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Abstract. A distributed optimal control problem for a phase field system which physical context is that of tumor growth is
discussed. The system we are going to take into account consists of a Cahn–Hilliard equation for the phase variable (relative
concentration of the tumor) coupled with a reaction-diffusion equation for the nutrient. The cost functional is of standard
tracking-type and the control variable models the intensity at which it is possible to dispense medication. The model we deal
with presents two small and positive parameters which are introduced in previous contributions as relaxation terms. Here,
starting from the already investigated optimal control problem for the relaxed model, we aim at confirming the existence of
optimal control and characterizing the first-order necessary optimality condition, via asymptotic schemes, when one of the two
occurring parameters goes to zero.
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1. Introduction

The need for investigating tumor growth from a mathematical viewpoint stems from the great impact
that it may have on medical treatments. As a matter of fact, in the last years, there is increasing attention
by the mathematical community toward biological and medical models (see, e.g., [15]). In particular, an
open and unknown area such as the tumor field can find a useful support tool in the mathematical predic-
tions. In fact, this latter could be able to pull out some of the main features of the evolution phenomena
and, by focusing on some particular aspects, it may give some deep insights as if a given negative out-
come was to be foreseen, it would be possible to prevent it. Moreover, the theoretical investigation has
the huge advantage that no patient is put at risk. Furthermore, without the claim to cure the disease, the
mathematical models could provide prominent a priori information as a support for the medical treat-
ments leading to more personalized therapy. Indeed, despite the wide number of parameters involved in
the disease, due to the few understanding of the tumor evolution, the corresponding clinical treatment is
quite standardized, while every patient responds differently to the medications.

Among the numerous models recently proposed, we focus on the ones derived by continuum mixture
and phase field theories. The evolution of a young tumor, before the development of quiescent cells, can
be described as a Cahn–Hilliard equation for the phase variable (see, e.g., [36] and the huge references
therein for a general, while rich, introduction to the Cahn–Hilliard equation), coupled with a reaction-
diffusion for an unknown species acting as a nutrient (e.g., oxygen or glucose). The model we are
going to face in this work consists of a variation of the one introduced by Hawkins-Daruud et al. in

0921-7134/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved

mailto:andrea.signori02@universitadipavia.it


AUTHOR  C
OPY

44 A. Signori / Vanishing parameter for an optimal control problem modeling tumor growth

[32], where the velocity contributions are neglected (see also [14,30,31,33,46]). Several models, by
interpreting the tumors and the healthy cells as inertia-less fluids, also include the contribution of the
velocity field assuming a Darcy law or a Stokes–Brinkman equation. In this regards, let us refer to
[16,17,22–27,29,45], where further mechanisms such as active transport and chemotaxis are also taken
into account. We also point out the paper [21], where a non-local model is proposed.

At first, let us point out that the symbol � ⊂ R
3 is devoted to indicating the set where the evolu-

tion takes place which boundary we denote by �. Furthermore, given a final time T > 0, we set for
convenience

Qt := � × (0, t), �t := � × (0, t) for every t ∈ (0, T ],
Q := QT , and � := �T . (1.1)

In the present paper, we are going to deal with the optimal control problem consisting of minimizing
the so-called objective, or tacking-type, cost functional

J (ϕ, σ, u) := b1

2
‖ϕ − ϕQ‖2

L2(Q)
+ b2

2

∥∥ϕ(T ) − ϕ�

∥∥2

L2(�)
+ b3

2
‖σ − σQ‖2

L2(Q)

+ b4

2

∥∥σ(T ) − σ�

∥∥2

L2(�)
+ b0

2
‖u‖2

L2(Q)
, (1.2)

subject to the control-box constraints

u ∈ Uad := {
u ∈ L∞(Q) : u∗ � u � u∗ a.e. in Q

}
, (1.3)

and under the assumption that the variables ϕ and σ solve the following system

α∂tμ + ∂tϕ − 	μ = P(ϕ)(σ − μ) in Q (1.4)

μ = β∂tϕ − 	ϕ + F ′(ϕ) in Q (1.5)

∂tσ − 	σ = −P(ϕ)(σ − μ) + u in Q (1.6)

∂nμ = ∂nϕ = ∂nσ = 0 on � (1.7)

μ(0) = μ0, ϕ(0) = ϕ0, σ (0) = σ0 in �. (1.8)

For the sake of synthesis, let us describe the physical background of the occurring variables without
diving into the details. The admissible set Uad fix the space in which the control variable u can be cho-
sen and it is given in terms of the bounds u∗ and u∗. Moreover, b0, b1, b2, b3, b4 stand for nonnegative
constants, not all zero, while ϕQ, σQ, ϕ�, σ� denote some target functions defined in Q and �, respec-
tively. The variable ϕ is an order parameter and it is designed to keep track of the evolution of the tumor
in the tissue. It is a normalized relative concentration and it ranges between −1 and +1, where these
extremes represent the pure phases, that is the tumorous and the healthy case, respectively. Furthermore,
the variable μ stands, as usual for the Cahn–Hilliard equation, for the chemical potential for ϕ. The
third unknown σ has the role of describing the evolution of the nutrient within the evolution process
and it is normalized between 0 and 1 with the following property: the closer to one, the richer of nu-
trient the extra-cellular is, while the closer to zero, the poorer it is. Lastly, the variable u represents the
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so-called control variable and, since it appears in the nutrient equation, it can be read as a supply of
a nutrient or a drug in the medical treatment. As the functions P and F are concerned, they are non-
linearities. The former models the proliferation of the tumor, while the latter is a double-well potential
associated with the Cahn–Hilliard equation. A typical example of F is the regular potential which is
defined as follows

Freg(r) = 1

4

(
r2 − 1

)2 = 1

4

((
r2 − 1

)+)2 + 1

4

((
1 − r2

)+)2
for r ∈ R. (1.9)

We will see that the optimal control problem we are going to deal with will demand to restrict the
analysis on potentials which slightly generalize (1.9). Namely, we cannot take into account singular
or non-regular potential as the well-known logarithmic double-well potential or the double-obstacle
one. For different physically meaningful choices of the potentials, we refer to [1] and to the references
therein, where numerical simulations and comparison with clinical data can be found as well. Further
details regarding the interpretation of the model can be found in [8,10,12,20].

The above system has already been investigated in [8], in the case where α = β > 0, from the view-
point of well-posedness and long-time behavior in terms of the omega-limit set. Further comprehension
of the model has been achieved by [10,12], where the authors show under which framework the pa-
rameters α and β can be let to zero and also point out the existence and uniqueness of the solution to
the limit problem in their natural setting. In addition, we also refer to [20] where the system formally
obtained by imposing α = β = 0 is tackled. There, after providing the well-posedness, the authors
focus on the long-time behavior of the solution in terms of the global attractor (see, e.g., [38] for details
on the asymptotic behavior of infinite-dimensional dynamical systems). As for the long-time behavior
of the same system, namely (1.4)–(1.8) with α = β = 0, we are also aware of the recent contributions
[5,37]. Lastly, let us mention [34], where the author confirms the existence of the above problem (1.4)–
(1.8) when β ↘ 0, extending the analysis to the case of unbounded domains by accounting for suitable
approximation schemes.

