωMx − (1 + α)ωxMz,

Ṁz = (1 + α)ωxMy − (1 + α)ωyMz,

where the coordinates of the Bloch vector satisfy M2
x + M2

y + M2
z = M2

0 , with
M0 the equilibrium magnetization. ωx and ωy are time-dependent controls that
correspond to the components of the magnetic field along the x- and the y-
directions. In this study, we assume that these controls are constant in time.
We show in Sec. 5 that this hypothesis is sufficient for the different examples
to identify the probability distributions. The parameter α is used to model the
control field inhomogeneities which are of the order of few percents in standard

experiments [60]. The controls
ωx
2π

and
ωy
2π

are expressed in Hz. We consider a

typical field amplitude ω0 that can be fixed, for instance, to ω0 = 2π × 100 Hz.
We introduce normalized coordinates as follows:

ux = 2π
ωx
ω0

; uy = 2π
ωy
ω0

; t′ =
ω0

2π
t; ∆ = 2π

ω

ω0
;X =

M

M0
.

We omit the ′ in the time below to simplify the notations. We deduce that the
differential system can be expressed in normalized units as:

ẋ = −∆y + (1 + α)uyz

ẏ = ∆x− (1 + α)uxz

ż = (1 + α)uxy − (1 + α)uyz

(1)

with x2 + y2 + z2 = 1. The initial state of the dynamics for each spin is
the thermal equilibrium point, i.e. the north pole of the Bloch sphere, X0 =
(0, 0, 1)ᵀ. We neglect the relaxation effect and we consider a control time of the
order of 100 ms. This corresponds to a normalized time tf of the order of 10.
In the numerical simulations, we add the constraints |ux| ≤ um and |uy| ≤ um
where um is the maximum amplitude of each component. In NMR, only the first
two coordinates of the magnetization vector can be directly measured. We do
not have accessed to the z- component due to the strong magnetic field applied
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along this direction. We denote by Y(t) = (x(t), y(t))ᵀ the projection of the
Bloch vector onto the first two coordinates. We point out that this aspect is
not a limiting point for the application of the identification process.

3 Identification of spin distribution

We consider an ensemble of N spins whose dynamics are governed by Eq. (1).
We assume that the control amplitudes (ux, uy) belong to the admissible set
U = {(ux, uy) ∈ R2 | |ux| ≤ um, |uy| ≤ um}. The objective of the control
procedure is to identify the probability distribution of the parameter α. To
simplify the recognition process, we assume that the ensemble of spins can be
decomposed into a set of K subgroups with the same value of the parameter
α`, 1 ≤ ` ≤ K. However, the discrete probability distribution P? for α, namely
the probability of each possible outcome α`, or in other words the number of

elements N` of each subgroup, is unknown. By definition, we have P?(`) =
N`
N

and

K∑
`=1

P?(`) = 1.

The projected solution onto the first two coordinates at time tf of Eq. (1)
is denoted by Yu,α(tf ) where the dependance on u and α has been explicitly
mentioned. The corresponding experimental realization of this controlled dy-
namic leads to Yexp

u (tf ) = (xexpu (tf ), yexpu (tf ))ᵀ, where Yexp
u (tf ) can be viewed

as the average at time tf of the experimental measures of all the spins of the
set subjected to the control u. The coordinates xexpu and yexpu are the ones of
this measured magnetization vector.

The relation between the theoretical description of the dynamical system to
the experimental outcome can be expressed as:

Yexp
u (tf ) =

K∑
`=1

P?(`)Yu,α`
(tf ), (2)

in which the two sides of the equation crucially depend on the control u. A
specific control protocol is not sufficient to identify the probability distribution
P? which generally requires the implementation of K control processes with K
different controls denoted uk, k = 1, · · · ,K. Note that in the optimized version
of the GRA presented in Appendix B, the number of controls can be different
from K.

