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Abstract
Let (N, 1

N
tN) be the Erdős–Rényi graph with connection

probability
1

N
tN ∼ t∕N as N →∞ for a fixed t∈ (0,∞).

We derive a large-deviations principle for the empirical

measure of the sizes of all the connected components of

(N, 1

N
tN), registered according to microscopic sizes (i.e.,

of finite order), macroscopic ones (i.e., of order N), and

mesoscopic ones (everything in between). The rate func-

tion explicitly describes the microscopic and macroscopic

components and the fraction of vertices in components of

mesoscopic sizes. Moreover, it clearly captures the well

known phase transition at t= 1 as part of a comprehensive

picture. The proofs rely on elementary combinatorics and

on known estimates and asymptotics for the probability that

subgraphs are connected. We also draw conclusions for the

strongly related model of the multiplicative coalescent, the

Marcus–Lushnikov coagulation model with monodisperse

initial condition, and its gelation phase transition.
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1 INTRODUCTION

In this paper, we study the Erdős–Rényi random graph (N, 1

N
tN), that is, the random graph on the

vertex set [N]= {1, … , N}, where each two distinct vertices are independently connected with prob-

ability
1

N
tN . We will be working in the sparse regime, that is, we assume that limN→∞tN = t for some

fixed t∈ (0,∞). This is the regime in which the famous phase transition of the emergence of a giant

cluster at t= 1 occurs, which was detected and characterized for the first time in the seminal paper

[17]. For an extensive overview on the model see the classical reference [8].

Our new contribution in this paper is a comprehensive study of the family of the sizes of all the

connected components of (N, 1

N
tN), registered according to the asymptotic order of the size in the

limit as N →∞. We distinguish here microscopic components (i.e., with size of order one), macro-
scopic components (i.e., size of order N, usually referred to as giant components) and mesoscopic ones

(everything in between). We summarize all this information in terms of two empirical measures and

derive a large-deviation principle (LDP) for them. Our rate function is rather explicit.

Such a principle gives information about the exponential decay rate of all sorts of events, for

example, the emergence of more than one giant cluster or the presence of a nontrivial proportion of

vertices in mesoscopic components. Moreover, the minimizers of the rate function represent the most

likely configurations of the graph, which is expressed in terms of a law of large numbers for the objects

that satisfy the LDP. In this way, we recover the mentioned phase transition and collect detailed infor-

mation about the statistics of the sizes of all the components, both in the subcritical regime (where no

giant component occurs) and the supercritical one.

Many investigations of the Erdős–Rényi graph and other random graphs in the sparse regime rely

on approximations of subgraphs with certain Galton–Watson trees and other branching processes. We

would like to stress that our approach does not use such arguments and is therefore an alternate ansatz.

In Section 1.1, we introduce our approach, in Section 1.2, we formulate our main results about

large deviations and in Section 1.3 their consequences for the phase transition, and in Section 1.4 we

give a literature survey.

Our original interest in this study was triggered by a desire to understand random particle processes
with coagulation, in particular its simplest variant, the Marcus–Lushnikov model with multiplicative

coagulation kernel. We introduce this process and its connections with our work on the LDP for the

Erdős–Rényi graph in Section 1.5.

Another highly interesting connection appears with a LDP-proof for the well-known Bose–Einstein
condensation phase transition that appears in the free (i.e., noninteracting) Bose gas; we will explain

the similarities and the differences in Section 1.6.

1.1 Micro- and macroscopic empirical measures

Let us introduce the main objects that we study in this paper. For the remainder of the paper, we fix

t∈ (0,∞) and will be working with the graph (N, 1

N
tN), where tN = t+ o(1) as N →∞. By

S(N)
1 ≥ S(N)

2 ≥ · · · ≥ S(N)
n ≥ 1,

n∑
i=1

S(N)
i = N, (1.1)

we denote the sizes of all the connected components of (N, 1

N
tN), ordered in a decreasing way

(n∈ {1, … , N} is the number of components). We want to describe the entire family (S(N)
i )i∈{1,… ,n} in

the limit N →∞. This is a comprehensive object, which contains several scales. In order to adequately
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describe the most important two scales, it will be convenient to work with two empirical measures of

the component sizes in the microscopic and macroscopic size ranges:

Mi(N) = 1

N

n∑
i=1

𝛿S(N)
i

and Ma(N) =
n∑

i=1

𝛿 1

N
S(N)

i
. (1.2)

Intuitively, while Mi(N) registers the proportion of components of “microscopic” sizes 1, 2, 3, … on

the scale N, Ma(N) registers the components of “macroscopic” sizes, that is, order N. Note that each

of the two measures admits a one-to-one map onto the vector (S(N)
i )i∈{1,… ,n} for fixed N ∈ N and

therefore contains all the information contained in the vector. However, in the limit N →∞, they will

be able to describe only the statistics of the microscopic, respectively macroscopic, part of the particle

configuration. We would like to stress here that this issue lies at the heart of the phase transition of the

emergence of a giant component, that is, a macroscopic size.

Here is a nontechnical, intuitive explanation: in the limit as N →∞, all sizes S(N)
i that somehow

diverge, will vanish from the support of Mi(N) “at infinity,” and all sizes S(N)
i that are ≪N will vanish

from the support of Ma(N) “at zero.” Hence, Mi(N) may leak out mass at infinity, and Ma(N) at zero. It

is by no means automatic that all the mass that leaks out from the microscopic part at infinity enters

the macroscopic part at zero. In order to control that, we also need to take care of the mesoscopic
mass, coming from particle masses 1 ≪ S(N)

i ≪ N. Since here a lot of scales are contained (indeed,

a continuum of scales), we will not be able to say anything about these sizes, but only about the total

proportion of vertices belonging to such components.

The famous phase transition (proved first in [17]) says that, for t≤ 1, there is no loss of mass from

Mi(N) (i.e., the first moment stays equal to one in the limit), and Ma(N) converges to the zero measure

(i.e., loses all its mass), while for t> 1, the total mass of Mi(N) loses a positive amount equal to that

retained by Ma(N) in the limit, and this results in a single Dirac measure. In both cases, the mesoscopic

part vanishes, even though mesoscopic components are present in the graph with high probability, but

their proportion is negligible.

These are assertions of the type of laws of large numbers. However, in the setting of a

large-deviation principle as we are working here, we will obtain significant results also about the prob-

abilities of several very unlikely events, like the emergence of nontrivial mesoscopic total mass, of

more than one giant cluster and of different statistics of microscopic component sizes. Note that we

decided to work on probabilities that are on an exponential scale N and for connection probabilities of

the form
1

N
(t + o(1)) for general t∈ (0,∞). This excludes for example all (highly interesting) phenom-

ena that occur with respect to cluster sizes of order N2/3 when considering more specified connection

probabilities of the size
1

N
(1 + cN−1∕3); see [2].

Now let us give a more technical explanation of the issue about possible losses of masses, which

will also set the frame for the mathematical treatment. We will conceive the discrete measure Mi(N) =
(Mi

(N)
k )k∈N as a random element of the sequence set =

⋃
c∈[0,1] (c), where

 (c) =
{
Λ = (𝜆k)k∈N ∈ [0,∞)N ∶

∑
k∈N

k𝜆k = c
}
, c > 0. (1.3)

We equip  = {Λ ∶
∑

kk𝜆k ≤ 1} with the topology of coordinate-wise convergence, which makes it

compact by the Bolzano–Weierstrass theorem combined with Fatou’s lemma.

The point measure Ma(N) is a random element of the set  ∶ =
⋃

c∈[0,1]N0
((0, 1]; c), where

N0
((0, 1]; c) =

{
𝛼 ∈ N0

((0, 1]) ∶ ∫(0,1]
x 𝛼(dx) = c

}
, (1.4)
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and N0
((0, 1]) is the set of all measures on (0, 1] with values in N0 = {0} ∪ N. We equip  with

the topology that is induced by functionals of the form 𝜇 → ∫(0,1]f (x) 𝜇(dx) where f ∶ (0, 1] → R

is continuous and compactly supported. We sometimes write the elements of  as 𝛼 =
∑

j𝛿𝛼j with

1 ≥ 𝛼1 ≥ 𝛼2 ≥ · · · > 0 and
∑

j𝛼j ≤ 1, where j extends over a finite subset of N or over N. Then

convergence is equivalent with the pointwise convergence of each of the atoms. By similar arguments

as for  , also  is compact. We equip the product of  and  with the product topology, so that

it is also compact.

Important quantities are the expectations of the subprobability distributions Λ ∈  respectively

𝛼 ∈ , that is, the maps

Λ → cΛ ∶=
∑
k∈N

k𝜆k and 𝛼 → c𝛼 ∶= ∫(0,1]
x 𝛼(dx).

Note that they are not continuous in the respective topologies, but only lower semicontinuous,

according to Fatou’s lemma. Indeed, even though the microscopic and macroscopic expectations

cMi(N) =
∑

kkMi
(N)
k and cMa(N) = ∫(0,1]x Ma(N)(dx) are each equal to one for any N, they may (and

will) lose mass in the limit N →∞. We sometimes call cΛ and c𝛼 the total masses of the microscopic,

respectively macroscopic, configuration Λ and 𝛼, since they stand for the total number of particles,

after scaling.

The mathematical treatment of the mesoscopic part of the component sizes is more technical, as it

requires the introduction of two cutting parameters R ∈ N and 𝜀∈ (0, 1). Indeed, a size S(N)
i is called

(R, 𝜀)-mesoscopic if R < S(N)
i < 𝜀N, and the definition of mesoscopic sizes requires making the limit

N →∞, followed by R→∞ and 𝜀↓0. There are several scales (indeed, a continuum of scales) contained

in this part and in this regime it does not seem reasonable to consider an empirical measure for this

part; therefore we will consider only the total proportion of mesoscopic vertices.

Let us remark that our choice of considering exclusively the size of each component, disregarding

its bond structure, comes from the interest in coagulation processes, where only the sizes matter; see

Section 1.5. An extension of our work to empirical measures of the components seems to require

only moderate additional work, at least as it concerns the microscopic part. See Section 1.4 for earlier

LDP-investigation of the components as subgraphs.

1.2 Our results: large-deviations principles

In this section, we present all our results on the LDP satisfied by the empirical measure of statistics

of component sizes of the Erdős–Rényi graph (N, 1

N
tN
)
, the random graph on [N]= {1, … , N} with

connection probability
1

N
tN , and we assume that tN = t+ o(1) with fixed t∈ (0,∞). In Section 1.3 we

will draw conclusions about the phase transition from that. Our main result is the following descrip-

tion of the two empirical measures Mi(N) and Ma(N) in terms of a joint large-deviations principle

(LDP).

Theorem 1.1 (LDP for the empirical measures). As N →∞, the pair (Mi(N), Ma(N)) satisfies a
large-deviations principle with speed N and rate function

(Λ, 𝛼) → I(Λ, 𝛼; t) =

{
IMi(Λ; t) + IMa(𝛼; t) + (1 − cΛ − c𝛼)

( t
2
− log t

)
, if cΛ + c𝛼 ≤ 1,

∞ otherwise,
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where we write Λ = (𝜆k)k∈N and

IMi(Λ; t) =
∞∑

k=1

𝜆k log
k!t𝜆k
e kk−2

+ cΛ
(

1 + t
2
− log t

)
, cΛ =

∞∑
k=1

k𝜆k, (1.5)

IMa(𝛼; t) = ∫
1

0

[
x log

x
1 − e−tx + t

2
x(1 − x)

]
𝛼(dx), c𝛼 = ∫(0,1]

x 𝛼(dx). (1.6)

The proof of this theorem is in Section 3; it is based on an explicit combinatorial formula for the

joint distribution of all the component sizes, followed by analysis of the arising exponential rates. We

organized the three terms of I in the way in which they were derived from the influences of the three

parts (micro, macro and meso) in the course of the proof, even though this leads to a cancelation of

terms involving cΛ and c𝛼 . This implies also that separate conclusions about the microscopic and the

macroscopic parts can conveniently be made (see Corollaries 1.2 and 1.3). Informally, in (1.5) the

terms involving 𝜆k, e and k! in the logarithm derive from the combinatorial number of possibilities to

decompose [N] into the requested configuration of subsets, the term kk−2 and the t in the logarithm

stem from the probability that these subsets are connected, and all the other terms from the probability

that any of these subsets is not connected with the remainder. This interpretation is not immediate,

since a number of asymptotic manipulations have been made during the proof. Similar remarks apply

to (1.6). Interestingly, on the right-hand side of (1.5) we see, up to normalization, a relative entropy of

(k𝜆k)k∈N with respect to the Borel distribution Bo𝜇(k) = e−𝜇k(𝜇k)k−1∕k! for a particular choice of 𝜇; a

fact that will be crucial in the analysis of minimizers of the rate function, see the proofs of Corollaries

1.2 and 1.3 and of Theorem 1.5.