As the terminology is concerned, the system that the control variable has to satisfy is referred to as
the state system. Moreover, once that the well-posedness of the state system has been performed, we can
introduce the control-to-state mapping as the map that assigns to a given control the associated solution,
namely the function

S : u 	→ S(u) := (μ, ϕ, σ ) = (
μ(u), ϕ(u), σ (u)

)
.

Starting from this, one can interpret the cost functional J as a function depending on the control variable
only, giving rise to the so-called reduced cost functional reading as

Jred(u) := J
(
S2(u),S3(u), u

)
,

where S2 and S3 denote the second and third component of the solution operator S, respectively.
Even though the literature around the mathematical investigations of biological and medical models

find several examples, the corresponding optimal control contributions are very few. Up to our knowl-
edge, the first paper dealing with an optimal control problem for a system very close the one gave above,
namely the case α = β = 0, is [11]. Furthermore, we mention [40], which is our starting point. There,
the author handles the optimal control problem for the classical tracking-type cost functional in the
non-trivial case of the logarithmic potential, where the presence of the relaxation terms turns out to be
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fundamental. Moreover, in a following work, the same author proves that, accounting for an asymptotic
technique known in the literature as to deep quench limit, it is also possible to generalize the assumptions
for the potentials in order to take into account also singular and non-regular potentials like the double-
obstacle one. In addition, we refer to [41], where it was shown that the optimal control problem for the
state system (1.4)–(1.8) with β = 0 can be solved, by letting β ↘ 0 in the optimal control problem
associated with (1.4)–(1.8). Lastly, let us address to [5], where an optimal control problem for (1.4)–
(1.8), with α = β = 0, has been discussed for a slightly more general class of cost functional which
takes into account the time optimization (see also [28], where the same generalized cost functional is
taken for a different state system). To conclude the overview concerning the literature, let us also point
out [9], where a different kind of control problem, known as sliding mode control, is performed. As for
different state systems, let us refer to the recent [18,19], where the authors establish the existence of
optimal controls and also characterize the optimality conditions for the more involved Cahn–Hilliard–
Brinkman equation. Lastly, let us mention [43], where a distributed optimal control problem for the
Cahn–Hilliard–Darcy system with mass source was studied.

Here, we aim to employ an asymptotic scheme similar to the one of [41], by letting α ↘ 0 instead
of β, and assuming [40]. Note that the present contribution complete the picture around the optimal
control problem for system (1.4)–(1.8) with the standard tracking-type cost functional. Indeed, the case
α, β > 0 has been investigated in [40], the case α > 0 and β = 0 has been studied in [41], whereas the
case α = β = 0 has been treated in [11].

As for the interpretation of the control problem, let us just point out the following comments:

(i) The cost functional (1.2) is designed to track the state variables during the evolution. The targets
ϕQ, σQ, ϕ�, σ�, especially ϕ� and σ�, have to be chosen as a desirable configuration for clinical
reasons, e.g., for surgery. Moreover, if some stable configuration for the system has known, it can
be taken as well as a target.

(ii) The smaller ‖ϕ − ϕQ‖2
L2(Q)

is, the closer the solution ϕ is to the target ϕQ, and the same goes for

the other variables. On the other hand, the term ‖u‖2
L2(Q)

penalizes the large values of the control
variable and it can be read as the side-effect that may occur if too many drugs are dispensed to
the patient.

(iii) The ratios between the constants b0, b1, b2, b3, b4 implicitly describe which targets hold the lead-
ing part in the application.

Let us anticipate that for our purpose, we have to restrict the analysis to the case in which the function
P(ϕ) degenerates to a positive constant P . Thus, the system we are going to face is the following

α∂tμα + ∂tϕα − 	μα = P(σα − μα) in Q (1.10)

μα = β∂tϕα − 	ϕα + F ′(ϕα) in Q (1.11)

∂tσα − 	σα = −P(σα − μα) + uα in Q (1.12)

∂nμα = ∂nϕα = ∂nσα = 0 on � (1.13)

μα(0) = μ0, ϕα(0) = ϕ0, σα(0) = σ0 in �, (1.14)
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where we have written μα, ϕα and σα for the state variables to stress that they are solution to the system
in which α > 0. Such a state system leads to the following control problem:

(CP)α Minimize J (ϕ, μ, u) subject to the control contraints (1.3) and under the

requirement that the variables (ϕ, σ ) solve the system (1.10)–(1.14).

On the other hand, we will denote with the symbols μ, ϕ and σ their corresponding limits as α ↘ 0.
The asymptotic behavior of the above system, as α ↘ 0, has been one of the main features of [12].
More precisely, in [12, Thm. 2.5 and Thm. 2.6] the authors discuss the passage to the limit as α ↘ 0 and
rigorously proved in which sense system (1.10)–(1.14) converge to

∂tϕ − 	μ = P(σ − μ) in Q (1.15)

μ = β∂tϕ − 	ϕ + F ′(ϕ) in Q (1.16)

∂tσ − 	σ = −P(σ − μ) + u in Q (1.17)

∂nμ = ∂nϕ = ∂nσ = 0 on � (1.18)

μ(0) = μ0, ϕ(0) = ϕ0, σ (0) = σ0 in �, (1.19)

having the care of showing the restrictions under which existence and uniqueness hold, respectively.
Moreover, they also exhibit an error estimate between the solution to system (1.10)–(1.14) and the so-
lution to (1.15)–(1.19), which in turn implies the uniqueness to the second. Note that to address the
corresponding control problem, the uniqueness of system (1.15)–(1.19) is mandatory.

Therefore, the control problem we want to solve in this paper can be summarized as follows:

(CP) Minimize J (ϕ, μ, u) subject to the control contraints (1.3) and under the

requirement that the variables (ϕ, σ ) yield a solution to (1.15)–(1.19).

Here, let us sketch some strategies which are usually employed in control theory for the class of linear-
quadratic cost functional, referring to, e.g., [35,44] for a complete and thorough presentation. The main
aim of control theory is to prove the existence (eventually also uniqueness) of optimal control and pro-
vide some necessary (and eventually sufficient) conditions for optimality. Once that the well-posedness
of the state system has been proved, the existence of optimal controls easily follows by combining the
lower weak sequential semicontinuity of the cost functional J with standard weak compactness results
for reflexive Banach spaces. On the other hand, in the nonlinear constrained PDEs control theory, usu-
ally, the uniqueness is out of reach. In fact, ordinarily, one appeal to the strict convexity of the cost
functional to infer uniqueness from the existence part, but, whenever the state system, and therefore the
corresponding control-to-state operator, is nonlinear, one cannot hope to recover the strict convexity.
The second step consists of looking for some optimality conditions. As a matter of fact, since the set
of admissible controls is convex, it follows from standard results of convex analysis that the necessary
condition for optimality of u is carried out by the following variational inequality