On the basis of the experimental outputs, a straightforward way to determine
P? is to solve the following minimization problem:

min
P∈P

K∑
k=1

‖Yexp
uk

(tf )−
K∑
`=1

P (`)Yuk,α`
(tf )‖2, (3)

where P is the set of all the possible probability distributions P that satisfy

P (`) ≥ 0 for 1 ≤ ` ≤ K and

K∑
`=1

P (`) = 1. Mathematically, we point out that

P is a convex and closed set. ‖ · ‖ denotes the standard Euclidean vector norm.
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Note that Eq. (3) can be rewritten as:

min
P∈P

K∑
k=1

‖
K∑
`=1

(P?(`)− P (`))Yuk,α`
(tf )‖2. (4)

At this point, it is clear that a key ingredient of the accuracy of the identification
process relies on the choice of the controls uk.

To clarify this problem, we introduce a set {ϕj}Kj=1 of linearly independent

functions ϕj : {1, · · · ,K} → R such that P ⊂ span({ϕj}Kj=1), where span
denotes the vector space generated by the functions. Expressing respectively

P? and P as P?(`) =

K∑
j=1

β?,jϕj(`) and P (`) =

K∑
j=1

βjϕj(`), the minimization

problem (4) becomes:

min
β∈R̂K

K∑
k=1

‖
K∑

`,j=1

(β?,j − βj)ϕj(`)Yuk,α`
(tf )‖2, (5)

where the vector β = (βj)
K
j=1 is taken in R̂K , a subset of RK , so that P =∑

j

βjϕj is a probability distribution. Equation (5) can be rewritten in a com-

pact form as follows:
min
β∈R̂K

〈β? − β|W |β? − β〉, (6)

where W is a symmetric and positive semi-definite K ×K- matrix whose ele-
ments are defined as:

W`,j =
∑
k

〈γ`(uk)|γj(uk)〉 (7)

with
γj(uk) =

∑
`

ϕj(`)Yuk,α`
(tf ).

Since the set of vectors β is a convex subset of RK , we deduce that the prob-
lem is uniquely solvable if the matrix W is positive definite, i.e. if W has a
non-zero determinant. In the case W has a non-trivial kernel, infinitely many
solutions may exist which lead to wrong probability distributions different from
the experimental one P?. We stress that the non-triviality of the kernel depends
completely on the choice of the controls uk.

We show in this study that GRA allows us to design a set of controls uk
so that the matrix W is positive definite with a trivial kernel. The algorithm
is composed of two steps, namely an offline and an online steps. In the first
stage, GRA computes the controls uk. In this phase, only the theoretical model
is needed without any experimental input. The derived controls are used in a
second step in which the different magnetization vectors are measured and the
minimization problem (3) is solved. Note that the controls are the same for any
probability distribution to identify and only depend on the model system under
study. Finally, we point out that, while in a first algorithm we consider that
all control pulses have the same duration tf , in a second version described in
Sec. 4.2, the duration of each pulse is considered as a variable to be optimized
together with its amplitude. The generality of GRA allows one to tackle this
situation in a straightforward manner.
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4 A greedy reconstruction algorithm

We present in this section the GRA in its classical form, an optimized extension
called optimized GRA (OGRA) is described in Appendix B. For pedagogical
purposes, we have limited the mathematical derivation of the algorithm to its
strict minimum. The interested reader can find mathematical details about the
algorithms in [56] and [57] for the standard and optimized GRA, respectively.

4.1 Optimizing the control amplitudes for a fixed control
time

The GRA computes the controls uk by solving a sequence of fitting-step and
discriminatory-step problems, in which the goal of the first step is to identify a
nontrivial kernel of a sub-matrix of W , while the second phase designs a new
control which is aimed to correct this discrepancy and to eliminate the identified
non-trivial kernel. The explicit formulation of the algorithm is given in terms
of the function h(k) defined by:

h(k)(β,u) =

K∑
`=1

k∑
j=1

βjϕj(`)Yu,α`
(tf ), (8)

for any β in Rk. GRA is described below. Some mathematical statements of
the different steps of the algorithm are described in Appendix A. Its numerical
implementation is presented and discussed in Sec. 5.

Greedy Reconstruction Algorithm (GRA): Given a set of K linearly in-
dependent functions (ϕ1, . . . , ϕK).
Solve the initialization problem

max
u∈U
‖h(1)(1,u)‖2, (9)

that gives the control u1, and set k = 1.
While k ≤ K − 1

1. Fitting step: Find (βkj )j=1,...,k that solves the problem

min
β∈Rk

k∑
m=1

‖h(K)(ek+1,um)− h(k)(β,um)‖2, (10)

where ek+1 is the (k + 1)-th canonical vector in RK .