Let us recall the notion of an LDP: Theorem 1.1 says that, for any open set G ⊂ × respectively

closed set F ⊂ ×,

lim inf
N→∞

1

N
log PN((Mi(N),Ma(N)) ∈ G) ≥ −inf

G
I(⋅; t),

lim sup
N→∞

1

N
log PN((Mi(N),Ma(N)) ∈ F) ≤ −inf

F
I(⋅; t),

where we wrote PN for the probability measure for (N, 1

N
tN
)
. For a comprehensive presentation of

the theory of large-deviations, see for example [15]. It is not difficult to see that since the rate function

I(⋅ , ⋅ ; t) is lower semicontinuous and  ×  is compact, it is even a good rate function, that is, its

level sets {(Λ, 𝛼) ∶ I(Λ, 𝛼; t) ≤ r} are compact for any r.

It is well-known in the theory of large deviations (and easy to deduce from the LDP) that for many

interesting sets A ⊂ × one also has that PN((Mi(N),Ma(N)) ∈ A) = e−N infAI(⋅;t)(1+o(1)), for example

for sets A that are equal to the closure of their open kernel. There are choices of such sets that give

the precise exponential rates of interesting events, for instance the event that there are a given number

of components larger than Na, for some a> 0, or that a given component size appears with a certain

least density, or that a given positive percentage of vertices are contained in components of a given

range of sizes (e.g., in {1, … , R} or in {R, … , 𝜀N} or in {𝜀N, … , N}), and certainly all kinds of

combinations of such events.

From our main result, the LDP in Theorem 1.1, a number of other LDPs follow via the contraction

principle, according which if a random variable satisfies an LDP, so does its image under a contin-

uous transformation; see [15]. Let us begin with the component size distribution of the microscopic

part.
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Corollary 1.2 (LDP for microscopic component size statistics). As N →∞, Mi(N) satisfies an LDP
with speed N and rate function Mi(⋅; t) ∶  → [0,∞], given by

Mi(Λ; t) = inf
𝛼∈I(Λ, 𝛼; t) = IMi(Λ; t) − (1 − cΛ)

(
log

1 − e(cΛ−1)t

1 − cΛ
− cΛt

2

)
. (1.7)

The first equality comes from the application of the contraction principle; while the second equality

is purely analytical and it is checked in Lemma 4.1. There it is seen that, given any Λ ∈  , it is always

optimal to have all the remaining mass 1 − cΛ in one single macroscopic component.

In the same way one can investigate the macroscopic part of the system.

Corollary 1.3 (LDP for macroscopic particles). As N →∞, Ma(N) satisfies an LDP with speed N and
rate function Ma(⋅; t)∶ → [0,∞], given by

Ma(𝛼; t) = inf
Λ∈ I(Λ, 𝛼; t)

= IMa(𝛼; t) + (1 − c𝛼)
(

t
2
− log t

)
+ C𝛼,t

(
log(tC𝛼,t) −

t
2

C𝛼,t

)
, (1.8)

where C𝛼,t = (1 − c𝛼) ∧ 1

t
(recall c𝛼 = ∫ 1

0
x 𝛼(dx)).

Again, only the second equality has to be checked; this is done in Lemma 4.2. In contrast with

the result above, here the optimal configuration Λ∗ depends on 𝛼 ∈ , most heavily it depends on

whether 1 − c𝛼 ≤ 1

t
or not. Indeed, if 1 − c𝛼 ≤ 1

t
, then cΛ∗ = 1 − c𝛼 (and no mesoscopic part arises).

However, if 1−c𝛼 > 1

t
, then cΛ∗ = 1

t
, and a nontrivial mesoscopic mass arises in the minimization; see

Theorem 1.5. This peculiarity shows already a key difference between the cases t≤ 1 and t> 1. Indeed,

if t≤ 1 one cannot have any macroscopic mass distribution 𝛼 such that 1 − c𝛼 > 1

t
and no difference

in the minimizing strategy of the system can be seen. This is a first way to see the phase transition at

t= 1 from analytic properties of the rate function.

Now we come to the mesoscopic part of the particle configuration. This part comprises particle

sizes on all the scales between finite and O(N) and it seems unreasonable to consider an empirical

measure for it. Instead, we consider only the total mass of this mesoscopic part. Let 𝜀> 0 and R ∈ N

be two auxiliary parameters, then we define the (R, 𝜀)-mesoscopic total mass as

Me
(N)
R,𝜀 =

1

N
∑

i∶R<S(N)
i <𝜀N

S(N)
i . (1.9)

This is the number of vertices that are contained in components with a size between R and 𝜀N.

The mesoscopic total mass in a strict sense arises after taking the limits N →∞, followed by 𝜀↓0 and

R→∞, but this does not define a proper random variable. However, it is possible to formulate an

LDP in the N →∞ limit and then to study the rate function,  (R,𝜀)
Me , as 𝜀↓0 and R→∞. Additionally,

the proof of Theorem 1.1 shows that it is possible to define a coupled mesoscopic total mass Me
(N)
RN ,𝜀N ,

for any diverging sequence RN and vanishing sequence 𝜀N . This is a well-defined random variable, it

satisfies an LDP with speed N and the rate function is the limit of  (R,𝜀)
Me when 𝜖 ↘ 0 and R↗∞.

Corollary 1.4 (LDP for mesoscopic mass).
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1. For any R ∈ N and 𝜀∈ (0, 1), as N →∞, Me
(N)
R,𝜀 satisfies an LDP with speed N and rate function

c →  (R,𝜀)
Me (c; t), where

 (R,𝜀)
Me (c; t) = inf

{
I(Λ, 𝛼; t) ∶

R∑
k=1

k𝜆k + ∫
1

𝜀

x 𝛼(dx) = 1 − c
}
.

2. For any RN ∈ N and 𝜀N ∈ (0, 1) such that 1≪RN <𝜀NN≪N, and | 1

𝜀N
log 𝜀N| ≤ o(N), the

coupled mesoscopic total mass Me
(N)
RN ,𝜀N satisfies an LDP with speed N and rate function

Me(c; t) = lim
R→∞,𝜀↓0

 (R,𝜀)
Me (c; t)

= (1 − c)
(

log(1 − c)t − (1 − c)t
2

)
+ t

2
− log t. (1.10)

The function Me(c; t) is strictly increasing in c, its minimum over [0, 1] is Me(0; t) = 0.

Corollary 1.4 part (1) is a simple consequence of the contraction principle, as the maps Λ →∑R
k=1 k𝜆k and 𝛼 → ∫ 1

𝜀
x 𝛼(dx) are continuous. Assertion (2) follows as a byproduct of our proof of

Theorem 1.1 in Section 3.

Hence, Me(⋅; t) can rightfully be called the rate function for the mesoscopic total mass. Since it

is positive everywhere outside 0, we have the immediate consequence that the probability that any

positive percentage of the vertices lies in mesoscopic components decays exponentially towards zero.

This implies the convergence in probability of Me
(N)
RN ,𝜀N towards zero with exponential decay of the

probability of a decay by any positive amount. Interestingly, taking RN + 1 = 𝜀NN ∈ N, we see that

already just one mesoscopic size alone satisfies the same LDP as the entire (R, 𝜀)-mesoscopic total mass

in the limit R→∞, 𝜀↓0. The condition | 1

𝜀N
log 𝜀N| ≤ o(N) is not only a technical one, but implies that

log N ≪ 𝜀NN, taking care of the well-known fact that there are many clusters of size O(log N) in the

sparse Erdős–Rényi random graph that stem from an extreme-value statistics effect of the microscopic

clusters.

1.3 Our results: the phase transition in the light of the LDP

We now proceed with the study of the main phenomenon in the sparse Erdős–Rényi random graph: the

phase transition of the emergence of a giant component. We will deduce it from our large-deviations

rate functions from Section 1.2. The LDPs and the identification of their strict minimizer(s) lead to

laws of large numbers for a number of random quantities. Indeed, it is a standard and simple fact from

large-deviations theory that a random variable that satisfies an LDP with a rate function that contains

precisely one minimizer converges in probability to that minimizer. We will exploit this fact to deduce

laws of large numbers. As before, the parameter t∈ (0,∞) will play the decisive role; recall that the

connection probability
1

N
tN of the graph (N, 1

N
tN) was picked as tN = t+ o(1) as N →∞.

Consider the following functions of the total masses of the microscopic and macroscopic particles

respectively:

Mi(c; t) = inf
Λ∈ (c)

Mi(Λ; t) and Ma(c; t) = inf
𝛼∈N0

((0,1];c)
Ma(𝛼; t), (1.11)
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where c∈ [0, 1]. These two functions are not entirely analogous to Me(c; t) as rate functions for the

total masses of the micro and the macro part, because the total masses both of Mi(N) and Ma(N) are

equal to one. This is consistent with the fact that the contraction principle cannot be applied to total

masses, as they are not continuous functions of the measures. However, they contain rather interesting

information about the phase transition.

Theorem 1.5 (Microscopic total mass phase transition).

1. For any c∈ [0, 1],

Mi(c; t) = tc + (1 − c) log
1 − c

1 − et(c−1) +

{
c log c − tc2 for c < 1

t
,

− 1

2t
− t

2
c2 − c log t for c ≥ 1

t
.

(1.12)

Moreover, Mi(c; t) = Ma(1 − c; t).
2. For c∈ (0, 1], the minimum of  (c) ∋ Λ → Mi(Λ; t) is attained precisely at Λ∗(c; t) ∈  (c)

given by

𝜆∗k (c; t) = kk−2cktk−1e−ctk

k!
, k ∈ N, (1.13)

and the minimum of the function c → Mi(c; t) is attained precisely at c= 1 with value
Mi(1; t) = 0. Therefore the infimum

inf
(Λ,𝛼)∈×I(Λ, 𝛼; t) (1.14)

is attained at (Λ, 𝛼) = (Λ∗(1; t), 0), where 0= (0, 0, … ).

3. For t∈ (1,∞), the minimum of the function c → Mi(c; t) is attained at c = 𝛽t where 𝛽t ∈ (0, t)
is the smallest positive solution to

log 𝛽t = t𝛽t − t. (1.15)

The infimum in (1.14) is attained precisely at (Λ, 𝛼) = (Λ∗(𝛽t; t), (1 − 𝛽t, 0, 0, … )).

The proof is found in Section 4.2.

The two different cases in (1.12) refer to the cases that the first minimum in (1.11) is attained or

not. Indeed, for c ≤ 1

t
, the function Mi(⋅; t) is minimized in an optimal Λ∗ with cΛ∗ = c. However, for

c > 1

t
this is not possible, but only minimizing sequences can be found that achieve a total mass of

1

t
in

the microscopic measure and displace the remaining mass c− 1

t
to the mesoscopic part. This shows that

the phase transition originates from the impossibility of picking an optimal microscopic configuration

Λ∗ if its total mass cΛ∗ is required to be too large; the threshold being 1/t. If this is exceeded, then a

minimization can be done only with the help of some nontrivial mesoscopic part. As we mentioned

above, the macroscopic configuration is always minimized in one single giant component.

The same effect is seen in Ma(c; t), where first an optimization overΛwith cΛ ≤ 1−c is performed,

and such a balance between microscopic and mesoscopic mass can pop out if 1− c is large enough.

Subsequently, optimizing over N0
((0, 1]; c) is straightforward. The equality Mi(c; t) = Ma(1− c; t)

follows from this.

In Theorem 1.5(2) and (3) we see the different behavior for subcritical, respectively supercritical t
in terms of the microscopic configuration. Note that this configuration is actually given by

k𝜆∗k (c; t) = cBoct(k),
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where Bo𝜇 is the Borel distribution with parameter 𝜇 ∈ [0, 1]. We see that such an optimal Λ∗(c; t)
cannot be found if c > 1

t
, and this is an admissible total mass only when t> 1, marking the threshold

between subcritical and supercritical regime (otherwise, there is no relevant case distinction as to the

value of c). In this way, the Borel distribution appears as the natural minimizer of the microscopic part

of the rate function.