DJred(u)(v − u) � 0 for every v ∈ Uad, (1.20)
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where DJred stands for the derivative of the reduced cost functional in a proper functional sense. More-
over, let us recall that Jred is essentially obtained as a composition of the cost functional J and the
control-to-state operator S. So, since J is trivially Fréchet differentiable, the classical technique relies
on proving the Fréchet differentiability of S and then invoke the chain rule to conclude. Anyhow, the
above procedure does not lead to the desired conclusion since does not provide an explicit characteriza-
tion of the gradient ∇Jred(u). Hence, as in the classical constrained control theory, the Lagrange multi-
pliers can be introduced to include the constraints in the minimization problem. This requires to solve
another system, called adjoint problem and which variables are called adjoint, or co-state, variables.
Finally, after solving this latter, the variational inequality (1.20) can be expressed in a more convenient
way which directly allows us to represent ∇Jred(u). To conclude this overview of control theory, let
us emphasize that the second-order derivative can give us meaningful information for the sufficiency.
However, this is usually less investigated since it introduces some further technicalities. Just to give a
simple motivation note that, formally, if a map S : U → Y , then it follows that DS : U → L(U,Y)

and D2S : U → L(U,L(U,Y)). Hence, if one would like to show that DS is Fréchet differentiable by
checking the definition, it has to consider a double increment leading to some technical calculations. On
the other hand, these issues can be overcome by employing some advanced techniques (see, e.g., [4,44]).

Summing up, in this paper we aim to show that we can let the parameter α goes to zero in (CP)α to
solve (CP). We will provide the classical results for the optimal control; namely, the existence of optimal
control and the first-order necessary condition for optimality. This strategy has a huge advantage. Indeed,
we will avoid the non-trivial discussion of the Fréchet differentiability of the control-to-state mapping
corresponding to the state system (1.15)–(1.19). On the other hand, by adopting this approximation
scheme, we need to overcome an approximation issue since it is not trivially ensured that every optimal
control for (CP) can be approximated by sequences of optimal controls for (CP)α.

Plan of the paper. We conclude the section by sketching an outline of the paper. In Section 2, we will
focus the attention on two aspects; the first one is setting the framework and the notation, while the
second consists in presenting the obtained results. In Section 3, we start with the corresponding proofs
by checking the existence of optimal control and showing an approximation result that will be of crucial
importance for the asymptotic analysis. In Section 4, we investigate the asymptotic analysis of the adjoint
system proving its well-posedness in a proper framework. Lastly, we exploit the adjoint problem and the
approximation result to provide the first-order necessary condition for optimality, reading as a variational
inequality.

2. General assumptions and results

Let us now come to present the mathematical framework and state the main results. First of all, we
recall that the set � models the tissue where the evolution takes place and we assume it to be an open,
bounded and regular domain in R

3. Moreover, for an arbitrary Banach space X, we convey to use ‖ · ‖X

to denote its norm, the standard symbol X∗ for its topological dual, and X∗〈·, ·〉X for the corresponding
duality product between X∗ and X. Likewise, for every p ∈ [1, +∞], we use the symbol ‖ · ‖p for the
usual norm in Lp(�). Since in what follows we are going to use several times some particular spaces, it
turns out to be convenient to set the following conventions

H := L2(�), V := H 1(�), W := {
v ∈ H 2(�) : ∂nv = 0 on �

}
,
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where ∂n stands for the outward normal derivative of �, and where these spaces are equipped with
their standard norms in order to have Banach spaces. Let us remark that the canonical injections V ↪→
H ∼= H ∗ ↪→ V ∗ are both continuous and dense. Therefore, the triplet (V , H, V ∗) forms a Hilbert triplet.
Indeed, we can identify, in the usual way, the duality product of V with the inner product of H as follows

V ∗〈u, v〉V =
∫

�

uv for every u ∈ H and v ∈ V .

Before diving into the setting we are going to use, let us underline again that our starting point is the
distributed optimal control investigated in [40] which considers a quite strong framework in order to
handle the tricky case of the logarithmic potential. On the other hand, in order to apply the asymptotic
strategy mentioned above, we have to guarantee the well-posedness of system (1.15)–(1.19) which has
been treated in [12] (see also [10]). Hence, the simplification introduced in this second work, in order
to treat the asymptotic analysis, cannot be avoided. So, all the results proved in [40] hold since the
following setting perfectly fits the one there considered.

As the assumptions for the above systems and the cost functional are concerned, we require that

α, β > 0 (2.1)

b0, b1, b2, b3, b4 are nonnegative constants, but not all zero (2.2)

ϕQ, σQ ∈ L2(Q), ϕ�, σ� ∈ H 1(�), u∗, u∗ ∈ L∞(Q) with u∗ � u∗ a.e. in Q (2.3)

P is a positive constant (2.4)

ϕ0 ∈ W,μ0 ∈ H 1(�), σ0 ∈ H 1(�). (2.5)

As for the control-box, we assume it to be a closed and convex set, and we also owe to the following
notation

UR ⊂ L2(Q) be a non-empty and bounded open set such that it contains Uad

and ‖u‖2 � R for all u ∈ UR.

Moreover, as for the nonlinear double-well potential F , we postulate that

F : R → [0, +∞), with F := B̂ + π̂ , (2.6)

where

B̂ : R → [0, +∞) is convex and lower semicontinuous, with B̂(0) = 0 (2.7)

π̂ ∈ C1(R) is nonnegative, π := π̂ ′ is Lipschitz continuous. (2.8)

It follows from the above requirements that B := ∂B̂ is a maximal and monotone graph B ⊂ R × R

(see, e.g., [3, Ex. 2.3.4, p. 25]) and that D(B̂) = R. Furthermore, from (2.8), we also deduce that π̂

grows at most quadratically and that its derivative π is linearly bounded. Unfortunately, to manage the
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optimal control problem introduced above, we are forced to restrict the class of admissible potentials by
requiring some explicit growth assumptions. In fact, we also assume that

F is a C3 function on R satisfying
∣∣F ′′(r)

∣∣ � C1
(
1 + |r|2), (2.9)

for a positive constant C1. Despite such a strong framework for the potentials, the regular potential (1.9)
complies with the above requirements and can be considered. We also notice that, owing to the regularity
of the initial datum ϕ0 and of (2.9), we realize that F(ϕ0) ∈ L1(�). Indeed, from (2.9), we realize that
F(r) = O(r4) as |r| → +∞, and, owing to the Sobolev embedding, that ϕ0 ∈ L4(�).

Now, we start by recalling some already known results. First of all, we introduce the well-posedness
and the asymptotic results, as α ↘ 0, for system (1.10)–(1.14). In this regard, we refer to [12] and
to [8,10]. As a matter of fact, the following existence result still holds in a rather mild setting for the
potential F . Namely, the requirement on the potentials can be weakened by assuming that B̂ may attain
also the value +∞ and that for a positive constant CB it holds that∣∣B◦(r)

∣∣ � CB

(
B̂(r) + 1

)
for every r ∈ R,

where B◦(r) denotes the element of B(r) having minimum modulus since, without assuming any reg-
ularity property, B may be multivalued. However, we reinforce the setting according to the uniqueness
result [12, Thm. 2.6] unifying the description, by virtue of simplicity, as for the control problem both the
results are necessary.