2. Discriminatory step: Find uk+1 that solves the problem

max
u∈U
‖h(K)(ek+1,u)− h(k)(βk,u)‖2. (11)

3. Update k + 1→ k.

End while
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The basic principles of GRA can be detailed by its two first iterations for K = 2.
Using

h(1)(1,u) =

K∑
`=1

ϕ1(`)Yu,α`
(tf ),

the initialization problem can be expressed as:

max
u∈U
‖W11(u)‖2.

We deduce that the goal of this step is to maximize the modulus of this W -
matrix element, so as to be as far as possible from a zero of W . We then
consider the first step of the algorithm with k = 1. We omit below for clarity
the dependence on u of W . By definition, we have:

W11 = ‖
K∑
`=1

ϕ1(`)Yu,α`
(tf )‖2

W22 = ‖
K∑
`=1

ϕ2(`)Yu,α`
(tf )‖2

W12 = W21 =

K∑
`,`′=1

ϕ1(`)ϕ2(`′)〈Yu,α`
(tf )|Yu,α`′ (tf )〉

and we deduce that the quantity to minimize in the fitting step can be written
as:

‖h(2)(e2,u1)− h(1)(β,u1)‖2 = W11β
2 − 2W12β +W22,

where β is here a real number. The minimum is reached for β1 = W−111 W12

where W is computed for the control u1. This value can be associated to a
vector (β1,−1)ᵀ of the kernel of the following 2× 2- submatrix of W:(

W11 W12

W12 W22

)
(12)

The fitting step of GRA can thus be interpreted as a systematic way to find
a basis of the kernel of larger and larger sub-matrices of W . Setting β to
β1, the discriminatory step consists in adding a new control u2 to correct this
singularity, i.e. in selecting this control such that the corresponding quantity
is as far as possible from a zero. Mathematically, it can be shown that this
procedure has always a solution and that the new matrix W (2) has a non-trivial
2× 2 sub-matrix (12) (see Appendix A for details).

4.2 Optimizing amplitude controls and time horizon

Until now, we have considered a fixed control time tf . However, it is also
possible to consider controls with different control times, up to a fixed boundary
tmax
f > 0. In this case, we also maximize with respect to time, meaning that the

initialization and discriminatory step problems at iteration k would change to

max
u∈U,

tf∈[0,tmax
f ]

‖h(1)(1,u; tf )‖2 (13)
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and
max
u∈U,

tf∈[0,tmax
f ]

‖h(K)(eeek+1,u; tf )− h(k)(βk,u; tf )‖2, (14)

respectively. In Eq. (13) and (14), the function h(k) is still defined as in (8), only
with the control time as an additional variable. Similarly, one can adapt the cor-
responding problems in OGRA, the optimized version described in Appendix B.
We denote by GRAt and OGRAt the two resulting algorithms.

5 Numerical results

5.1 The case of a double peak distribution

As a first illustrative example, we investigate in this paragraph the identification
of a symmetric double peak probability distribution, displayed in Fig. 1. Similar
results have been achieved for other smooth distributions with one or several
peaks. Numerical details are described in the supplemental material [62].

In the numerical simulations, we consider a control time tf = tmaxf = 16.
The amplitude um is equal to 10. The normalized offset resonance is set for all

the spins to
π

10
, i.e. to 30 Hz. We also assume that α ∈ [−0.2, 0.2] and K = 30.

The K discrete values α` of α are regularly spaced in the interval of variation

of α, i.e. α` = −0.2 + 0.4
`− 1

K − 1
. Since the control protocols are constant in

time, Eq. (1) is solved numerically by directly evaluating the exponential matrix
corresponding to the exact solution. All optimization problems are solved by
a BFGS descent-direction method. We also mention that the exact number of
uncoupled spins in the ensemble is not relevant for all the computations, since
we are only interested in their probability distribution. However, we use a total
number of 105 spins in the numerical simulations.