In earlier work (see [27]), the appearance of the Borel distribution in this context came from the

observation that Bo𝜇 is the distribution of the total progeny of a Galton–Watson tree with offspring

that is Poisson-distributed with parameter 𝜇. The characterization of the emerging cluster-size distri-

bution Λ∗ was based on an approximation of the connected subgraphs by such trees and counting the

total number of trees of a given size in the graph. This approximation argument was extended to a

large-deviation setting in [6], see Section 1.4.

Theorem 1.5 characterizes the well-known phase transition of the emergence of a giant component

at t= 1 in terms of a natural notion that is familiar to statistical physics: as a nonanalyticity of the

limiting free energy for the total mass of the microscopic configuration, which is equal to the infimum

of Mi(⋅; t). Indeed, this function is zero in [0, 1], but positive in (1,∞).

Another characterization of this phase transition is in terms of a law of large numbers. Indeed,

combining Theorem 1.5 with the LDP in Theorem 1.1 one has

(
Mi(N),Ma(N)) N→∞

⇒

{
(Λ∗(1; t), 0) if t ≤ 1,

(Λ∗(𝛽t; t), (1 − 𝛽t, 0, … )) if t ≥ 1.

In words, this means that, for any k ∈ N,
1

N
times the number of components of size k converges to

𝜆∗k (1; t) in the subcritical regime and to 𝜆∗k (𝛽t, t) in the supercritical regime, while there is no macro-

scopic component in the first regime and there is precisely one macroscopic cluster of cardinality

∼ N(1 − 𝛽t) in the second. All these statements are in the sense of convergence in probability, and the

probability of a deviation by any positive amount decays even exponentially in N.

One also sees that the cut-off versions of the total masses,
∑R

k=1 kMi
(N)
k and ∫[𝜀,1]x Ma(N)(dx), con-

verge towards the respective cut-off versions of the limits, and their limits as R→∞ and 𝜀↓0 are (1, 0)

for t≤ 1 and (𝛽t, 1 − 𝛽t) for t≥ 1.

1.4 Related works on LDPs for Erdős–Rényi graphs

Despite the extensive literature on the Erdős–Rényi graph, there are not many results about large devi-

ations in the sparse regime. Here we summarize, to the best of our knowledge, the existing results and

how they relate to our work.

Two LDPs for the size of the largest component and for the number of isolated vertices have been

derived in [26]. These are two quantities that are obviously functionals of our measures Ma(N), respec-

tively of Mi(N). Indeed, the largest component is the mass of the largest atom of Ma(N), and the number

of isolated vertices is equal to N times Mi
(N)
1 . Both these two functionals are continuous, such that

the contraction principle applies. The approach of [26] is a simplified version of our comprehensive

approach for the joint distribution of all the component sizes, and consequently it leads to formulas

for the rate functions that are contractions of our rate function, which is straightforward to see. This

explains also the remark made about the lack of convexity of the rate function in [26]. Indeed, contrac-

tion often ruins convexity and contracted rate functions are rarely convex. Hence, our work includes

the results of [26].

A route that is inspired by statistical physics is taken in [16], where the distribution of the random

graph is tilted with a parameter q> 1 raised to the power of the number of components, properly
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normalized. The analysis of the free energy of the corresponding partition sum is carried out there.

Via the well-known Laplace dualism, the results are essentially equivalent to an LDP for the number

of components. This functional is equal to the continuous functional Mi(N)(N) in our setting. The

peculiarity of [16] is that this model is put into relation with the q-state Potts model in the limit q↓1

via diagrammatic expansion techniques. In particular, they derive limiting formulas for the size of the

giant component, the degree distributions inside and outside the giant component, and the distribution

of small component sizes.

We already mentioned that registering each component as a subgraph (rather than only as its

size) would give a priori a much more detailed description, at least for any fixed N. However, in the

limit as N →∞, in the LDP regime that we consider, only few subgraph configurations survive: the

microscopic components survive only as spanning trees, and only those macroscopic components sur-

vive that have an excess of edges of order 𝛩(N). The first has been carried out in [6], the second

in [28].

Indeed, the macroscopic part of our LDP is covered in [28]. The author gives an LDP for the joint

distribution of the total number of components, the sequence of the sizes of macroscopic ones, and the

sequence of corresponding numbers of the excess edges appended with zeros. Therefore the contraction

of this LDP to the total number of components and the macroscopic sizes (see [28, Corollary 2.1]) is

equal to the contraction of our LDP from Theorem 1.1 to the LDP for
(∑

kMi
(N)
k ,Ma(N)

)
. The same

is of course true, when considering exclusively macroscopic sizes (compare [28, Corollary 2.2] with

Corollary 1.3). The approach in [28] goes along a very different route, involving recursive formulas

for the graphs (N, 1

N
tN) if N increases, and consequently the form of the rate function derived there

is pretty different from ours; it involves an additional minimization procedure. It would require some

work to analytically check that it is identical to ours.

In [6], an LDP for the empirical measure of all the components rooted at the vertices, is derived

with an explicit rate function. The topology used there comes from a distance that looks only at inter-

sections of graphs with bounded sets, so it can detect only microscopic components. In this way it is

contained in our results. However, [6] considers the components as graphs, not only as sizes, and gets

therefore a much more detailed picture. Moreover, the object described in [6] is a size-biased version

of our microscopic measure, since we are counting components of a certain size, while they consider

the component containing each vertex and therefore counting a certain component proportionally to

the number of vertices it contains. Hence, the LDP of [6] contains the microscopic part of our LDP

(Corollary 1.2) via the contraction principle, but a certain normalization has to be performed to actu-

ally compare the two objects. However, let us notice that [6, Theorem 1.8] shows that the rate function

takes the form of a sort of relative entropy with respect to a Galton Watson tree with Poisson offspring

distribution (plus additional constants). This form is shown also in our contracted rate function from

Corollary 1.2, which in (4.2) we rewrite in terms of a relative entropy with respect to a distribution

related to the Borel distribution (which is the distribution of the total progeny of precisely a Galton

Watson tree with Poisson offspring). Also in this case, one sees that the Borel distribution appears as

a size-biased version of our reference distribution.

Under assumptions that imply that the connection probability of the Erdős–Rényi graph (N, p)
satisfies p ≫ N− 1

2 , recent progress has been made on the upper tails of subgraph counts [5,11,12].

In the case of dense graphs, that is, for (N, p) with fixed p∈ (0, 1), there is a complete treatment

thanks to Chatterjee and Varadhan [14], see [13] for an overview. This regime is rather different from

the sparse regime, since a proper formulation of the relevant limiting objects requires a abstract setting

evolving around the notion of a graphon.
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1.5 Application to coagulation models

Our interest in this research came from the desire to understand dynamical particle systems with coagu-

lation in the large-system limit. It turned out that one of the most prominent (and most simple) models,

the Marcus–Lushnikov model of coagulation, see [19, 21, 22], admits a one-to-one correspondence to

the component sizes of the Erdős–Rényi random graph that we study in this paper. This coagulation

process is a continuous-time Markov process of vectors of particle masses (S(N)
i (t))i∈{1,… ,nt} ∈ (N0)nt

at time t∈ [0,∞), arranged in descending order, precisely as in (1.1), where nt is the number of parti-

cles at time t. This process is specified by the initial configuration, which we take in the monodisperse

case, that is, S(N)
i (0) = 1 for all i= 1,… , N = n0, and by the transition mechanism, which is given in

terms of a symmetric, nonnegative coagulation kernel KN∶N × N → [0,∞). That is, we start with N
particles of unit mass at time 0, and in the course of the process, each (unordered) pair of particles with

respective masses m, m̃ ∈ N coagulate to a particle of mass m + m̃ with rate KN(m, m̃), independently

of all the other pairs of particles.

The important special case of the multiplicative kernel, KN(m, m̃) = mm̃∕N has the two interesting

features: (1) it can be mapped onto the Erdős–Rényi random graph that we study in this paper, and (2)

it exhibits an interesting gelation phase transition in the limit N →∞ at time t= 1, because a gel, that

is, a particle of macroscopic size, appears. Indeed, for this process, it turned out in the review [3] that,

for fixed t∈ [0,∞), the distribution of the family (S(N)
i )i∈{1,… ,n} of the component sizes of (N, 1

N
tN)

defined in (1.1) with
1

N
tN = 1−e−t∕N is identical to the family (S(N)

i (t))i∈{1,… ,nt} of particle masses in the

multiplicative coalescent at time t. This correspondence was not mentioned in [9], but was discussed

one year later in [10], which highlights the connection between gelation in the coagulation process

and the phase transition given by the formation of a giant connected component in the Erdős–Rényi

random graph [17].

Hence, the results of this paper also recover the gelation phenomenon in rather explicit terms

through a LDP in terms of the microscopic, mesoscopic and macroscopic parts, in the same way as we

explained in the above sections for the Erdős–Rényi random graph.

Smoluchowski introduced a (deterministic) ODE model for the concentrations of coagulating par-

ticles in the course of his work on Brownian motion [30]. Indeed, it is reasonable to assume that

lk(t) = limN→∞
1

N
#{particles of size k at time t} exists under suitable conditions, see [20, 23, 25].

These limits satisfy

d

dt
lk(t) =

1

2

∑
m,m̃∶

m+m̃=k

lm(t)lm̃(t)K(m, m̃) − lk(t)
∑

m
lm(t)K(k,m), k ∈ N, (1.16)

where K(m, m̃) = limN→∞NKN(m, m̃) is the limiting coagulation kernel (in our case, K(m, m̃) = mm̃).

This is the famous Smoluchowski equation. Intuitively, the positive terms on the right-hand side of

(1.16) take into account that the fraction of particles of mass k increases if a particle of mass m and

one of mass m̃ (with m + m̃ = k) merge and this happens with rate K(m, m̃). On the other hand, the

negative term describes that a particle of mass k can coagulate with particles of any size m with rate

K(k, m) and this is why it involves an infinite sum (overall m ∈ N). One can check for t≤ 1 that Λ∗(1; t)
appearing in Theorem 1.5 is the exact solution of (1.16), the Smoluchowski equation, also given in

[[3], Table 2]. As a consequence, the above mentioned gelation phase transition as well as the solution

of the Smoluchowski ODE are also clear from our results in Sections 1.2 and 1.3 and receive therefore

a new interpretation in terms of combinatorial structures.

In the light of the process character of the Marcus–Lushnikov coagulation model, it will be desir-

able to derive a pathwise version of the LDP of Theorem 1.1. This will require a version of that theorem



ANDREIS ET AL. 533

which starts from an arbitrary configuration rather than from S(N)
i (0) = 1. This may also be interesting

for the time-dependent version of the Erdős–Rényi graph ((N, 1 − et∕N))t∈[0,∞), but not as natural as

for the Marcus–Lushnikov model. Another aspect that makes it particularly interesting for coagulation

models is the availability of alternative methods in the spirit of Wentzell–Freidlin theory to derive path-

wise LDPs for coagulation models, see [24]. Let us also mention that, in the renowned paper [2], time

is expanded around the critical value t= 1, and the mesoscopic components of the graph are compared

to a stochastic process known as the multiplicative coalescent. Although we allow for fluctuations

around t (our LDP holds for any sequence tN ∼ t), we cannot capture this regime around t= 1, since

we expect a LDP for mesoscopic particles to hold on a different scale. Another natural direction of our

future research is an extension to the case of an inhomogeneous Erdős–Rényi graph as introduced in

[7]. We will defer future work to these questions.

1.6 Comparison to Bose–Einstein condensation without interaction

Our large-deviations approach to the Marcus–Lushnikov models shows remarkable similarities to

another well-known phase transition in a nonspatial model, the noninteracting Bose gas. Here the

situation is similar in that the gas can be conceived as a joint distribution of N particles that are

randomly grouped into smaller units, called cycles, which can become arbitrarily large. The natural

question is then, under what circumstances do macroscopic cycles arise. An explicit answer in terms

of a large-deviations analysis has been given in [1], where the transition, the famous Bose–Einstein
Condensation (BEC) in dimensions d ≥ 3, is derived from the minimization of the rate function, in a

way analogous to that in our Theorem 1.5. The two phase transitions differ in that the BEC transition

is of saturation type, while the gelation transition is not.

For the noninteracting Bose gas in the thermodynamic limit at temperature 1∕𝛽 ∈ (0,∞) with

particle density 𝜌 ∈ (0,∞) the partition function is given by

Z(𝛽)
ΛN

=
∑

(𝓁k)k∈N∈NN
0
∶
∑

kk𝓁k=N

∏
k

N𝓁k

𝓁k! k𝓁k
[𝜌(4𝜋𝛽k)

𝑑

2 ]−𝓁k ,

where ΛN is the centered box in R𝑑 with volume N∕𝜌. The free energy per particle is then

f (𝛽, 𝜌) = lim
N→∞

1

N
log Z(𝛽)

ΛN
= − inf

Λ∈ (𝜌)
I(Λ), where I(Λ) =

∑
k
𝜆k log

𝜆kk
(4𝜋𝛽k)

𝑑

2 e
.

