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A B S T R A C T

The increased requests for value-added services to integrate product performance push manufacturing companies 
to extend their service offerings to meet customers’ needs. In this context, maintenance planning can leverage 
new possibilities offered by digital technologies for data analytics services. The present research then proposes an 
approach for maintenance plan adaptation based on a data-driven method applied over a fleet of machines 
installed in different production sites. The method relies on collaborative prognostics to develop a clustering of 
machines’ behaviour aimed at providing the health ratings of the machines and the subsequent maintenance plan 
adaptation due to the deviation from the expected behaviour. The method is adopted from the perspective of an 
Original Equipment Manufacturer, as part of a transformation path towards an advanced provision of digitali
zation for maintenance service offerings. The method is validated in the context of two lines at selected cus
tomer’s premises. This demonstrates the viability and effectiveness of adapting the maintenance plans thanks to 
the data analytics in light of the current behaviour of the machines within the lines.

1. Introduction

The run for servitisation is long-lasting [1] and the increased atten
tion towards value generation for customers, by improving partnerships 
and relationships, is emphasising the requests for product-related ser
vices [2]. In this context, the digital technologies currently available 
extend the potentiality offered to manufacturing companies to widen 
product-related services [3–5], enabling them also to pursue sustain
ability and circularity performance [6–8]. The bundle of digital tech
nologies applied for servitisation includes, among others, Internet of 
Things, Big data analytics, cloud computing, mixed reality, additive 
manufacturing, simulation, and Artificial Intelligence [9]. Each tech
nology could unleash several benefits reachable by the service provider 
and the customers/users such as reduced downtime [10], mitigated risks 
[11], reduced energy consumption [12] and reduced environmental 
impacts [13]. This makes companies eager to apply such technologies to 
their products, to achieve digitally enabled product-related services [14, 
15].

In the industrial sector, the Product-Service System (PSS) integrates 

products and services to meet customer needs [16,17]. As such, Original 
Equipment Manufacturers (OEMs) are among those companies inter
ested the most in pursuing the servitisation [18], building on the 
competitive advantage allowed by the knowledge of the system/
machine they produce [19]. This is translated in support through the 
system/machine lifecycle, with particular emphasis on the phases of 
operations and maintenance [20], with the latter one being highly 
valued for enhancing system availability and reducing costs [21]. 
Consequently, leading global OEMs often manage maintenance directly 
at customer sites [22], enhancing their offerings with additional 
services.

As part of the provided services, OEMs are incorporating condition- 
based and predictive maintenance to react to potential failures, with 
related economic and financial benefits [23,24]. They use fleet-wide 
data from connected machines in order to adopt advanced manage
ment strategies through collaborative maintenance. The benefits of 
collaborative maintenance may be seen at the operational (field) level, 
as, for example, fault thresholds could be better defined thanks to the 
data federation resulting from the fleet [25], and tactical level 
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supporting integrated maintenance planning [26] based on fleet data; 
for example, improved RUL (Remaining Useful Life) estimation together 
with maintenance strategies can be reached [27]. Building on a 
collaborative maintenance scheme, it is possible to envision an inte
grated approach by OEMs, leveraging condition-based and predictive 
maintenance solutions from different production sites and maintenance 
planning that exploits fleet-wide data.

From an architectural perspective, collaborative prognostics offers a 
framework usable to develop condition-based services related to in
dustrial assets through digital technologies. This may be seen as a result 
of the application of “collaborative agents concepts into the fields of 
prognostics and health management” [28]. This framework deploys 
real-time algorithms for each machine and utilizes fleet-level algorithms 
that benefit globally from larger datasets, enhancing prediction accu
racy [29]. The data exchange among collaborative machines reveals 
common characteristics like failures and usage patterns, facilitating 
cost-effective predictions based on data from similar operating condi
tions [30].

OEMs may take advantage of the collaborative maintenance scheme. 
Nevertheless, different challenges have to be faced by OEMs to imple
ment effective maintenance service offerings of this kind. On the tech
nical side, the accessibility of the data should not be given for granted: 
there are various situations in which data collection and storage are 
prevented due to privacy, cybersecurity restrictions, or not-ready IT 
infrastructure [31]. On the managerial side, the requirements posed on 
the OEMs, are putting at the stack the traditional way of maintenance 
management: customer companies, with geographically dispersed sys
tems and machines, ask for improved and reactive maintenance plans 
depending on the machines’ degradation control [32]; this leads, on the 
one hand, to the adaptation of maintenance plans to the real-time be
haviours of the servitised systems or machines and, on the other hand, to 
the need for cost-effective scheduling of the skilled maintenance tech
nicians by OEMs to guarantee service levels worldwide, accounting for 
reliability and cost performance [33].