In view of what already pointed out, it immediately follows from [12, Thm. 2.5., Thm. 2.6] and [40]
the following results.

Theorem 2.1. Let (2.1)–(2.9) be fulfilled. Then, system (1.10)–(1.14) admits a unique solution
(μα, ϕα, σα) which satisfies

μα, σα, ϕα ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W) ⊂ C0
([0, T ];V

)
. (2.10)

Theorem 2.2. Suppose that (2.1)–(2.9) are fulfilled. Moreover, for given α, β ∈ (0, 1) and uα ∈ UR,
let us denote with (μα, ϕα, σα) the unique solution to system (1.10)–(1.14) enjoying (2.10). Then, there
exist μ, ϕ, σ and a not relabeled subsequence such that, as α ↘ 0, we have that

μα → μ weakly in L2(0, T ;V ) (2.11)

ϕα → ϕ weakly star in H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W)

and strongly in L2(0, T ;V ) ∩ C0
([0, T ];H

)
(2.12)

σα → σ weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V )

and strongly in L2(0, T ;H) (2.13)

αμα → 0 strongly in H 1
(
0, T ;V ∗) ∩ L2(0, T ;V ). (2.14)

Furthermore, there exists a positive constant K1, independent of α, such that

α1/2‖μα‖H 1(0,T ;V ∗) + ‖μα‖L2(0,T ;V ) + ‖ϕα‖H 1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W)

+ ‖σα‖H 1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) � K1. (2.15)
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In addition, the limit triple (μ, ϕ, σ ) is the unique solution to (1.15)–(1.19) and possesses the following
regularity

μ ∈ L2(0, T ;V ) (2.16)

ϕ ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W) (2.17)

σ ∈ H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ). (2.18)

Let us also point out that our assumption perfectly fits the framework of [40]. Hence, the following
existence result holds.

Lemma 2.3. Assume that assumptions (2.1)–(2.9) are fulfilled. Then, for every α ∈ (0, 1), the optimal
control problem (CP)α admits, at least, a solution.

Our next goal is to investigate the asymptotic analysis for the corresponding adjoint system which has
been already studied in [40], and reads as follows

β∂tqα − ∂tpα + 	qα − F ′′(ϕα)qα = b1(ϕα − ϕQ) in Q (2.19)

qα − α∂tpα − 	pα + P(pα − rα) = 0 in Q (2.20)

−∂trα − 	rα + P(rα − pα) = b3(σ α − σQ) in Q (2.21)

∂nqα = ∂npα = ∂nrα = 0 on � (2.22)

pα(T ) − βαq(T ) = b2
(
ϕα(T ) − ϕ�

)
, αpα(T ) = 0,

rα(T ) = b4
(
σα(T ) − σ�

)
in �.

(2.23)

Again, as a consequence of [40, Thm. 2.8], we have at disposal the following result.

Theorem 2.4. Assume that the assumptions (2.1)–(2.9) are fulfilled. Then, there exists a unique triplet
(qα, pα, rα) which solves (2.19)–(2.23) and possesses the beneath regularity

qα, pα, rα ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W) ⊂ C0
([0, T ];V

)
. (2.24)

Next, starting from this, one can obtain the first-order necessary condition for optimality (see [40,
Thm. 2.9]).

Theorem 2.5. Assume that (2.1)–(2.9) are verified. Let u ∈ Uad be an optimal control for (CP)α, and
let (μα, ϕα, σ α) and (pα, qα, rα) be the corresponding optimal state and co-state, respectively. Then, it
follows that

∫
Q

(rα + b0uα)(v − uα) � 0 ∀v ∈ Uad. (2.25)
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Now, let us state the novelties. We aim at showing that, as α ↘ 0, the above system converge, in a
proper sense, to the adjoint system corresponding to (1.15)–(1.19) which reads as

β∂tq − ∂tp + 	q − F ′′(ϕ)q = b1(ϕ − ϕQ) in Q (2.26)

q − 	p + P(p − r) = 0 in Q (2.27)

−∂tr − 	r + P(r − p) = b3(σ − σQ) in Q (2.28)

∂nq = ∂np = ∂nr = 0 on � (2.29)

p(T ) − βq(T ) = b2
(
ϕ(T ) − ϕ�

)
, αp(T ) = 0, r(T ) = b4

(
σ(T ) − σ�

)
in �. (2.30)

We claim that, under suitable assumptions, the above system admits a unique solution in a variational
sense. To avoid ambiguity, let us introduce the notion of solution we are going to employ for this latter.

Definition 2.6. The triplet (q, p, r) is a solution to system (2.26)–(2.30) if it satisfies the variational
formulation

−V ∗
〈
∂t (p − βq)(t), v

〉
V

−
∫

�

∇q(t) · ∇v −
∫

�

F ′′(ϕ(t)
)
q(t)v

=
∫

�

b1
(
ϕ(t) − ϕQ(t)

)
v for every v ∈ V, for a.a. t ∈ (0, T )∫

�

q(t)v +
∫

�

∇p(t) · ∇v + P

∫
�

(
p(t) − r(t)

)
v = 0 for every v ∈ V, for a.a. t ∈ (0, T )

−V ∗
〈
∂tr(t), v

〉
V

+
∫

�

∇r(t) · ∇v + P

∫
�

(
r(t) − p(t)

)
v

=
∫

�

b3
(
σ(t) − σQ(t)

)
v for every v ∈ V, for a.a. t ∈ (0, T ),

and the final conditions∫
�

(p − βq)(T )v =
∫

�

b2
(
ϕ(T ) − ϕ�

)
v for every v ∈ V

and ∫
�

r(T )v =
∫

�

b4
(
σ(T ) − σ�

)
v for every v ∈ V .

Moreover, it has to possess the following regularity

q ∈ L2(0, T ;V ) (2.31)

p ∈ L2(0, T ;W) (2.32)

r ∈ H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) ⊂ C0

([0, T ];H
)

(2.33)

p − βq ∈ H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) ⊂ C0

([0, T ];H
)
. (2.34)
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Thus, we are in a position to introduce the results concerning the asymptotic behavior of system
(2.19)–(2.23), which will be fundamental for the asymptotic investigation.

Theorem 2.7. Assume that (2.1)–(2.9) are in force. Let (qα, pα, rα) be the unique solution to (2.19)–
(2.23) satisfying (2.24). Then, as α ↘ 0, and up to a not relabeled subsequence, we have that

qα → q weakly in L2(0, T ;V ) (2.35)

pα → p weakly in L2(0, T ;W) (2.36)

rα → r weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) (2.37)

and strongly in L2(0, T ;H) (2.38)

pα − βqα → p − βq weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) (2.39)

and strongly in L2(0, T ;H) (2.40)

αpα → 0 weakly star in H 1(0, T ;H) (2.41)

and strongly in L∞(0, T ;V ) ∩ L2(0, T ;W). (2.42)

Moreover, there exists a positive constant K2, independent of α, such that

‖pα − βqα‖H 1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) + ‖qα‖L2(0,T ;V ) + α1/2‖pα‖L∞(0,T ;V )

+ α‖pα‖H 1(0,T ;H) + ‖pα‖L2(0,T ;W) + ‖rα‖H 1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) � K2. (2.43)

In addition, the limit (q, p, r) is the unique solution to problem (2.26)–(2.30) in the sense of Defini-
tion 2.6.