For the Erdős–Rény graph (N, 1

N
tN
)
, the equivalent quantity is the rate function Mi from (1.7). The

key difference between the rate functions is that only Mi contains terms in the total mass of micro-

scopic components, cΛ. This reflects the fact that the giant component makes a significant contribution

to the rate function in the graph model, but the condensate in the noninteracting Bose gas does not.

The respective minimizers of IMi and I are

k𝜆(ML)
k (c; t) = 1

t
(cte−ct)k
k1−k k!

∼ 1√
2𝜋t

(
cte−ct+1

)k

k3∕2
and k𝜆(BEC)

k (𝛼; 𝛽) = 1

𝜌(4𝜋𝛽)
𝑑

2

e−𝛼k

k
𝑑

2

,

where c and 𝛼 control the values of
∑

kk𝜆k.

The crucial parameters are t for the graph model and the inverse temperature 𝛽 for the Bose gas.

Both models have a trivial upper bound for the total microscopic mass,
∑

kk𝜆k, namely one. One addi-

tional upper bound arises in each model from the optimization of the rate function with respect to the
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𝜆k, but these are not relevant, until t respectively 𝛽 rises to its critical value. For the graph model this

bound is 1/t, because
∑

k
(cte−ct)k

k1−k k!
≤ 1 for all ct∈ (0,∞), and the summands take their maxima at ct= 1,

when they correspond to the Borel probability distribution with parameter 1. For Λ(BEC) this bound

is 𝜌−1(4𝜋𝛽)−𝑑∕2
∑

kk−
𝑑

2 . At this point we see a difference between the two models, because the total

microscopic mass in the Bose gas remains on this bound as 𝛽 rises further, while for the graph model

it immediately drops strictly below the bound. This explains why BEC is known as a saturation phase

transition, but this description cannot be applied to gelation.

2 PREPARATIONS FOR THE PROOF OF THE LDP

We consider the Erdős–Rényi graph  = (N, p) under the corresponding probability measure PN,p.

In Section 2.1, we derive an explicit formula for the distribution of the empirical measure of the com-

ponent sizes S(N)
i in terms of connectivity probabilities for (smaller) Erdős–Rényi random graphs.

Furthermore, we prepare in Section 2.2 for the asymptotic analysis f or p = 1

N
tN with tN = t+ o(1) by

recalling from [29] some estimates and asymptotics for this connectivity probability.

2.1 The joint distribution of the component sizes

An important quantity is

𝜇k(p) = Pk,p
( is connected

)
, k ∈ N, p ∈ [0, 1]. (2.1)

We will be concerned with this quantity for fixed k, but with connection probability p = 1

N
tN , in

the limit N →∞.

We define the state space of the collection of component sizes as

EN =
{
(si)i∈{1,… ,n} ∈ N

n
0 ∶ n ∈ N, s1 ≥ s2 ≥ · · · ≥ 0,

n∑
i=1

si = N
}
. (2.2)

To each element (si)i of the state space EN , we associate a unique element of the space

N =
{
𝓁 = (𝓁k)k ∈ N

N
0 ∶

∑
k

k𝓁k = N
}
, (2.3)

where for each k, 𝓁k is the number of indices i such that si = k. The map (si)i →𝓁 is a bijection and in

the following we refer to configurations equally in terms of (si)i or 𝓁.

We denote by N the set of all partitions of [N]= {1, … , N}. We write Bk(𝜋) for the number of

sets in 𝜋 ∈ N with cardinality k. Then we can describe the joint distribution of all the component

sizes of (N, p) as follows.

Lemma 2.1. For any p∈ [0, 1], N ∈ N and every (si)i ∈EN,

PN,p
(
(S(N)

i )i = (si)i
)
= #{𝜋 ∈ N ∶ Bk(𝜋) = 𝓁k ∀k} ×

(∏
i
𝜇si (p)

)
×
(∏

i≠j
(1 − p)

1

2
mi mj

)
. (2.4)
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Proof. A set A⊂ {1, … , N} of vertices is a connected component in the graph (N, p) if and only

if (1) no bond between any vertex in A and any vertex outside has been put, and (2) the subgraph

formed out of the vertices in A and all the bonds between any two vertices in A is connected. This has

probability (1 − p)|A| |Ac| × 𝜇|A|(p). Applying this reasoning to Ac and describing the next component,

and iterating this argument, shows that the product of the two products on the right-hand side of (2.4)

is equal to the probability, for a given partition 𝜋 with 𝓁k sets of size k for any k, that the components of

(N, p) are precisely the sets of 𝜋. Since this probability depends only on the cardinalities, the counting

term completes the formula. ▪

Now we rewrite the right-hand side of (2.4) in terms of the empirical measure of (si)i, that is, of

the numbers 𝓁k of indices i such that si = k. Introduce the event

AN(𝓁)=
⋂
k∈N

{#{i ∶ S(N)
i = k} = 𝓁k}, 𝓁 = (𝓁k)k∈N ∈ N

N
0 . (2.5)

Corollary 2.2. For any p∈ [0, 1], N and any 𝓁 = (𝓁k)k ∈ NN
0 satisfying

∑
kk𝓁k = N,

PN,p(AN(𝓁)) = N!
∏

k

𝜇k(p)𝓁k (1 − p)
1

2
k(N−k)𝓁k

k!𝓁k 𝓁k!
. (2.6)

Proof. Note that the last product on the right-hand side of (2.4) can also be written as∏
i(1 − p)

N
2

mi(N−mi). Hence, if 𝓁k is equal to the number of i such that si = k for any k, then the product

of the last two products can be written as

∏
k

(
𝜇k(p) )𝓁k (1 − p)

1

2
k(N−k)𝓁k

)
.

The counting term is easily identified as

#{𝜋 ∈ N ∶ #{A ∈ 𝜋 ∶ |A| = k} = 𝓁k ∀k} = N!∏
k(k!𝓁k 𝓁k!)

.

Substituting ends the proof. ▪

(To avoid confusion, we note that there is a typographical error in Section 4.5 of [3], where the

factor of
1

2
is missing in the exponent of (2.6).)

2.2 The probability of being connected

Our analysis of (2.6) will depend crucially on an analysis of 𝜇k
(

1

N
tN
)
. The next two lemmas collect

results from [29, Lemma 1&2, Theorem 1].

Lemma 2.3 (Bounds and asymptotics for 𝜇k( 1

N
tN), [29]). For any p∈ [0, 1], N ∈ N and any k≤N,

(1 − p)
1

2
(k−1)(k−2) ≤ 𝜇k(p)

kk−2pk−1
≤ 1. (2.7)
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In particular, if p = 1

N
tN with tN = t+ o(1) and k = o(

√
N),

𝜇k

(
1

N
tN
)

= kk−2

(
t
N

)
k−1(1 + o(1)), N → ∞.

The expression for the upper bound in (2.7) appears to be present (using somewhat applied chemical

language) in [18, equation (5)].

The following is an alternative upper bound for 𝜇k( 1

N
tN), which will be required for macroscopic

components, together with an asymptotic result for the connection probability in the so-called sparse

case, where the bond probability is proportional to the inverse of the size of the graph.

Lemma 2.4 ([29]). For all p∈ [0, 1] and k ∈ N

𝜇k(p) ≤ (1 − ekq )k−1,

with q = log(1 − p). Moreover, for 𝛼 ∈ (0, 1) and t∈ (0,∞) and a sequence tN = t+ o(1), as N →∞,

𝜇⌊𝛼N⌋( 1

N
tN
)
=
(

1 − 𝛼t
e𝛼t − 1

)(
1 − e−t𝛼 )𝛼N(1 + o(1)). (2.8)

3 PROOF OF THE LDP

In this section we prove the main result of this paper, the large-deviations principle in Theorem 1.1.

Again, we fix the parameter t∈ (0,∞) and a sequence tN = t+ o(1) and consider the Erdős–Rényi graph

(N, 1

N
tN) with probability measure PN, 1

N
tN

.

Recall the topological remarks on the two state spaces  and  from Section 1.1. The metrics d
on  and D on , defined by

𝑑(Λ, Λ̃) =
∞∑

k=1

2−k |𝜆k − 𝜆k| and D(𝛼, 𝛼) =
∞∑

i=1

2−i|𝛼i − 𝛼̃i|, (3.1)

induce the respective topologies of pointwise and vague convergence. We write B𝛿(Λ), respectively

B𝜌(𝛼), for the closed 𝛿-ball aroundΛ, respectively for the closed 𝜌-ball around 𝛼. Since the rate function

I(⋅ ; t) is lower semicontinuous in  ×  and the space is compact, we know that it is a good rate

function (i.e., its level sets are not only closed but also compact). Therefore, a weak LDP implies our

main result, the LDP in Theorem 1.1, and it will be sufficient to prove the following.

Proposition 3.1. For any (Λ, 𝛼) ∈  ×,

lim
𝛿,𝜌↓0

lim
N→∞

1

N
log PN, 1

N
tN

(
Mi(N) ∈ B𝛿(Λ), Ma(N) ∈ B𝜌(𝛼)

)
= −I(Λ, 𝛼; t). (3.2)

We split the proof of Proposition 3.1 in several lemmas and finish it at the end of Section 3. We

start by bounding the cardinality of N .

Lemma 3.2. Let N be as defined in (2.3), then

|N| = eo(N), N → ∞.
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Proof. The following is an argument in [1]. For any 𝓁 ∈ N , the set H(𝓁) = {k ∈ N ∶ 𝓁k > 0} has

no more than 2
√

N elements, since

N =
∑

k∈H(𝓁)
k𝓁k ≥ ∑

k∈H(𝓁)
k ≥

|H(𝓁)|∑
k=1

k = |H(𝓁)|1
2
(|H(𝓁)| − 1).

Hence,

|N| = |||||
{
(𝓁k)k ∈ N

N
0 ∶

∑
k

k𝓁k = N, |H(𝓁)| ≤ 2
√

N
}|||||

≤ ∑
H⊂[N]∶|H|≤2

√
N

|||||
{
(𝓁k)k∈H ∈ N

|H| ∶∑
k∈H

k𝓁k = N
}|||||

≤ ∑
H⊂[N]∶|H|≤2

√
N

|||||
{
(Lk)k∈H ∈ N

|H| ∶∑
k∈H

Lk = N
}||||| ≤

⌊2√N⌋∑
h=1

(N
h

)(N + h
h

)
= eo(N).

▪

Thanks to Lemma 3.2, it will be sufficient to get estimates on PN, 1

N
tN
(AN(𝓁)), for any 𝓁 ∈ N close

enough to a fixed (Λ, 𝛼) ∈  ×. The strategy is to divide the terms in the product representation

from Corollary 2.2 into three groups, which we refer to as micro-, meso- and macroscopic, because

they take into account the contribution of, respectively, micro-, meso- and macro- components. We fix

two increasing sequences RN and 𝜀NN in N such that RN ↗∞, 𝜀N↓0 and RN <𝜀NN. We write

PN, 1

N
tN
(AN(𝓁)) = N! × FMi(𝓁) × FMe(𝓁) × FMa(𝓁), (3.3)

where

FMi(𝓁) =
RN∏
k=1

zk(𝓁), FMe(𝓁) =
∏

RN<k≤𝜀N N
zk(𝓁), FMa(𝓁) =

∏
𝜀N N<k≤N

zk(𝓁),

and

zk(𝓁) =
𝜇k( 1

N
tN)𝓁k (1 − tN

N
)

1

2
k(N−k)𝓁k

k!𝓁k 𝓁k!
.