For GRA and GRAt, we consider a random and orthonormal basis {ϕk}30k=1.
Note that any basis of this space can be used in the respective algorithms.
For OGRA and OGRAt, we extend the basis from GRA by 30 randomly cho-
sen probability distributions {ϕk}60k=31. The tolerance used in the OGRA and
OGRAt (see Appendix B) is set to be tol = 10−14. The controls generated by
the algorithms and corresponding to the numerical results discussed below are
described in the supplemental material [62]. To test whether it is even necessary
to run the algorithm or if the same results could be achieved with other control
protocols, we also consider two sets of 30 random and constant controls. For the
first and second cases, we use respectively completely random constant values
in the set U , with a control time tf or with different and random control times
in the interval [0, tf ]. We denote by RCC and RCCt the two sets of controls.

The robustness of the different control functions is evaluated by considering
a 30-dimensional hypercube centered in the global minimum P? of our iden-
tification problem, with a radius of 100‖P?‖, and we repeat the minimization
process for 100 initialization vectors randomly chosen in this hypercube. We

then compute the minimum norm difference
‖P? − Pf‖
‖P?‖

over all optimization

runs, where Pf denotes the solution given by the optimization algorithm. We
obtain the results reported in Tab. 1. As can be seen in Tab. 1, the errors of
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Control set GRA GRAt OGRA OGRAt RCC RCCt

Min. error 0.0045 0.0098 0.0005 0.0009 0.4685 0.0841

Table 1: Minimum relative norm error for different control sets.

OGRA and OGRAt are ten times smaller than the ones of GRA and GRAt,
which themselves are respectively 10 and 100 times smaller than the errors
of both sets of random controls. Similar results have been achieved for other
smooth distributions, which show the efficiency of the two proposed algorithms.
Figures 1 and 2 display respectively the true distribution and the minimal solu-
tion for all control sets for fixed and variable control times. We observe that the

-0.2 -0.1 0 0.1 0.2

0

2000

4000

6000

8000

10000

Figure 1: Plot as a function of α of the true distribution (red crosses) and ap-
proximated solutions with minimum error, computed by the different optimiza-
tion algorithms for the identification problem using control sets with a fixed
control time. In particular, controls generated by OGRA (green, vertical lines)
and GRA (black, circles) and RCC (blue, squares) are plotted. Dimensionless
units are used.

solutions computed with controls generated by any algorithm match the true
distribution. On the other hand, RCC completely fails, showing a third peak in
the middle, while RCCt can at least identify the two peaks of the distribution.

5.2 The case of a step distribution.

As a second illustrative example, we consider a non-continuous step distribution,
displayed in Fig. 3, in which only spins with a positive parameter α can be
observed in the sample. We repeat the numerical simulations of Sec. 5.1 and we
obtain the results reported in Tab. 2. As can be seen in Tab. 2, the difference

Control set GRA GRAt OGRA OGRAt RCC RCCt

Min. error 0.0295 0.0181 0.0018 0.0021 0.4204 0.1943

Table 2: Minimum relative norm error for different control sets.
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Figure 2: Same as Fig. 1, but for variable control times.

in magnitude of errors is similar to the one for the double peak distribution.
These results are displayed in Fig. 3 and 4.

-0.2 -0.1 0 0.1 0.2

0

2000

4000

6000

8000

10000

Figure 3: Same as Fig. 1 but for a step distribution.

We observe that OGRA and OGRAt are still able to identify the true dis-
tribution, while GRA and GRAt already show small discrepancies. RCC com-
pletely fails again, but also RCCt shows major visible differences in the upper
part of the step distribution. Arguments based on the properties of the matrix
W are given in Sec. 5.3 to explain such numerical observations.