With all these results at disposal, we can announce the results regarding the existence of optimal
controls and the first-order necessary condition that every optimal control has to satisfy.

Theorem 2.8. Suppose that (2.1)–(2.9) are satisfied. Then, the optimal control problem (CP) admits, at
least, a solution u ∈ Uad.

Theorem 2.9. Assume that (2.1)–(2.9) are in force and let u ∈ Uad be an optimal control for (CP) with
its corresponding optimal state (μ, ϕ, σ ). Moreover, let us denote by (p, q, r) the associated solution
to the adjoint system (2.26)–(2.30). Then, the necessary condition for optimality of u is given by the
following variational inequality

∫
Q

(r + b0u)(v − u) � 0 ∀v ∈ Uad. (2.44)

Furthermore, whenever b0 �= 0, the optimal control u is the L2(0, T ;H)-projection of −r/b0 onto the
closed subspace Uad.
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Let us emphasize a consequence which is of straightforward importance for the numerical approach.
Comparing the expected theoretical condition (1.20) with the explicit (2.44), it immediately follows
that we can identify, via Riesz’s representation theorem, the gradient of the reduced cost functional as
∇Jred(u) = r + b0u. Hence, for the numerical approach, the optimal control problem can be viewed
as a constrained minimization of a function, Jred, of which we know the gradient (think of the well-
known projected conjugate gradient method).

In the remainder of the section, we recall some well-known results which will be useful later on. At
first, let us remind the Young inequality

ab � δa2 + 1

4δ
b2 for every a, b � 0 and δ > 0.

In addition, we often owe to the standard Sobolev embedding

H 1(�) ↪→ Lq(�) which holds for every q ∈ [1, 6]. (2.45)

In the whole of the paper, let us convey to use the symbol small-case c for every constant which only
depend on the structural data of the problem, that is: on the final time T , on �, on R, on the shape of the
nonlinearities, on the norms of the involved functions, and possibly on β. Differently, the capital letters
are devoted to indicating some specific constant which we eventually will refer in the sequel. Moreover,
since we aim to let α ↘ 0, we will keep track at every step of the eventual dependence of the appearing
constants by α.

3. Existence and approximation of optimal controls

3.1. Existence of optimal controls

Here, we check the existence of optimal controls by proving Theorem 2.8.

Proof of Theorem 2.8. The method we are going to employ is the celebrated direct methods of calculus
of variations. To begin with, let us pick an arbitrary sequence {αn}n ⊂ (0, 1] which goes to zero as
n → ∞. Then, we take as {un}n := {uαn

}n a minimizing sequence for the cost functional J constitutes
by elements of Uad, which, for every n, is optimal controls for (CP)αn

, which exist by virtue of Lemma
2.3. Next, at every step, we introduce (μn, ϕn, σn) as the solution associated to system (1.10)–(1.14) with
u = un. By recalling estimate (2.15) and the boundedness of Uad, it straightforwardly follows from
standard weak and weak-star compactness results that there exists a subsequence, which we do not
relabel, some u ∈ Uad and a triplet (μ, ϕ, σ ) such that, as n → ∞, we have that

un → u weakly star in L∞(Q)

μn → μ weakly in L2(0, T ;V )

ϕn → ϕ weakly star in H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W)

σn → σ weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ).
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Moreover, compactness arguments (see, e.g., [42, Section 8, Cor. 4]) also yield that

ϕn → ϕ strongly in C0
([0, T ];H

) ∩ L2(0, T ;V ),

which gives meaning to the initial condition ϕ(0) = ϕ0. This, along with the growth assumption (2.9),
allows us to infer that

F ′(ϕn) → F ′(ϕ) strongly in L2(0, T ;H).

Then, it suffices to take into account the variational formulation of system (1.10)–(1.14), written for
(μn, ϕn, σn), and pass to the limit as n → ∞. From this passage, we infer that (μ, ϕ, σ ) is admissi-
ble for (CP), that is μ and ϕ are the unique solutions to (1.15)–(1.19) associated with u. Lastly, the
weak sequential lower semicontinuity of the cost functional leads to conclude that u is a minimizer for
(CP). �

3.2. Approximation of optimal controls

After existence has been shown, we would like to infer some information on the behavior of the
optimal controls, pointing out some necessary conditions for optimality. We would like to achieve this
goal by letting α ↘ 0 in the necessary condition for (CP)α expressed by the variational inequality (2.25).
Although from a formal perspective it could seem reasonable, we cannot directly proceed this way. In
fact, if we want to let α ↘ 0 without any restriction, we have to ensure that every optimal control for
(CP) can be approximated by a sequence of optimal controls for (CP)α. Unfortunately, we are unable
to prove such a strong global approximation result. Anyhow, a partial one can be stated localizing the
problem by following the idea firstly introduced by Barbu in [2]. Let us refer the interested reader,
among others, to the contributions [6,7,13,39], where an application of such a technique can be found.
The key ingredient relies on a local perturbation of the cost functional J . Then, instead of looking for
approximating sequence made up by optimal controls for (CP)α, we seek for a sequence of optimal
controls for a modified optimization problem. Namely, we still consider the same state system, whereas
we are going to minimize the so-called adapted cost functional which, for every optimal control u for
(CP), is defined by

J̃ (ϕ, σ, u) := J (ϕ, σ, u) + 1

2
‖u − u‖2

L2(Q)
. (3.1)

Due to the fact that the state system is the same, it is straightforward to deduce that this slight modifica-
tion of J do not change the corresponding adjoint system. Hence, it is natural to consider the following
new minimization problem:

(˜CP)α Minimize J̃ (ϕ, μ, u) subject to the control constraints (1.3) and under the

requirement that the variables (ϕ, σ ) yield a solution to (1.10)–(1.14).

It is worth emphasizing that J̃ reduces to J whenever it is restricted to act on optimal controls for (CP).
Moreover, the above control problem perfectly complies with the framework of [40] and therefore, we
also have the following lemma at disposal.
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Lemma 3.1. Assume that assumptions (2.1)–(2.9) are satisfied. Then, for every α ∈ (0, 1), there exists
at least an optimal control for (C̃P)α.

In a similar fashion as above, it also follows from [40] how the first-order necessary condition for
optimality can be outlined:

Theorem 3.2. Assume that (2.1)–(2.9) are in force. Let uα ∈ Uad be an optimal control for (C̃P)α, and
(μα, ϕα, σ α) and (pα, qα, rα) be the corresponding state and co-state, respectively. Then, the first-order
necessary condition for optimality is characterized by the variational formulation∫

Q

(
rα + b0uα + (uα − u)

)
(v − uα) � 0 ∀v ∈ Uad. (3.2)

With all these ingredients, we are finally in a position to introduce the aforementioned approximation
result.