Let us set

cMi(𝓁∕N) = 1

N

RN∑
k=1

k𝓁k, cMe(𝓁∕N) = 1

N
∑

RN<k≤𝜀N N
k𝓁k, cMa(𝓁∕N) = 1

N
∑

𝜀N N<k≤N
k𝓁k. (3.4)

Note that the sum of these three terms is equal to one. For the factor N!, we use Stirling’s formula

N! = (N
e
)Neo(N) so that uniformly in 𝓁 ∈ N

N! =
(N

e

)NcMi(𝓁∕N)(N
e

)NcMe(𝓁∕N)(N
e

)NcMa(𝓁∕N)
eo(N), N → ∞. (3.5)
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We will consider a cut-off version of the distances d and D introduced in (3.1), as follows:

𝑑R(Λ, Λ̃) =
R∑

k=1

2−k |𝜆k − 𝜆k| and D𝜖(𝛼, 𝛼) =
∞∑

i=1

2−i|𝛼i − 𝛼̃i|𝟙(𝛼i ∨ 𝛼̃i ≥ 𝜖N),

such that for a given 𝓁 ∈ N we can measure simultaneously the distance of its microscopic part from

Λ and its macroscopic part from 𝛼. We also introduce some new notation, for any 𝓁 ∈ N we will

use the notation
1

N
𝓁 to denote the sequence

(
𝓁k
N

)
k∈N

, which clearly denotes an element of  . On the

other hand, with 𝓁⌊⋅N⌋ we denote the point measure on (0, 1] with weight 𝓁k at the point
k
N

for any

k= 1, … , N and zero everywhere else. This integer valued measure clearly belongs to .

We start by looking at the term FMi(𝓁), that is, the microscopic term and we combine it with the

first term in (3.5).

Lemma 3.3. Fix Λ ∈  . Fix 𝛿 > 0 and pick sequences 𝓁 ∈ N and RN →∞ such that
𝑑RN (

1

N
𝓁,Λ) ≤ 𝛿 for all N. Then, for any R ∈ N, as N →∞,

(N
e

)NcMi(𝓁∕N)
FMi(𝓁) ≤ exp (−NIMi(Λ; t)) eN(CR(𝛿)+𝛾R)+o(N) e−N( t

2
−log t)(cMi(𝓁∕N)−cΛ), (3.6)

where limR→∞𝛾R = 0 and lim𝛿↓0 CR(𝛿) = 0.

Proof. For any fixed k≤RN , we use the upper bound in (2.7), the fact that 1− x ≤ e−x and Stirling’s

lower bound for 𝓁k! (notice that for k small we expect 𝓁k to be large, 𝛩(N)) to obtain

zk(𝓁) ≤ k(k−2)𝓁k t(k−1)𝓁k
N e−

tN
2N

k(N−k)𝓁k

k!𝓁k N(k−1)𝓁k
(

1

e
𝓁k
)𝓁k

.

We obtain, uniformly for 𝓁 ∈ N , using that
∑RN

k=1
t

2N
k2𝓁k ≤ t

2
RNcMi(𝓁∕N),

(N
e

)NcMi(𝓁∕N)
FMi(𝓁) ≤ exp

(
− N

RN∑
k=1

1

N
𝓁k log

k!ek 1

N
𝓁k

kk−2tk−1e1− t
2

k

)
eo(N)

= exp

(
−NI(RN )

Mi

(
1

N
𝓁; t
))

eo(N),

where

I(RN )
Mi (Λ̃; t) = f (RN )(Λ̃; t) +

RN∑
k=1

k𝜆k

( t
2
− log t

)
with f (RN )(Λ̃; t) ∶=

RN∑
k=1

𝜆k log
k!tek−1𝜆k

kk−2
, (3.7)

is the cut-off version of the rate function defined in (1.5). Recall that 𝑑RN (
1

N
𝓁,Λ) < 𝛿 and that cΛ =∑

k∈N
k𝜆k ∈ [0, 1] and observe that limR→∞I(R)Mi (Λ; t) = IMi(Λ; t).

To prove (3.6), we notice that f (R)(⋅ ; t) is continuous, it is clear that sup
𝓁∶dR

(
1

N
𝓁,Λ
)
<𝛿
|f (R)( 1

N
𝓁; t
)
−

f (R)(Λ; t)| vanishes as 𝛿 ↓ 0 and can therefore be estimated against such a CR(𝛿). Moreover, we estimate
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(substituting
1

N
𝓁 by Λ̃), for any N such that RN >R, with the help of the Stirling bound k!ekk−k ≥ 1

and Jensen’s inequality for 𝜑(x) = x log x, as follows:

f (RN )(Λ̃; t) − f (R)(Λ̃; t) =
RN∑

k=R+1

𝜆k log
k!tek−1𝜆k

kk−2
≥

RN∑
k=R+1

𝜆k log
k2t𝜆k

e

≥
RN∑

k=R+1

e
tk2
𝜑

( RN∑
k=R+1

𝜆k

/ RN∑
k=R+1

e
tk2

)
=

RN∑
k=R+1

𝜆k log

( RN∑
k=R+1

𝜆k

/ RN∑
k=R+1

e
tk2

)
≥

RN∑
k=R+1

𝜆k log

(
cR

RN∑
k=R+1

𝜆k

)
≥ −𝛾R, (3.8)

for some c> 0, where we used that the remainder sum
∑

k>R
1

k2
is of order 1/R as R→∞ and that∑RN

k=R+1 𝜆k ≤ 1∕R since
∑

kk𝜆k ≤ 1 and that the map x → x log(cRx) is decreasing in (0, 1∕eRc),
introducing some −𝛾R that vanishes as R→∞. This proves the claim (3.6). ▪

Notice that the last term on the right-hand side of (3.6) cannot be further estimated with the help of

continuity (sinceΛ → cΛ is not continuous), but will be jointly handled together with the correspondent

macroscopic and mesoscopic terms. Next we focus on the term FMa(𝓁), the macroscopic term and we

proceed analogously.

Lemma 3.4. Fix 𝛼 ∈ . Fix 𝜌 > 0 and pick sequences 𝓁 ∈ N and 𝜀N↓0 such that D𝜀N (𝓁⌊⋅N⌋, 𝛼) ≤
𝜌 for all N. Further assume that ||| 1

𝜀N
log 𝜀N

||| ≤ o(N). Then, for any 𝜖 > 0, as N →∞,

(N
e

)NcMa(𝓁∕N)
FMa(𝓁) ≤ exp

(
− NIMa(𝛼; t)

)
eN(C𝜀(𝜌)+𝛾𝜀+

t
2
𝜀)+o(N) e−N( t

2
−log t)(cMa(𝓁∕N)−c𝛼 ), (3.9)

for some C𝜀(𝜌) and 𝛾𝜀 that satisfy lim𝜀↓0𝛾𝜀 = 0 and lim𝜌↓0C𝜀(𝜌) = 0.

Proof. We use the upper bound in Lemma 2.4 and Stirling’s lower bound for k! (in this case we

know that k is large and we expect 𝓁k small). We obtain, for k∈ {𝜀NN, … , N},

zk(𝓁) ≤ (1 − ekqN )(k−1)𝓁k e−
tN
2N

k(N−k)𝓁k

kk𝓁k e−k𝓁k 𝓁k!
,

where qN = log
(

1 − tN
N

)
. We pair FMa(𝓁) with the second term in (3.5), and we obtain, uniformly for

𝓁 ∈ N ,

(N
e

)NcMa(𝓁∕N)
FMa(𝓁) ≤ ∏

𝜀N N≤k≤N

[(
N
e

)
k𝓁k

(1 − ekqN )(k−1)𝓁k e−
tN
2

k𝓁k e
tN
2

k2𝓁k∕N

kk𝓁k e−k𝓁k 𝓁k!

]
≤ ∏

𝜀N N≤k≤N

[(
N
k

)
k𝓁k (1 − ekqN )(k−1)𝓁k e−

tN
2

k𝓁k e
tN
2

k2𝓁k∕N
]

= exp
(
− NI(𝜀N )

Ma (𝓁⌊⋅N⌋; t) + o(N)
)

(3.10)
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where

I(𝜀N )
Ma (𝛼; t) = g(𝜀N )(𝛼; t) + ∫[𝜀N ,1]

x 𝛼(dx)
(

t
2
− log t

)
(3.11)

with

g(𝜀N )(𝛼; t) = ∫[𝜀N ,1]

[
x log

tx
1 − e−tx − t

2
x2

]
𝛼(dx),

denotes the cut-off version of the rate function IMa defined in (1.5). Indeed, for proving the last line of

(3.10) we do the following. In the product, we add the factor (1 − e−kt∕N)klk and its reciprocal, substitute

exp ◦ log and turn the sum on k into an integral over x. Then most of the terms are easily asymptotically

identified with the corresponding terms in (3.11), with possible exception of the term∏
𝜀N N≤k≤N

[
(1 − ekqN )(k−1)𝓁k (1 − e−kt∕N)−klk

]
, (3.12)

of which we now show that it is not larger than eo(N). Now write 𝓁 in terms of s= (si)i∈ {1, … , n} ∈EN
defined in (2.2), such that

∑
isi = N, and we pick i* minimal such that si *+1 <𝜀NN. Then, also using

the inequalities log(1 + y) ≤ y and 1 − e−x ≤ x, we see that

∑
𝜀N N≤k≤N

k𝓁k log
1 − ekqN

1 − e−k t
N

=
i∗∑

i=1

si log
1 − esiqN

1 − e−sit∕N ≤
i∗∑

i=1

si
e−sit∕N − esiqN

1 − e−sit∕N

=
i∗∑

i=1

si
e−sit∕N

1 − e−sit∕N

(
1 − esi(qN+t∕N)) ≤ −

i∗∑
i=1

s2
i

e−sit∕N

1 − e−sit∕N (qN + t∕N).

Recall the definition of qN to see that qN + t/N ≤ o(1/N). Use Jensen’s inequality and
∑

isi ≤ N to see

that the entire last term is not larger than o(N). To handle the last missing term in (3.12), notice (because

of
∑

kk𝓁k = N) that
∑

k≥𝜀N N𝓁k ≤ 1∕𝜀N and 1 − ekqN ≥ 1 − e𝜀N NqN ≥ 𝜀NNqN ∼ 𝜀Nt and therefore

−
∑

k≥⌊𝜀N N⌋𝓁k log
(
1 − ekqN

) ≤ − 1

𝜀N
log(𝜀Nt) ≤ o(N),

where we recall that we assumed that
||| 1

𝜀N
log 𝜀N

||| ≤ o(N). Hence, the term in (3.12) is not larger than

eo(N).

To prove (9), we first observe that g(𝜀)(⋅ ; t) is continuous and hence |g(𝜀)(𝓁⌊⋅N⌋; t)−g(𝜀)(𝛼; t)| can be

estimated against such a C𝜀(𝜌), uniformly in N ∈ N and 𝓁 such that D𝜀N (𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌. Furthermore,

for any 𝜀> 0 and any N ∈ N such that 𝜀N <𝜀,

g(𝜀N )(𝓁⌊⋅N⌋; t) − g(𝜀)(𝓁⌊⋅N⌋; t) =
𝜀N∑

k=𝜀N N
𝓁k

k
N

(
log

k
N

t

1 − e−t k
N

− t
2

k
N

)
≥ − t

2
𝜀,

since log
x

1−e−x ≥ 0 for all x> 0. Hence, we arrived at the bound in (9). ▪

Notice that again we refrain from estimating the term e−N( t
2
−log t)(cMa(𝓁∕N)−c𝛼 ), which needs to be

coupled with the microscopic and the mesoscopic part. Then we are left to handle the middle term

in (3.3).
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Lemma 3.5. Fix (Λ, 𝛼) ∈  × such that cΛ + c𝛼 ≤ 1. Fix 𝛿, 𝜌 > 0 and pick sequences 𝓁 ∈ N
and RN →∞ and 𝜀N↓0 such that 𝑑RN

(
1

N
𝓁,Λ

) ≤ 𝛿 and D𝜀N (𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌 for all N. Further assume
that | 1

𝜀N
log 𝜀N| ≤ o(N). Then, as N →∞,

(N
e

)NcMe(𝓁∕N)
FMe(𝓁) ≤ (te−t∕2 )NcMe(𝓁∕N))+o(N) = exp

(
− N

(
t
2
− log t

)
cMe(𝓁∕N)

)
eo(N). (3.13)

Proof. We use again the upper bound in (2.7) and Stirling’s formula, to see that

(N
e

)NcMe(𝓁∕N)
FMe(𝓁) ≤

⌊𝜀N N⌋∏
k=RN+1

[(
N
e

)
k𝓁k

k(k−2)𝓁k (1 − ekqN )(k−1)𝓁k e−
tN
2N

k(N−k)𝓁k

k!𝓁k 𝓁k!

]

≤
( ⌊𝜀N N⌋∏

k=RN+1

[
Ne

k2𝓁kt

]
𝓁k

)( ⌊𝜀N N⌋∏
k=RN+1

e
t

2N
k2𝓁k

) (
te−t∕2 )NcMe(𝓁∕N).