5.3 Eigenvalues and eigenvectors of W

We explain qualitatively in this section the numerical results observed in Sec. 5.1
and 5.2 through the properties of the matrixW , i.e. its eigenvalues and eigenvec-
tors. We present the spectra of the matrix W for different control sets in Fig. 5
and 6. A very large difference is observed between the eigenvalues associated
with the optimized controls and the random ones. Note that this observation is
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Figure 4: Same as Fig. 3, but for variable control times.

the same if the control time is also optimized. This difference is quantitatively
measured by the condition number of W , i.e. the ratio between the largest and
the smallest eigenvalues, which is given in Tab 3. As could be expected, these
results show that, using random controls, the matrix W can be close to being
singular. In the example of Fig. 6, while most of the eigenvalues are larger than
1, four of them are smaller than 10−10. Hence, the matrix W has a very bad
condition number. We stress the very good result achieved by OGRA for which
all the eigenvalues have almost the same value. This analysis may also explain
the difference between a smooth and a non-continuous probability distributions.
As a matter of fact, numerical results reveal that random controls have more dif-
ficulty identifying non-smooth probability distribution as illustrated in Sec. 5.2.
This aspect can be understood from the behavior of the eigenvectors. Indeed,
we observe numerically that the modes with a large number of oscillations corre-
spond to the smallest eigvenvalues. Such modes have to be used to reconstruct
probability distributions with rapid and abrupt variations. For random controls,
these eigenvectors lead to large errors and to wrong probability distributions.

Control set GRA GRAt OGRA OGRAt RCC RCCt

cond(W ) 4.9·103 6.9·107 19.55 16.6178 4.3·109 1.42·1017

Table 3: Condition number of the matrix W for different control sets.

6 Conclusions

We have introduced in this work a Greedy Reconstruction Algorithm with an ap-
plication to spin dynamics. The algorithm provides a systematic way to identify
the probability distribution of a parameter of the Hamiltonian system varying
in a given range. The efficiency of the identification process has been illustrated
in the case of a spin ensemble subjected to an inhomogeneous radio-frequency
magnetic field. After having described some mathematical properties of the al-
gorithm, numerical simulations have revealed the efficiency of GRA and its quite
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Figure 5: Spectrum of the matrix W defined in (7) for controls generated by
OGRA (green, vertical lines), GRA (black, circles) and for RCC (blue, squares).
Dimensionless units are used.

large basin of convergence. We have shown that GRA is able to identify non-
trivial probability distributions with several peaks or with a step variation. An
optimized version of this algorithm can be derived to further improve the iden-
tification process. We have limited the study to constant controls, but similar
results can be achieved with time-dependent pulses. A quantitative comparison
with random constant controls have highlighted the non-trivial recognition pro-
cess realized by the algorithms. The numerical observations can also be partly
explained by the computation of the eigenvalues and eigenvectors of the matrix
W .

This analysis paves the way for further investigations in magnetic resonance.
An interesting direction is the study of the sensitivity of the algorithm to ex-
perimental imperfections or to the presence of noise. It could be also used to
identify probability distribution of other parameters, such as the resonance off-
set. These greedy algorithms could also be transferred to other domains such
as quantum optics and atomic and molecular physics. Finally, we hope that our
method will be used in relevant experimental applications in magnetic resonance
in a near future.
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A Mathematical description of GRA

We give in this section some mathematical details about GRA. Straightforward
computations show that the different steps of GRA can be expressed in matrix

12



0 5 10 15 20 25 30
10 -15

10
-10

10
-5

10 0

10
5

Figure 6: Same as Fig. 5, but for variable control times.

form as follows:

• The initialization problem (9) is equivalent to:

max
u∈U

[W (u)]1,1

• The fitting-step problem (10) is equivalent to:

min
β∈Rk
〈β|W k

[1:k,1:k]|β〉 − 2〈W k
[1:k,k+1]|β〉

where W k =

k∑
m=1

W (um). W k
[1:k,1:k] and W k

[1:k,k+1] denote respectively the

k × k upper-left block of W k and a column vector containing the first k
components of the k + 1-th column of W k.

• The discriminatory-step problem (11) is equivalent to:

max
u∈U
〈v|[W (u)][1:k+1,1:k+1]|v〉

where v = (βᵀ
k ,−1)ᵀ.

The different iterations of GRA can then be described as follows. At iteration
k, we assume that the sub-matrix W k

[1:k,1:k] is positive definite, but W k
[1:k+1,1:k+1]

can have a non-trivial kernel. The idea is first to identify the kernel ofW k
[1:k+1,1:k+1]

by solving (10) and then to compute a new control uk+1 such that the new up-
dated matrix W k+1 = W k + W (uk+1) has a positive definite upper-left block
W k+1

[1:k+1,1:k+1]. The convergence of the algorithm follows from this iterative pro-
cess.