Theorem 3.3. Assume that (2.1)–(2.9) are fulfilled. Let us denote (ϕ, σ , u) an optimal triplet for (CP)

and let {αn}n ⊂ (0, 1] be a sequence which goes to zero as n → ∞. Then, there exists an approximating
optimal sequence, namely a sequence that, for every n, consists of an optimal triplet (ϕαn

, σ αn
, uαn

) for
(C̃P)αn

, such that the following convergences are satisfied

un := uαn
→ u strongly in L2(Q) (3.3)

ϕn := ϕαn
→ ϕ weakly star in H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W) (3.4)

σn := σαn
→ σ weakly star in H 1

(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) (3.5)

J̃ (ϕn, σ n, un) → J (ϕ, σ , u) (3.6)

as n → ∞, and up to a not relabeled subsequence.

Proof. By virtue of Lemma 3.1, for every n ∈ N, we can take an optimal triplet (ϕαn
, σ αn

, uαn
) for

(C̃P)αn
that, for convenience, we will denote by (ϕn, σ n, un). From the bound pointed out by estimate

(2.15), together with the boundedness of the control-box, after extraction of a subsequence, we easily
get that

un → u weakly star in L∞(Q)

ϕn → ϕ weakly star in H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W)

σn → σ weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ).

On the other hand, the continuity of the control-to-state mapping entails that the limit triplet (μ, ϕ, u) is
admissible for the control problem (CP), that is ϕ and σ are the solution to (1.15)–(1.19) corresponding
to u. Thus, our purpose is now checking that the limit u is not only admissible, but it is actually optimal
which, in turn, will imply that ϕ and σ are the corresponding optimal states. In this direction, we rely on
monotonicity arguments. Firstly, the optimality of (ϕn, σ n, un) for (C̃P)αn

yields that

J̃ (ϕn, σ n, un) � J̃ (ϕ, σ , u) for every n ∈ N
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and passing to the superior limit to both sides and exploiting the definition of the adapted cost functional
J̃ , we realize that

lim sup
n→∞

J̃ (ϕn, σ n, un) � J̃ (ϕ, σ , u) = J (ϕ, σ , u). (3.7)

Moreover, it is straightforward to see that also J̃ is weak sequential lower semicontinuous, which implies
that

lim inf
n→∞ J̃ (ϕn, σ n, un) � J̃ (ϕ, σ, u) = J (ϕ, σ, u) + 1

2
‖u − u‖2

L2(Q)

� J (ϕ, σ , u) + 1

2
‖u − u‖2

L2(Q)
, (3.8)

where the optimality of (ϕ, σ , u) for (CP) and the definition of the adapted cost functional have been
invoked. By combining (3.7) with (3.8), we get the first convergence we are looking for since it follows
that we have arrived at the identity

1

2
‖u − u‖2

L2(Q)
= 0, (3.9)

so that un weakly star converges to u. These limits, also lead us to infer that the triplet (ϕ, σ, u) is
nothing but (ϕ, σ , u). As (3.6) is concerned, it suffices to remember that J (ϕ, σ , u) = J̃ (ϕ, σ , u) and
the fact that the above inferior and superior limits coincide. In fact, we realize that the following chain
of equality has been shown:

lim
n→∞ J̃ (ϕn, σ n, un) = lim inf

n→∞ J̃ (ϕn, σ n, un) = lim sup
n→∞

J̃ (ϕn, σ n, un) = J (ϕ, σ , u).

Thus, we are reduced to prove (3.3). Using the above estimates, we infer that

J (ϕ, σ , u) = lim
n→∞J (ϕn, σ n, un) + 1

2
‖un − u‖2

L2(Q)
. (3.10)

On the other hand, the lower semicontinuity of the cost functional, along with the above estimates,
entails that

J (ϕ, σ , u) � lim inf
n→∞ J (ϕn, σ n, un) � lim sup

n→∞
J (ϕn, σ n, un)

� lim sup
n→∞

J̃ (ϕn, σ n, un) = lim J̃ (ϕn, σ n, un) = J (ϕ, σ , u),

so that

J (ϕ, σ , u) = lim
n→∞J (ϕn, σ n, un)
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is verified. Therefore, by combining the above property with (3.10) we deduce that

1

2
‖un − u‖2

L2(Q)
→ 0,

which conclude the proof. �

4. Optimality conditions

Next, we establish the necessary condition that an optimal control has to verify. As explained above,
in order to pass to the limit in the variational inequality (2.25), we have to deal with the asymptotic of
system (2.19)–(2.23) and with the approximation issue presented above. Since the approximating system
has been already investigated in the above section, only the asymptotic analysis of the adjoint system
(2.19)–(2.23) has been left unanswered.

4.1. The adjoint system

Below, we proceed formally by only providing some a priori estimates. The justification can be carried
out within a Faedo–Galerkin scheme as already made in [40, Section 4.4]. Let us just point out that, in
the approximation, the duality product is replaced by the L2-inner product and that the final conditions
are replaced by the corresponding L2-orthogonal projection onto the finite space spanned by the element
of the Galerkin basis.

Proof of Theorem 2.7. The estimates we are going to perform in a while are twofold. Firstly, within
a proper approximation scheme, they will be the key argument to prove the existence of a solution.
Secondly, since we will keep track at every step of the dependence of the appearing constants by α, they
will also be the starting point to let α ↘ 0 to handle the asymptotic analysis of system (2.19)–(2.23).

To begin with, it is convenient to rewrite the system (2.19)–(2.23) in a different form. Let us formally
motivate this statement; by considering the vanishing of α, it is straightforward to realize that the final
condition αpα = 0 disappears. Moreover, by comparing equation (2.19) with the corresponding final
condition, it turns out that the variable pα − βqα has to be considered as a single variable, since only for
such a linear combination the final condition is available. Moving from this consideration, let us set the
following notation

wα := pα − βqα, (4.1)

which, in turn, implies

qα = pα − wα

β
and pα = wα + βqα.

According to the above definitions, we rewrite the above system in terms of the variable wα to obtain
the new system

− ∂twα + 1

β
	pα − 1

β
	wα − 1

β
F ′′(ϕα)pα + 1

β
F ′′(ϕα)wα = b1(ϕα − ϕQ) in Q (4.2)
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1

β
pα − 1

β
wα − α∂tpα − 	pα + P(pα − rα) = 0 in Q (4.3)

−∂trα − 	rα + P(rα − pα) = b3(σ α − σQ) in Q (4.4)

∂nwα = ∂npα = ∂nrα = 0 on � (4.5)

wα(T ) = b2
(
ϕα(T ) − ϕ�

)
, αpα(T ) = 0, rα(T ) = b4

(
σα(T ) − σ�

)
in �. (4.6)

Now, we start presenting the estimates.