We claim that the right-hand side is equal to (te−t∕2)NcMe(𝓁∕N)eNLN (𝓁) for some LN(𝓁) that vanishes,

uniformly in 𝓁, as N →∞. First note that the next-to-last term is such a term, since
t

2N

∑⌊𝜀N N⌋
k=RN+1 k2𝓁k ≤

t
2
𝜀NNcMe(𝓁∕N). Furthermore,

∑⌊𝜀N N⌋
k=RN+1 𝓁k ≤ N∕RN , which shows that the terms containing t and e in

the first product are also so small. With the same approach as in (3.8), we see the lower bound

lim inf
N→∞

⌊𝜀N N⌋∑
k=RN+1

𝓁k
N

log
k2𝓁k

N
≥ 0.

Therefore, uniformly in 𝓁 such that D𝜀N (𝓁⌈⋅N⌉, 𝛼) ≤ 𝜌, we have arrived at the estimate (3.13). ▪

Now we collect the upper bounds above and substitute them in (3.3), to obtain the following lemma.

Lemma 3.6. Fix (Λ, 𝛼) ∈  × such that cΛ + c𝛼 ≤ 1. Fix 𝛿, 𝜌 > 0 and pick sequences 𝓁 ∈ N
and RN →∞ and 𝜀N↓0 such that 𝑑RN (

1

N
𝓁,Λ) ≤ 𝛿 and D𝜀N (𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌 for all N. Further assume that||| 1

𝜀N
log 𝜀N

||| ≤ o(N). Then, for any R ∈ N and 𝜖 > 0,

lim sup
N→∞

1

N
log PN, 1

N
tN

(
AN(𝓁)

) ≤ −I(Λ, 𝛼; t) + KR,𝜀(𝛿, 𝜌),

where KR,𝜀(𝛿, 𝜌) vanishes as 𝛿 ↓ 0 and 𝜌 ↓ 0, followed by R→∞ and 𝜀↓0.

Proof. We collect the upper bound (3.6) from Lemma 3.3, (9) from Lemma 3.4 and (3.13) from

Lemma 3.5. We substitute them in (3.3), also using (3.5), then we obtain, uniformly in 𝓁 such that

𝑑( 1

N
𝓁,Λ) < 𝛿 and D(𝓁⌊⋅N⌋, 𝛼) < 𝜌, for any R ∈ N and any 𝜀> 0, as N →∞,

1

N
log PN, 1

N
tN
(AN,t(𝓁)) ≤ −IMi(Λ; t) − IMa(𝛼; t) + CR(𝛿) + 𝛾R + C𝜀(𝜌) + 𝛾𝜀 +

t
2
𝜀

−
(

t
2
− log t

)
(1 − cΛ − c𝛼) + o(1)

= −I(Λ, 𝛼; t) + KR,𝜀(𝛿, 𝜌) + o(1),
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where KR,𝜀(𝛿, 𝜌) vanishes as 𝛿 ↓ 0 and 𝜌 ↓ 0, followed by R→∞ and 𝜀↓0, and we recall that cMe(𝓁/N)

= 1− cMi(𝓁/N)− cMa(𝓁/N). This implies the upper bound in (3.2) in the case where cΛ + c𝛼 ≤ 1. ▪

In the following lemma, we implicitly use the lower semicontinuity of the mapsΛ → cΛ and 𝛼 → c𝛼
to show that when cΛ + c𝛼 > 1, then the event AN, t(𝓁) is empty for any 𝓁 such that 𝑑RN (

1

N
𝓁,Λ) ≤ 𝛿

and D𝜀N (𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌, if 𝛿 and 𝜌 are small enough. This will give the right super-exponential upper

bound for PN, 1

N
tN
(AN,t(𝓁)), since I(Λ, 𝛼; t) = ∞.

Lemma 3.7. Let (Λ, 𝛼) ∈  × such that cΛ + c𝛼 > 1, then there exists R ∈ N, 𝜖, 𝛿, 𝜌 > 0 and
N0 large enough such that for all N >N0:{

𝓁 ∈ N ∶ 𝑑R(
1

N
𝓁,Λ) ≤ 𝛿, D𝜖(𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌

}
= ∅.

Proof. We pick R ∈ N so large and 𝜀∈ (0, 1) so small that
∑R

k=1 k𝜆k + ∫[𝜀,1]x 𝛼(dx) are larger than

one, say equal to 1 + 𝜂 for some 𝜂 > 0. Then choose 𝛿 and 𝜌 in (0, 1) so small that, for any 𝓁 such

that 𝑑R( 1

N
𝓁,Λ) ≤ 𝛿 and D𝜖(𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌, we have

1

N

∑R
k=1 k𝓁k −

∑R
k=1 k𝜆k ≥ − 𝜂

3
and

1

N

∑N
k=R+1 k𝓁k −

∫[𝜀,1]x 𝛼(dx) ≥ − 𝜂

3
. Therefore we see that

1 = 1

N

N∑
k=1

k𝓁k ≥ 1

N

N∑
k=1

k𝓁k −
R∑

k=1

k𝜆k − ∫[𝜀,1]
x 𝛼(dx) +

R∑
k=1

k𝜆k + ∫[𝜀,1]
x 𝛼(dx)

≥ −𝜂
3
− 𝜂

3
+

R∑
k=1

k𝜆k + ∫[𝜀,1]
x 𝛼(dx) > 1 + 𝜂

3
,

which yields a contradiction. ▪

The remaining of this section deals with the construction of an optimal sequence (𝓁(N))N∈N, which

will give a lower bound on the probability that matches the upper bound from Lemma 3.6. For N large

enough define 𝓁(N) ∈ N by

𝓁(N)
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌊𝜆kN⌋ for k = 2, … ,RN − 1;

⌊ (1−c𝜆−c𝛼 )N
RN

⌋ for k = RN ;

𝛼
( k−1

N
,

k
N

]
for k = RN + 1, … ,N;

N −
∑N

j≥2 j𝓁(N)
j for k = 1,

(3.14)

where RN is an arbitrary diverging sequence in N such that RN ≪N.

We notice that our sequence (𝓁(N))N∈N is such that the so-called mesoscopic mass is simply con-

centrated in components all of the same size (namely RN) and surprisingly no specific requirement is

imposed on RN , except that it diverges. We will underline this in the steps of our proof. It is clear by

construction that the following hold

lim
N→∞

𝑑

(
1

N
𝓁(N),Λ

)
= 0, (3.15)

lim
N→∞

D
(
𝓁(N)⌊⋅N⌋, 𝛼

)
= 0, (3.16)
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We now give lower bounds to PN, 1

N
tN
(AN,t(𝓁(N))), starting from the formulation in (3.3) and (3.5).

By abuse of notation, we will drop the index (N) from 𝓁.

Lemma 3.8. Fix (Λ, 𝛼) ∈  × such that I(Λ, 𝛼; t) < ∞ and let 𝓁 be defined by (3.14). Then, as
N →∞, (N

e

)NcMi(𝓁∕N)
FMi(𝓁) ≥ exp

(
−NI(RN )

Mi (Λ; t)
)

eo(N), (3.17)

where I(RN )
Mi (Λ; t) is defined in (3.7).

Proof. We use the lower bound in (2.7) from Lemma 2.3 to perform a calculation similar to that for

the upper bound (using now Stirling’s upper bound on 𝓁k!):

(N
e

)NcMi(𝓁∕N)
FMi(𝓁) ≥

RN∏
k=1

[(
N
e

)
k𝓁k

k(k−2)𝓁k t(k−1)𝓁k
N

k!𝓁k N(k−1)𝓁k (𝓁k)𝓁k e−𝓁k
√

2𝜋𝓁k

(
1 − tN

N

) 1

2
k𝓁kN− 3

2
k𝓁k+𝓁k

]
= exp

(
− N

RN∑
k=1

1

N
𝓁k log

k!ek 1

N
𝓁k

kk−2tk−1e1− t
2

k

)
eo(N)

= exp
(
−NI(RN )

Mi (Λ; t)
)

eo(N),

which proves the claim (3.17). ▪

Notice that no restriction is required on RN in order for the above lower bound to coincide with the

upper bound in the proof of Lemma 3.6 (except that RN diverges). Indeed, although the lower bound

in (2.7) differs from the upper bound for a factor
(

1 − tN
N

) (k−1)(k−2)
2

the probability 𝜇tN (k) is paired with(
1 − tN

N

) k(N−k)
2

(the probability of a component to be separated from any other), which is an exact term

and it balances the error coming from (2.7). In a similar way, one checks the following lower bound

for the term involving 𝓁k, for k=RN .

Lemma 3.9. Fix (Λ, 𝛼) ∈  × such that I(Λ, 𝛼; t) < ∞ and let 𝓁 be defined by (3.14). Then, as
N →∞, (N

e

)N(1−c𝜆−c𝛼)
zRN (𝓁RN ) ≥ exp

(
−(1 − c𝜆 − c𝛼)

( t
2
− log t

))
eo(N). (3.18)

Proof.

(N
e

)N(1−c𝜆−c𝛼 )
zRN (𝓁RN ) ≥

(
N
e

)
N(1−c𝜆−c𝛼 )

R
(RN−2)𝓁RN
N

(
tN
N

)(RN−1)𝓁RN
(

1 − tN
N

) 1

2
RN𝓁RN N− 3

2
RN𝓁RN +𝓁RN

R
RN𝓁RN
N e−RN𝓁RN (

√
2𝜋RN)𝓁RN 𝓁

𝓁RN
RN

e−𝓁RN
√

2𝜋𝓁RN

= exp
(
−(1 − c𝜆 − c𝛼)

( t
2
− log t

))
eo(N).

The above lower bound relies on the lower bound (2.7) in Lemma 2.3, on Stirling’s upper bound for

RN! and 𝓁RN ! (which are both large) and on how we defined 𝓁RN in (3.14). ▪
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We notice that the term coming from Lemma 3.9, in order to give the desired lower bound matching

the upper bound from Lemma 3.6, does not add any condition on the sequence RN , which is just

supposed to diverge.

Lemma 3.10. Fix (Λ, 𝛼) ∈  × such that I(Λ, 𝛼; t) < ∞ and let 𝓁 be defined by (3.14). Then,
for all 𝛿 ∈ (0, 1), as N →∞,

(N
e

)NcMa(𝓁∕N)
FMa(𝓁) ≥ exp

(
− N

(
I(𝛿)Ma(𝛼; t) +

(
t
2
− log t

) 𝛿N∑
k=RN+1

k
N
𝛼

(
k − 1

N
,

k
N

]
− r𝛿

)
+ o(N)

)
,

(3.19)

where I(𝛿)Ma(𝛼; t) is defined in (3.11), and r𝛿 depends on ∫ 𝛿

0
x𝛼(dx) and it goes to zero when 𝛿 ↘ 0.

Proof. Now, fix 𝛿 ∈ (0, 1). We use the lower bound (2.7) from Lemma 2.3 and Stirling’s upper

bound on k! and we write:

⌊𝛿N⌋∏
k=RN+1

(
N
e

)k𝓁k

zk(𝓁k) ≥
⌊𝛿N⌋∏

k=RN+1

⎡⎢⎢⎢⎣
(

N
e

)k𝓁k k(k−2)𝓁k t(k−1)𝓁k
N

(
1 − tN

N

) kN
2
𝓁k−

3

2
k𝓁k+

𝓁k
2

𝓁k!N(k−1)𝓁k kk𝓁k e−k𝓁k (2𝜋k)
𝓁k
2

⎤⎥⎥⎥⎦
≥ exp

(
− N

(
t
2
− log t

) 𝛿N∑
k=RN+1

k
N
𝛼

(
k − 1

N
,

k
N

]
+RN ,𝛿

)
,

where the remainder is defined as

RN ,𝛿 =
𝛿N∑

k=RN+1

𝓁k

(
log N − log t + t

2N
− 2 log k − 1

2
log(2𝜋k) − 3t

2N
k
)
−

𝛿N∑
k=RN+1

log𝓁k!.

By defining 𝓁k ∶= 𝛼
( k−1

N
,

k
N

]
and using that log k ≤ k, we see that

1

𝛿 ∫
𝛿

RN+1

N

x 𝛼(dx) ≤
𝛿N∑

k=RN+1

𝓁k ≤ N
RN ∫

𝛿

RN+1

N

x 𝛼(dx),

𝛿N∑
k=RN+1

𝓁k log k ≤ N ∫
𝛿

RN+1

N

x 𝛼(dx).