The following two technical lemmas describe the optimizations used in the
two steps of the algorithm. In particular, Lemma 1 shows that the fitting step
identifies the kernel of the matrix W k

[1:k+1,1:k+1].
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Lemma 1 Assume that W k
[1:k,1:k] is positive definite and W k

[1:k+1,1:k+1] has a

non-trivial kernel. Then the vector v = (βᵀ
k ,−1)ᵀ, where βk is the solution

to (10), is in the kernel of W k
[1:k+1,1:k+1].

The second lemma is the basis of the discriminatory-step algorithm and shows
that this step corrects the rank deficiency of W k

[1:k+1,1:k+1].

Lemma 2 Let W k
[1:k,1:k] be a positive definite matrix and βk a solution of the

fitting-step problem (10). Any solution uk+1 of (11) satisfies:

〈v|W[1:k+1,1:k+1]|v〉 > 0

for k = 0, 1, · · · ,K − 1, where v = (βᵀ
k ,−1)ᵀ.

The mathematical proofs of these results and a detailed numerical analysis of
the GRA is beyond the scope of this work and will be presented elsewhere.

B The optimized greedy algorithm

We discuss in this paragraph the optimized version of GRA. It can been shown
numerically that the behavior and the efficiency of GRA is strongly affected by
the choice of the elements ϕk and their ordering. GRA is essentially a sweep
over the set (ϕk)Kk=1. However, a wrong choice of the elements ϕk and their
ordering can lead to the stagnation of the algorithm and to the computation of
many useless control functions. Note that the stagnation of the algorithm can
be measured in terms of rank corrections, i.e. if for consecutive iterations the
rank of W does not increases. These reasons are at the origin of an optimized
algorithm [57]. OGRA takes as input a set Φ, possibly larger than (ϕk)Kk=1

with linearly dependent elements, and returns as output not only a set of K̃

control functions, but also a set of linearly independent functions (ϕ̂k)K̂k=1. The

integers K̃ and K̂ are not necessarily equal and may be smaller than K (in
contrast to GRA). The extension of the OGR method of [57] to the distribution
reconstruction problem is detailed below, where we use the map hS defined as

hS(β,u) =

K∑
`=1

card[S]∑
j=1

βjϕj(`)Y(u, α`),

where S = (ϕ1, · · · , ϕk). Note that for the fitting-step problem, we do not have
any constraint for the choice of coefficients β. This is due to the fact that, dur-
ing the algorithm, we are not trying to reconstruct a distribution but to make
the respective sub-matrix positive definite.

Optimized Greedy Reconstruction Algorithm (OGRA): Given a set of
K+ ≥ K linearly independent functions (ϕ1, . . . , ϕK+

) and a tolerance tol > 0.
Solve the initialization problem

max
n∈{1,··· ,K+}

max
u∈U
‖h(1)

ϕn
(1,u)‖2, (15)

which gives the control u1, and the control `1. Set k = 1 and S = {ϕ`1}, K̃ =

K+, and update Φ = Φ \ {ϕ`1}. The algorithm is stopped if ‖h(1)
S (1,u)‖2 < tol.

While k ≤ K − 1 do

14



1. Remove elements from Φ that are linearly dependent on the ones in S.
Shift the indices of the remaining elements in Φ. Update card[Φ]→ K̃.

2. for ` = 1, · · · , K̃ do
Fitting step: Find (β`j)j=1,...,k that solve the problem

min
β∈Rk

k∑
m=1

‖hϕ`
(1,um)− hS(β,um)‖2, (16)

end for

3. Discriminatory step: Find uk+1 and `k+1 that solve the problem

max
`∈{1,··· ,K+}

max
u∈U
‖hϕ`

(1,u)− hS(β`,u)‖2. (17)

If ‖hϕ`
(1,uk+1)−hS(β`k+1 ,uk+1)‖2 < tol then stop and return S and the

computed (u)km=1.

4. Orthogonalize the function ϕ`k+1
with respect to S and update S∪{ϕ`k+1

} →
S, Φ \ {ϕ`k+1

} → Φ and k + 1→ k.

End while
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R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen,
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