First estimate. In the first place, we multiply equation (4.2) by wα, (4.3) by pα − 	pα , (4.4) by rα and
integrate over QT

t and by parts to obtain, upon rearranging the terms, that

1

2

∫
�

∣∣wα(t)
∣∣2 + 1

β

∫
QT

t

|∇wα|2 + α

2

∫
�

(∣∣pα(t)
∣∣2 + ∣∣∇pα(t)

∣∣2) +
(

1

β
+ P

) ∫
QT

t

|pα|2

+
(

1

β
+ P + 1

) ∫
QT

t

|∇pα|2 +
∫

QT
t

|	pα|2 + 1

2

∫
�

∣∣rα(t)
∣∣2 +

∫
QT

t

|∇rα|2 + P

∫
QT

t

|rα|2

= 1

2

∫
�

∣∣b2
(
ϕα(T ) − ϕ�

)∣∣2 + 1

2

∫
�

∣∣b4
(
σα(T ) − σ�

)∣∣2 +
∫

QT
t

b1(ϕα − ϕQ)wα

+
∫

QT
t

b3(σ α − σQ)rα + 1

β

∫
QT

t

F ′′(ϕα)pαwα − 1

β

∫
QT

t

F ′′(ϕα)w
2
α − 2

β

∫
QT

t

	pαwα

+ P

∫
QT

t

rα(pα − 	pα) + 1

β

∫
QT

t

wαpα + P

∫
QT

t

pαrα,

where we denote the terms on the right-hand side by I1, . . . , I10, in this order. Moreover, the integrals on
the left-hand side are nonnegative, whereas the ones on the right-hand side can be bounded as follows.
Using the final conditions (4.6), assumptions (2.2), (2.3), and (2.10), we infer by the Young inequality
that

|I1| + |I2| + |I3| + |I4| � c

∫
QT

t

(|wα|2 + |rα|2
) + c.

As for I5 and I6, we recall the growth assumption (2.9) and the fact that ϕα, as a solution to (1.10)–
(1.14), verifies estimate (2.15). Thus, along with the Hölder and Young inequalities, and the standard
embedding (2.45), we get that

|I5| + |I6| � C1

β

∫
QT

t

(
1 + ∣∣ϕ2

α

∣∣)pαwα + C1

β

∫
QT

t

(
1 + ∣∣ϕ2

α

∣∣)w2
α

� c

∫ T

t

(
1 + ∥∥ϕ2

α

∥∥
3

)‖pα‖6‖wα‖2 + c

∫ T

t

(
1 + ∥∥ϕ2

α

∥∥
3

)‖wα‖6‖wα‖2

� c

∫ T

t

(
1 + ‖ϕα‖2

6

)‖pα‖6‖wα‖2 + c

∫ T

t

(
1 + ‖ϕα‖2

6

)‖wα‖6‖wα‖2
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� c

∫ T

t

(
1 + ‖ϕα‖2

V

)‖pα‖V ‖wα‖H + c

∫ T

t

(
1 + ‖ϕα‖2

V

)‖wα‖V ‖wα‖H

� δ

∫ T

t

‖pα‖2
V + δ

∫
QT

t

|∇wα|2 + cδ

∫
QT

t

|wα|2,

for a positive constant δ yet to be determined. Next, invoking once more the Young inequality, we argue
that

|I7| � 1

4

∫
QT

t

|	pα|2 + 2

β

∫
QT

t

|wα|2,

and also that

|I8| + |I9| + |I10| � 3δ

∫
QT

t

|pα|2 + 1

4

∫
QT

t

|	pα|2 + cδ

∫
QT

t

(|wα|2 + |rα|2
)
.

Hence, upon collecting all these terms, we realize that it suffices to fix δ small enough. Namely, we pick
δ = δ̂ such that

δ̂ < min

{
1

β
,

1

4

(
1

β
+ P

)
,

1

β
+ P + 1

}
.

Therefore, a Gronwall argument yields that

‖wα‖L∞(0,T ;H)∩L2(0,T ;V ) + α1/2‖pα‖L∞(0,T ;V ) + ‖pα‖L2(0,T ;W) + ‖rα‖L∞(0,T ;H)∩L2(0,T ;V ) � c,

for a suitable positive constant c independent of α. Moreover, let us note that

‖αpα‖L∞(0,T ;V ) � cα1/2.

Second estimate. Multiplying (4.2) by an arbitrary v ∈ L2(0, T ;V ), integrating over Q and by parts,
and making use of the above bounds, we infer that∣∣∣∣

∫
Q

∂twαv

∣∣∣∣ � c‖∇pα‖L2(0,T ;H)‖∇v‖L2(0,T ;H) + c‖∇wα‖L2(0,T ;H)‖∇v‖L2(0,T ;H)

+ c‖pα‖L2(0,T ;H)‖v‖L2(0,T ;V ) + c‖wα‖L2(0,T ;H)‖v‖L2(0,T ;V ) + c‖v‖L2(0,T ;H)

� c‖v‖L2(0,T ;V ).

Then, dividing both sides by ‖v‖L2(0,T ;V ) and passing to the superior limit leads to conclude that

‖∂twα‖L2(0,T ;V ∗) � c.

Third estimate. By the same token, we employ the above estimates to obtain that

‖∂trα‖L2(0,T ;V ∗) � c.



AUTHOR  C
OPY

A. Signori / Vanishing parameter for an optimal control problem modeling tumor growth 61

Fourth estimate. Lastly, comparison in equation (4.3), along with the above estimates, produces

‖α∂tpα‖L2(0,T ;H) � c.

It is now a standard matter to show that the above estimates will be sufficient, withing a Galerkin scheme,
to provide the existence of a solution to (2.26)–(2.30) which also satisfies (2.31)–(2.34). Furthermore,
the existence, together with the linearity of the system, also implies its uniqueness.

Passage to the limit. Here, we draw some consequences from the aforementioned estimates check-
ing that, in a proper sense, system (2.19)–(2.23) converges to (2.26)–(2.30). Owing to standard weak
compactness arguments it turns out that, up to a not relabeled subsequence, the following convergences
hold

wα → w weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V )

pα → p weakly in L2(0, T ;W)

rα → r weakly star in H 1
(
0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ).

Moreover, the compact embedding of H 1(0, T ;V ∗) ∩ L2(0, T ;V ) into C0([0, T ];H) guarantees that
the final data are meaningful and that

wα → w strongly in L2(0, T ;H)

rα → r strongly in L2(0, T ;H)

αpα → 0 weakly star in H 1(0, T ;H) and strongly in L∞(0, T ;V ) ∩ L2(0, T ;W).

Hence, by combining the above first and second convergences with the definition of the auxiliary variable
wα given by (4.1), we realize that

qα → q weakly in L2(0, T ;V ). (4.7)

Therefore, the above convergences implies that the weak limit of wα can be identified with w = p−βq.
So, in what follows, we are legitimate to conveniently interchange the variables w and q as convenience.