Finally, we use that
∑𝓁k

h=1 log h ≤ ∫ 𝓁k
1

log(y )dy and Jensen’s inequality (since x log x is concave) to

give the bound

𝛿N∑
k=RN+1

log𝓁k! ≤
𝛿N∑

k=RN+1

(
𝓁k log𝓁k − 𝓁k + 1

) ≤ N𝛿.

Exploiting the bounds above, we can say that

⌊𝛿N⌋∏
k=RN+1

(
N
e

)
k𝓁k zk(𝓁k) ≥ exp

(
− N

((
t
2
− log t

) 𝛿N∑
k=RN+1

k
N
𝛼

(
k − 1

N
,

k
N

]
− r𝛿

)
+ o(N)

)
, (3.20)
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where r𝛿 depends on ∫ 𝛿

0
x𝛼(dx) and it goes to zero when 𝛿 ↘ 0. Notice that we could not handle

directly the terms from RN + 1 to N in one go, so we decided to fix a fictitious threshold 𝛿N, where 𝛿

can be chosen arbitrarily close to zero. This however does not affect the choice of RN and there is no

need to add some condition on RN to handle such small, but macroscopic, components.

The remaining terms (the purely macroscopic ones) in (3.3) are treated as follows. We use Stirling’s

upper bound for k! and we see that

N∏
k=⌊𝛿N⌋

(
N
e

)
k𝓁k zk(𝓁k) ≥

⌊𝛿N⌋∏
k=⌊𝜀N N⌋

⎡⎢⎢⎢⎢⎣
(

N
e

)
k𝓁k

𝜇k( 1

N
tN)𝓁k

(
1 − tN

N

) kN
2
𝓁k−

k2

2
𝓁k

𝓁k!Nk𝓁k

(
k
N

)k𝓁k
e−k𝓁k (2𝜋k)

𝓁k
2

⎤⎥⎥⎥⎥⎦
≥ exp

⎛⎜⎜⎝
N∑

⌊𝛿N⌋+1

k𝓁(N)
k

⎡⎢⎢⎣log

⎛⎜⎜⎝
𝜇k( 1

N
tN)

1

k

k∕N

⎞⎟⎟⎠ − t
2N

(N − k)
⎤⎥⎥⎦
⎞⎟⎟⎠ eo(N)

= exp

⎛⎜⎜⎝N∫(𝛿,1]
x
[

log

⎛⎜⎜⎝
𝜇⌊Nx⌋( 1

N
tN)

1⌊Nx⌋
x

⎞⎟⎟⎠ − t
2
(1 − x)

]
𝛼(dx)

⎞⎟⎟⎠ eo(N).

Let us focus on the integral ∫(𝛿,1]x[ log
(𝜇⌊Nx⌋( 1

N
tN )

1⌊Nx⌋
x

)
− t

2
(1 − x)

]
𝛼(dx). Now by (2.8) in Lemma 2.4,

we know that the integrand converges pointwise to

x
[

log

(
1 − e−tx

x

)
− t

2
(1 − x)

]
.

Since, for N large enough,

x log
x

𝜇⌊Nx⌋( 1

N
tN)

1⌊Nx⌋ ≤ x
[
log

( x
1 − e−tx

)
+ 1
]
,

which is clearly integrable over x ∈ (𝛿, 1] with respect to 𝛼, we can apply the dominated convergence

theorem and we get

N∏
k=⌊𝛿N⌋

(
N
e

)
k𝓁k zk(𝓁k) ≥ exp

(
−NI(𝛿)Ma(𝛼; t) + o(N)

)
, (3.21)

where I(𝛿)Ma(𝛼; t) is defined in (3.11). Now, (3.20) together with (3.21) imply (3.19). ▪

Finally, we combine below the lower bounds in Lemmas 3.8–3.10.

Lemma 3.11. For all (Λ, 𝛼) ∈  × such that I(Λ, 𝛼; t) < ∞, there exists a sequence (𝓁(N))N∈N

such that 𝓁(N) ∈ N, (3.15) and (3.16) hold, and

lim inf
N→∞

1

N
log PN, 1

N
tN
(AN,t(𝓁(N))) ≥ −I(Λ, 𝛼; t). (3.22)
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Proof. From the lower bounds in (3.17), (3.18) and (3.19), we get that there exists a𝛿 with

lim𝛿↘0a𝛿 = 0 and

lim inf
N→∞

1

N
log PN, 1

N
tN
(AN,t(𝓁(N))) ≥ −I(Λ, 𝛼; t) − a𝛿 (3.23)

so (3.22) follows on taking the limit 𝛿 ↘ 0. ▪

Now we are ready to prove Proposition 3.1 by combining the above lemmas.

Proof of Proposition 3.1. Fix 𝛿, 𝜌 > 0 and N ∈ N and recall the definition of AN, t(𝓁) in (2.5), then

we see that

PN, 1

N
tN

(
Mi(N) ∈ B𝛿(Λ), Ma(N) ∈ B𝜌(𝛼)

)
=
∑

𝓁∈N

𝟙{𝑑( 1

N
𝓁,Λ) ≤ 𝛿} 𝟙{D(𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌} PN, 1

N
tN
(AN(𝓁)). (3.24)

Because of Lemma 3.2, we only have to give asymptotic estimates on the single summands on the

right-hand side of (3.24). Let (Λ, 𝛼) ∈  × such that cΛ + c𝛼 ≤ 1. We fix any diverging sequence

RN and vanishing sequence 𝜀N with RN < ⌊𝜀NN⌋ and | 1

𝜀N
log 𝜀N| ≤ o(N), the we see that

PN, 1

N
tN

(
Mi(N) ∈ B𝛿(Λ), Ma(N) ∈ B𝜌(𝛼)

)
≤ ∑

𝓁∈N

𝟙
{
𝑑RN

(
1

N
𝓁,Λ

) ≤ 𝛿
}

𝟙{D𝜀N (𝓁⌊⋅N⌋, 𝛼) ≤ 𝜌} PN, 1

N
tN
(AN(𝓁))

≤ exp
(
− NI(Λ, 𝛼; t) + NKR,𝜀(𝛿, 𝜌) + o(N)

)
,

as a consequence of Lemma 3.6. Taking first 𝛿 and 𝜌 to zero and then R↗∞ and 𝜖 ↘ 0, we get the

desired upper bound.

Given any fixed 𝛿 and 𝜌, we can construct the sequence (𝓁(N))N∈N from Lemma 3.11 and see that,

for such a sequence

PN, 1

N
tN

(
Mi(N) ∈ B𝛿(Λ), Ma(N) ∈ B𝜌(𝛼)

) ≥ PN, 1

N
tN
(AN(𝓁(N))) ≥ exp (−NI(Λ, 𝛼; t) − Na) ,

for an a arbitrarily small.

Finally, if (Λ, 𝛼) ∈  × are such that cΛ + c𝛼 > 1, Lemma 3.6 gives us that

lim sup
N→∞

1

N
log PN, 1

N
tN

(
Mi(N) ∈ B𝛿(Λ), Ma(N) ∈ B𝜌(𝛼)

) ≤ −∞.
▪

4 COROLLARIES AND STUDY OF THE RATE FUNCTIONS

In this section we analyze, for fixed t∈ [0,∞), the minima of the rate function, I(Λ, 𝛼; t), over the

configurationsΛ respectively 𝛼, and afterwards the minimima of the rate functions for the total masses,

Mi, Me and Ma. In particular, we will see in Lemma 4.2 that there is a drastic difference when

minimizing I(Λ, 𝛼; t) over Λ if cΛ ≤ 1

t
or not. Clearly, no such difference can be spotted when t≤ 1,

since we do not allow for cΛ > 1. However, when t> 1 we see that cΛ > 1

t
is perfectly admissible and

we interpret this as an analytic sign of the phase transition in t= 1.
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4.1 Rate functions for the microscopic part

We start by minimizing I(Λ, 𝛼; t), for a fixed Λ ∈  over all compatible 𝛼 ∈ . We will obtain the

rate function for the microscopic part, and we will see that this minimum is attained for 𝛼 of the form

𝛼 = 𝛿c𝛼 . Informally speaking, the following in particular implies that, with probability tending to one,

there is at most one macroscopic particle.

Lemma 4.1 (Analysis of the microscopic rate function). Fix Λ ∈  and recall that cΛ =
∑

k∈N
k𝜆k ∈

[0, 1], then

inf
𝛼∈N

I(Λ, 𝛼; t) = IMi(Λ; t) + IMa(𝛿1−cΛ ; t).

where I(Λ, 𝛼; t), IMi(Λ; t) and IMa(𝛼; t) are defined in the statement of Theorem 1.1.

Proof. Clearly

inf
𝛼∈N

I(Λ, 𝛼; t) = inf
c∈[0,1−cΛ]

inf
𝛼∈N0

(c)
I(Λ, 𝛼; t)

= IMi(Λ; t) + inf
c∈[0,1−cΛ]

(
inf

𝛼∈N0
(c)

IMa(𝛼; t) + (1 − cΛ − c)
( t

2
− log t

))
.

Fix c∈ [0, 1] and 𝛼 ∈ N0
(c). Note that 𝛼((c, 1]) = 0 since 𝛼 is a point measure with ∫(0,1]x 𝛼(dx) = c.

We have, denoting ft(x) = log
x

1−e−tx +
t
2
(1 − x),

IMa(𝛼; t) = ∫(0,c]
xft(x) 𝛼(dx) ≥ ∫ xft(c) 𝛼(dx) = cft(c) = IMa(𝛿c; t), (4.1)

since f t is strictly decreasing in [0,∞). Indeed,

f ′t (x) =
1

x
− te−tx

1 − e−tx − t
2
= t(1 + y)

2y(1 − e−2y)

[
1 − y
1 + y

− e−2y
]
, y = tx

2
.

We want to prove that f′(x)< 0 for x∈ [0,∞). For y≥ 1, this is obvious from above, and for y∈ [0, 1),

this is easily seen as follows.

e2y = 1 +
∞∑

k=1

(2y)k
k!

< 1 +
∞∑

k=1

2yk = (1 + y)
∞∑

k=0

yk = 1 + y
1 − y

,

since
2k

k!
< 2 for all k≥ 3. Hence, we see that f ′t (x) ≤ 0 for x∈ [0,∞), and (4.1) follows.

Furthermore, when we study gt(c) ∶= c log
c

1−e−tc +
t
2
c(1− c) + (1− cΛ − c)( t

2
− log t), we see that

its derivative is

g′
t(c) = 1 − cte−ct

(1 − e−ct)
+ log

cte−ct

(1 − e−ct)
,

which is strictly negative if
cte−ct

(1−e−ct)
≠ 1. Since

cte−ct

(1−e−ct)
< 1 if ct> 0, we see that gt(c) is strictly decreasing

in c, and hence the optimal value of c is c = 1 − cΛ. ▪
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Now the proof of Corollary 1.2 directly follows from Theorem 1.1, Lemma 4.1 and the contraction

principle since the projection (Λ, 𝛼) → Λ is continuous in the product topology. Let us mention that,

since cΛ =
∑

k∈N
k𝜆k, we can rewrite

Mi(Λ; t) = Î(Λ) − (1 − cΛ)
(

log
1 − e(cΛ−1)t

(1 − cΛ)
− cΛt

2

)
+ cΛ

(
t
2
− log t

)
− 1

2t
, (4.2)

with

Î(Λ) =
∞∑

k=1

(
𝜆k log

𝜆k
pk

+ pk − 𝜆k

)
, (4.3)

with pk = 1

t
kk−2e−k

k!
for all k ∈ N. Hence, the term Î(Λ) is the relative entropy of two nonnormalized

measures Λ and p ∶= (pk)k∈N. Notice that the reference measure p is such that

pk =
1

tk
Bo1(k),

where

Bo𝜇(k) =
e−𝜇k(𝜇k)k−1

k!
, k ∈ N, (4.4)

are the probabilities of the Borel distribution with parameter 𝜇 ∈ [0, 1]. The total mass of p is therefore

given by

∞∑
k=1

pk =
1

t
E

[
1

X

]
,

where X is Borel distributed with parameter 1. Now this expectation [[4], §4.5] is precisely
1

2
, which

explains why we added and subtracted the term
1

2t
to Mi(Λ; t) in order to obtain the formulation (4.2).

As already mentioned in Section 1.4, the above entropy form for the rate function (4.2) strictly relates

to the rate function obtained in [[6], Theorem 1.8] which also takes the form of an entropy with respect

to a standard Galton Watson tree, whose total progeny is precisely Borel distributed.

Let us analyze the minimizing statistics of the macroscopic part.

Lemma 4.2 (Analysis of the macroscopic rate function). Fix 𝛼 ∈ N0
and recall that c𝛼 =

∫(0,1]x 𝛼(dx) ∈ [0, 1], then

inf
Λ∈ I(Λ, 𝛼; t) = IMa(𝛼; t) + C𝛼,t

(
log(tC𝛼,t) −

t
2

C𝛼,t

)
+ (1 − c𝛼)

(
t
2
− log t

)
, (4.5)

where C𝛼,t = (1 − c𝛼) ∧ 1

t
.

Furthermore, the unique minimizer is equal to Λ∗(C𝛼,t; t), defined in (1.13).

Proof. As in the proof of Lemma 4.1, we see that

inf
Λ∈ I(Λ, 𝛼; t) = inf

c∈[0,1−c𝛼 ]
inf

Λ∈ (c)
I(Λ, 𝛼; t)
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= IMa(𝛼; t) + inf
c∈[0,1−c𝛼 ]

(
inf

Λ∈ (c)
IMi(Λ; t) + (1 − c𝛼 − c)

( t
2
− log t

))
= IMa(𝛼; t) + (1 − c𝛼)

( t
2
− log t

)
− 1

2t
+ inf

c∈[0,1−c𝛼 ]
inf

Λ∈ (c)
Î(Λ), (4.6)

with Î(Λ) defined in (4.3). Fix c∈ [0, 1]. Since Î is strictly convex on the convex set  (c), we see by

evaluating the variational equations that the only candidate for a minimizer in the interior is

𝜆∗k (c; t) = ek(𝜌−1)kk−2

k!t
, k ∈ N,

with 𝜌 ∈ R such that
∑∞

k=1 k𝜆∗k (c; t) = c. Interestingly, we can identify k𝜆∗k (c; t) = Bo𝜇𝜌(k)𝜇𝜌∕t, where

𝜇𝜌 is determined by 𝜇𝜌 − log𝜇𝜌 = 1− 𝜌 and Bo𝜇 is defined in (4.4). Note that Bo𝜇(k) is not summable

for 𝜇 > 1. Hence, 𝜌 must be picked such that c = 𝜇𝜌∕t. The largest value c that can be realized in

this way is c= 1/t by picking 𝜌 = 0. Hence, the preceding is possible at most for c ∈ [0, 1 ∧ 1

t
]. By

continuity and strict monotonicity of
∑∞

k=1 k𝜆∗k (c; t) in 𝜌, indeed, any c ∈ [0, 1 ∧ 1

t
] can be uniquely

realized, by picking 𝜌 = −tc + log tc + 1 ≤ 0 such that
∑∞

k=1 k𝜆∗k (c; t) = c. In this case, it is clear that

the minimizer of Î in the interior of  (c) is equal to

𝜆∗k (c; t) = kk−2cktk−1e−ctk

k!
, k ∈ N,

as claimed in (1.13), with value

Î(Λ∗(c; t)) = c(log ct + 1 − ct) −
∞∑

k=1

𝜆∗k (c; t) + 1

2t
= c
(

log tc − tc
2

)
+ 1

2t
, (4.7)

where we used that if X ∼Boct, then
∑∞

k=1 𝜆
∗
k (c; t) = E

[
1

X

]
= 1 − ct

2
, see [4, §4.5]. Now we give an

argument why Λ∗(c; t) realizes the minimum of Î over  (c). We show that any such minimizer must

be positive in every component. Indeed, if 𝜆k∗ = 0 for some k∗ ∈ N, then we consider Λ̂ ∈  (c),
defined by

𝜆k =
⎧⎪⎨⎪⎩
𝜀, if k = k∗,
𝜆k̂ − 𝜀C, if k = k̂,
𝜆k otherwise,

with k̂ ∈ N∖{k∗} such that 𝜆k̂ > 0 and C> 0 such that Λ̂ ∈  (c) for any sufficiently small 𝜀> 0.

Now a simple insertion shows that Î(Λ̂) < Î(Λ), if 𝜀> 0 is small enough, since the slope of 𝜀 → 𝜀 log 𝜀

at zero is −∞. Hence, Λ cannot be a minimizer. On the other hand, Λ∗(c; t) has the property that all

directional derivatives of Î in all admissible directions with compact support are zero; hence it is the

minimizer of Î over  (c) for c ∈ [0, 1

t
].

When c > 1

t
, it is possible to pick a sequence of Λ(n) ∈  (c) such that limn→∞ Î(Λ(n)) = 0 (pick 𝜆

(n)
k

as 𝜆∗k (
1

t
; t) + 𝜀n𝛿n(k) for some suitable 𝜀n > 0). Furthermore, since Î(Λ) is a relative entropy, we know

that infΛ∈ Î(Λ) ≥ 0. Hence, the infimum of Î over Λ ∈  (c) for c ≥ 1

t
is equal to 0. This shows that

the infimum over Λ ∈  (c) in the last line of (4.6) is equal to
(

c∧ 1

t

)(
log

(
t
(

c ∧ 1

t

))
− t

2

(
c∧ 1

t

))
,

and (4.5) follows. ▪
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Then, the proof of Corollary 1.3 directly follows from Theorem 1.1, Lemma 4.2 and the contraction

principle, since the projection is continuous.

Finally, let us draw some conclusions regarding the mesoscopic mass. As stated after Corollary 1.4,

it is not possible to apply the contraction principle, if we want to derive an LDP for the sequence of

random variables Me
(N)
RN ,𝜀N (t), however we can still identify the rate function by minimizing I over all

pairs (Λ, 𝛼) such that cΛ + c𝛼 = 1 − c. Even if the contraction principle cannot be applied directly, the

following lemma proves that the rate function Me(c; t) has exactly the expected form, given by (4.9).

Lemma 4.3. Fix t∈ [0,∞). Then, for any c∈ [0, 1] and any RN ∈ N and 𝜀N ∈ (0, 1) such that
1≪RN <𝜀NN≪N,

lim
𝛿↓0

lim
N→∞

1

N
log PN, 1

N
tN

(|||Me
(N)
RN ,𝜀N (t) − c||| ≤ 𝛿

)
= −Me(c; t). (4.8)

Proof. We first verify that, for a fixed c∈ [0, 1],

inf
Λ∈
𝛼∈N0

cΛ+c𝛼=1−c

I(Λ, 𝛼; t) = Me(c; t) = (1 − c)
(

log(1 − c)t − (1 − c)t
2

)
+ t

2
− log t

)
. (4.9)

Fix x∈ [0, 1− c], then for a fixed Λ ∈  (x)

inf
𝛼∈N0

(1−c−x)
I(Λ, 𝛼; t) = IMi(Λ; t)

+ c
( t

2
− log t

)
+
[
(1 − c − x) log

1 − c − x
1 − e−t(1−c−x) +

t
2
(1 − c − x)(c + x)

]
,

since the infimum is attained in 𝛼 = 𝛿1−c−x, as proved in Lemma 4.1. Then, with the same procedure

of Lemma 4.2, we see that the infimum over Λ ∈  (x) is attained in

𝜆∗k (x ∧
1

t
; t) =

(
x ∧ 1

t

) e−
(

x∧ 1

t

)
tk
((

x ∧ 1

t

)
t
)k−1

kk−2

k!
,

giving

inf
𝛼∈N0

(1−c−x)
Λ∈ (x)

I(Λ, 𝛼; t) =
(

x log tx − tx
2
+ 1

2t

)
𝟙
(

x < 1

t

)
+ (c + x)

( t
2
− log t

)
− 1

2t

+ (1 − c − x) log
1 − c − x

1 − e−t(1−c−x) +
t
2
(1 − c − x)(c + x). (4.10)

Minimizing then for x∈ [0, 1− c], we see that the infimum is attained in x*, the smallest solution to

x∗ = (1 − c)e−t(1−c−x∗),

which is x* = 1− c, for all t ≥ 1

1−c
and x* < 1− c otherwise. By substituting the optimal x* in (4.10),

we see that (4.9) holds.
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Now, notice that the procedure to get the upper bound in the proof of Proposition 3.1 implies in a

straightforward way that

lim
𝛿↓0

lim sup
N→∞

PN, 1

N
tN

(|||Me
(N)
RN ,𝜀N (t) − c||| ≤ 𝛿

) ≤ − inf
Λ∈
𝛼∈N0

cΛ+c𝛼=1−c

I(Λ, 𝛼; t) = −Me(c; t).

In the same way, from the proof of Proposition 3.1, we borrow the strategy of constructing a “recovery

sequence,” this time using Λ∗(x∗; t) and 𝛼∗ = 𝛿1−c−x∗ to construct 𝓁(N) as in (3.14). This gives

lim
𝛿↓0

lim inf
N→∞

PN, 1

N
tN

(|||Me
(N)
RN ,𝜀N (t) − c||| ≤ 𝛿

) ≥ −Me(c; t).
▪

The proof of the second point in Corollary 1.4 follows as a direct consequence of Lemma 4.3.

4.2 Proof of Theorem 1.5

Item (1) follows by Lemmas 4.1 and 4.2. Following the approach of those proofs, one can easily see

that the order of minimization is not important, in particular:

Mi(c; t) = inf
Λ∈ (c)

Mi(Λ; t) = inf
𝛼∈N0

(1−c)
Ma(𝛼; t) = Ma(1 − c; t).

The minimizer, given a certain microscopic mass c∈ [0, 1], is seen to take the form(
Λ∗
(

c ∧ 1

t
; t
)
, 𝛿1−c

)
,

where Λ∗ is defined in (1.13) and 𝛼 = 𝛿1−c is a single macroscopic component. Imposing a certain

microscopic (respectively macroscopic) mass influences the optimal configuration. Indeed, although

it is optimal for the system to avoid mesoscopic mass (as seen in Corollary 1.4(2)), the impossibility

of minimizing the microscopic configuration under a certain constraint on the mass, namely cΛ > 1

t
,

forces the system to actually have a mesoscopic mass of size cΛ − 1

t
. The same happens when we

impose a macroscopic mass which is too small, namely c𝛼 < t−1

t
. The form of the function Mi(c; t) in

(1.12) comes directly from such minimization procedures.

Let us now prove assertion (2). The form of the minimizing Λ follows from Lemma 4.2. Fix

t∈ [0, 1]. Then Mi(c; t) = c log c−tc2+tc+(1−c) log
1−c

1−et(c−1) is strictly decreasing in c∈ [0, 1]. Indeed

d

dc
Mi(c; t) = log tc − tc + t(1 − c)e−t(1−c)

1 − e−t(1−c) − log
t(1 − c)e−t(1−c)

1 − e−t(1−c) = F
( t(1 − c)e−t(1−c)

1 − e−t(1−c)

)
− F(tc),

where we introduced the function F(x) = x − log x, which is decreasing in x∈ (0, 1]. Hence,

monotonicity of Mi(⋅; t) in [0, 1] follows from

tc ≤ t(1 − c)e−t(1−c)

1 − e−t(1−c) ≤ 1. (4.11)

The first inequality follows by observing that the function 𝜙t(c) = e−t(1−c) − c is nonnegative for

all c ∈ [0, 1 ∧ 1

t
], since 𝜙t(0) = e−t > 0, 𝜙t(1) = 0, and 𝜙t is strictly decreasing in [0, 1], since t≤ 1.
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The second inequality follows from the fact that 𝜓(z) ∶= 1− e−z − ze−z ≥ 0 for all z∈ [0, 1] (substitute

z= t(1− c)), since 𝜓(0) = 0, 𝜓(1) = 1 − 2e−1 ≥ 0 and 𝜓 is strictly increasing in [0, 1]. Therefore,

Mi(⋅; t) is minimized in c= 1, which implies the conclusion.

Now we turn to assertion (3). For t∈ (1,∞), the derivative of Mi(c; t) writes as follows

d

dc
Mi(c; t) = t(1 − c)e−t(1−c)

1 − e−t(1−c) − log
t(1 − c)e−t(1−c)

1 − e−t(1−c) +

{
log tc − tc for c ≤ 1

t
,

−1 for c > 1

t
.

It is clear that Mi(c; t) is strictly increasing in c ∈ ( 1

t
, 1], while for c ∈ [0, 1

t
], we need to go back

to (4.11). The right inequality there is still true for any c < 1

t
. Since the quotient in (4.11) is strictly

increasing in c and since F(x) = x − lg x is strictly convex in x, the unique zero of
d

dc
Mi(c; t) is given

by the unique solution c of

tc = t(1 − c)e−t(1−c)

1 − e−t(1−c) ,

which is precisely the solution c = 𝛽t of (1.15). The remaining assertions follow.
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