Now, let us take into account the variational formulation of system (2.19)–(2.23). It consists of seeking
for a triplet (wα, pα, rα) such that satisfies the following problem

−V ∗
〈
∂twα(t), v

〉
V

−
∫

�

∇qα(t) · ∇v −
∫

�

F ′′(ϕα(t)
)
qα(t)v

=
∫

�

b1
(
ϕα(t) − ϕQ(t)

)
v for every v ∈ V, for a.a. t ∈ (0, T )∫

�

qαv − α

∫
�

∂tpα(t)v +
∫

�

∇pα(t) · ∇v + P

∫
�

(
pα(t) − rα(t)

)
v

= 0 for every v ∈ V, for a.a. t ∈ (0, T )
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−V ∗
〈
∂trα(t), v

〉
V

+
∫

�

∇rα(t) · ∇v + P

∫
�

(
rα(t) − pα(t)

)
v

=
∫

�

b3
(
σα(t) − σQ(t)

)
v for every v ∈ V, for a.a. t ∈ (0, T ).

Moreover, owing to the final conditions (4.6), it has also to verify the final conditions

∫
�

wα(T )v =
∫

�

b2
(
ϕα(T ) − ϕ�

)
v for every v ∈ V

and ∫
�

rα(T )v =
∫

�

b4
(
σα(T ) − σ�

)
v for every v ∈ V .

By virtue of the above discussion, along with the convergences (2.11)–(2.14), we would conclude that,
as α ↘ 0, the above system converges to the following problem:

−V ∗
〈
∂t (p − βq)(t), v

〉
V

−
∫

�

∇q(t) · ∇v −
∫

�

F ′′(ϕ(t)
)
q(t)v

=
∫

�

b1
(
ϕ(t) − ϕQ(t)

)
v for every v ∈ V, for a.a. t ∈ (0, T )∫

�

q(t)v +
∫

�

∇p(t) · ∇v + P

∫
�

(
p(t) − r(t)

)
v

= 0 for every v ∈ V, for a.a. t ∈ (0, T )

−V ∗
〈
∂tr(t), v

〉
V

+
∫

�

∇r(t) · ∇v + P

∫
�

(
r(t) − p(t)

)
v

=
∫

�

b3
(
σ(t) − σQ(t)

)
v for every v ∈ V, for a.a. t ∈ (0, T )

with the corresponding final conditions

∫
�

(p − βq)(T )v =
∫

�

b2
(
ϕ(T ) − ϕ�

)
v for every v ∈ V

and ∫
�

r(T )v =
∫

�

b4
(
σ(T ) − σ�

)
v for every v ∈ V .

To do that, we multiply the first system by a regular function δ ∈ C∞
c (0, T ), integrate over (0, T ), and

then pass to the limit accounting for the above estimates. Thus, since the obtained limit system holds
for every δ ∈ C∞

c (0, T ), one finally recover the last system. Anyhow, to prove such a passage, we need
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to handle the asymptotics of the nonlinear term F ′′(ϕα)qα. We claim that, by combining the growth
assumptions on the potential (2.9) with the strong convergence (2.12), it follows that

F ′′(ϕα) → F ′′(ϕ) strongly in L2(0, T ;H). (4.8)

Therefore, by combining (4.7) with (4.8), the nonlinear term can be handled since we have

F ′′(ϕα)qα → F ′′(ϕ)q weakly in L2(0, T ;H),

and this conclude the proof. �

4.2. First-order necessary condition

In this last section, we are going to prove Theorem 2.9 which gives us the first-order necessary condi-
tion for optimality.

Proof of Theorem 2.9. As already mention, we try to recover the first-order necessary condition for the
control problem (CP) via asymptotic techniques by letting α ↘ 0, in a suitable sense, in the variational
inequality (2.25). The main issue has been already introduced above and consists in the fact that we have
to guarantee that every optimal control for (CP) can be found as a limit of a sequence made up by optimal
controls for (CP)α. This can be overcome by invoking the investigated approximation result. In fact, we
consider a sequence {αn} ⊂ (0, 1] which goes to zero as n → ∞, and introduce the sequence un := uαn

of optimal controls for (C̃P)αn
introduced in Theorem 3.3. After further extraction of a subsequence

{αnk
}, the convergence pointed out by (2.35)–(2.41) and (3.3)–(3.6) allow us to pass to the limit, as

k → ∞, in (3.2) to achieve the necessary condition we are looking for.
Finally, the last sentence follows from an application of the well-known Hilbert projection theorem,

since Uad is a non-empty, closed and convex subset of L2(0, T ;H). �

Finally, due to the structure of the control-box Uad, in the case of b0 > 0, we can provide an equivalent
implicit characterization of the optimal control (see, e.g., [44]).

Corollary 4.1. Suppose that (2.1)–(2.9) and that b0 > 0. Then, the optimal control u for (CP) satisfies

u(x, t) = max

{
u∗(x, t), min

{
u∗(x, t), − 1

b0
r(x, t)

}}
for a.a. (x, t) ∈ Q.

Remark 4.2. From a little investigation of Theorems 2.2 and 2.7, one realize that the requirements
ϕ�, σ� ∈ H 1(�) and ϕ0 ∈ W , and μ0, σ0 ∈ V turn out to be superabundant. In fact, for the limit optimal
control problem (CP), to be meaningful, it suffices that

ϕ�, σ� ∈ H and ϕ0 ∈ V, μ0, σ0 ∈ H. (4.9)

The framework we have introduced was motivated by the fact that, in order to manage (CP)α, we directly
rely on the results of [40]. Thus, it has been chosen by comparing the framework of [40] with the
additional assumptions introduced in [12] to deal with the asymptotic analysis of system (1.10)–(1.14).
Indeed, whenever α > 0, both the requirements (2.3) and (2.5) have to be fulfilled.
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In such a perspective, one may wonder if the given requirements can be somehow weakened. One
possible way to proceed can be to assume (4.9) and define some regularizing sequences

{
ϕα

�

}
α
,
{
σα

�

}
α

∈ H 1(�){
ϕα

0

}
α

∈ W,
{
μα

0

}
α

∈ V,
{
σα

0

}
α

∈ V

which satisfy, as α ↘ 0, the following strong convergences

ϕα
� → ϕ�, σα

� → σ� strongly in H

ϕα
0 → ϕ0 strongly in V , and μα

0 → μ0, σ
α
0 → σ0 strongly in H.

Then, for every α ∈ (0, 1), the initial conditions in the state system (1.14) has to be replaced with the
approximated version

μα(0) = μα
0 , ϕα(0) = ϕα

0 , σα(0) = σα
0 in �.

Moreover, the cost functional J has to be substituted by

J α(ϕ, σ, u) := b1

2
‖ϕ − ϕQ‖2

L2(Q)
+ b2

2

∥∥ϕ(T ) − ϕα
�

∥∥2

L2(�)
+ b3

2
‖σ − σQ‖2

L2(Q)

+ b4

2

∥∥σ(T ) − σα
�

∥∥2

L2(�)
+ b0

2
‖u‖2

L2(Q)
,

and the adapted cost with J̃ α, defined according to (3.1). Thus, the new (CP)α consists of minimizing
the cost functional J α subject to the control-box constraints Uad, and under the assumption that ϕ, σ are
solution to this new approximated state system, namely system (1.10)–(1.13) coupled with the above
initial data. It is immediately clear that the corresponding investigation will became more technical and
it is not clear if such an effort is worth to be pursued.
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