Given this context, the research work aims at supporting an OEM in 
maintenance plan adaptation for monitored production systems given 
limited access to machine data. The underlying assumption is that the 
OEM already released an anomaly detection monitoring service and 
related historical data are available; this part is out of the scope of this 
work, but it is a pre-requisite as the algorithm/s release useful infor
mation in terms of anomalies, alerts or alarms. A supervisory role is 
added as part of the proposal of the present work. It leverages a 
collaborative approach between machines in order to identify similar 
machines’ behaviour as the primary goal. In particular, the maintenance 
plan adaptation method has, as the core part, a data-driven clustering of 
machines’ behaviour in a common baseline, allowing the identification 
of deviation from the expected behaviour: the deviation is tracked as a 
health rating of the machines under observation; eventually, the devi
ation, as a change in the health rating, triggers the maintenance plan 
adaptation from on-shelf plan options already defined by the OEM. 
Overall, this is implemented in two architectural levels, in coherence 
with the collaborative maintenance approach. At the operational level, 
condition monitoring is locally put in place at each machine, aimed at 
the anomaly detection algorithms as a pre-requisite of this research 
work. At the tactical level, namely the novelty this work promotes, a 
machine clustering method is adopted on a global scale, aimed at 
making a similarity evaluation of the machines, according to their 
conduction, in the fleet-wide scope; finally, the similarity evaluation is 
used to decide the delivery of the maintenance plan when needed, based 
on the health rating. This is the novelty this research work claims, which 
finally consists of a supervisory control loop that, stemming from the 
information from anomaly detection algorithms and through the health 
rating, allows to automatically adapt maintenance plans.

The document is structured as such: Section 2 analyses the mainte
nance servitisation, with a particular insight on the current advances of 
condition-based maintenance services offered by OEMs; Section 3

describes the proposed method, nurtured by the collaborative prog
nostics approach; Section 4 deals with the application of the proposed 
method to two production lines realising medical devices; Section 5
elaborates over the results of the research, to bring about their mana
gerial implications and to foster further research outlooks; Section 6
draws conclusions and envisions future works to advance the research 
and industrial practice.

2. State of the art of OEM maintenance service offerings and 
condition-based maintenance services

2.1. Overview of current advances in OEM maintenance service offerings

The maintenance service offering by OEMs was initially promoted in 
those sectors that are characterised by high Maintenance, Repair and 
Overhaul (MRO) spending [34,35], high availability requirements [36]
or in which a one-to-one supplier-customer relationship is mandatory 
[32]. Therefore, the first sectors in which OEMs started to offer main
tenance as product-related services are the military and aviation. Af
terwards, extensions to other sectors have been experienced. Several 
studies have been performed in order to shed light on different per
spectives on the maintenance service offerings, looking for increased 
profitability by adding services to OEMs’ products, increasing partner
ship strength, and relying on the OEMs’ knowledge of the industrial 
machines and systems they traditionally offer to the market [19]. 
Overall, four main trends may be identified. Firstly, contract definition 
is highly explored given also possible extensions from traditional to 
performance-based agreements and extended through-life service of
ferings [37,38]. Secondly, given the collaborative scope of the work 
between OEMs and customers, researchers focus also on the exploration 
of collaborative models considering the wide presence of IMPs (Inde
pendent Maintenance Providers) with already established services and 
market share [39]. Thirdly, maintenance planning challenge is faced to 
facilitate better-tuned plans and adaptation to the assets’ age and pro
duction requirements [40–42]. Finally, cost-effectiveness driven by 
maintenance actions aggregation nurtured by statistical models as well 
as CBM (Condition-based Maintenance) and PdM (Predictive Mainte
nance) solutions has flourished especially in the last years where the 
connectivity of assets could be secured [43–45]. It is this last trend that 
is further explored in the following subsection 2.2, given the scope of 
this research work.

2.2. Insight on the current advances in condition-based maintenance in 
OEM service offerings

The deployment of CBM and PdM solutions is determined by almost 
consolidated methodologies that leverage predefined steps to reach ex
pected goals, especially grounding on PHM as the reference process 
model [46]. Despite the steps may change according to each researcher’s 
perspective or application details, a common underlying path is present 
that entails [47–49]: data acquisition, data manipulation, state detec
tion, health assessment and prognostic assessment. Indeed, it is worth 
noticing that state detection is often declined as anomaly detection or 
novelty detection [50], while the health assessment does include both 
the health rating, also designated as health state evaluation, and the 
diagnosis [51,52]. As documented [53], PHM and related decisions 
result from a mix of technical and experience-related aspects; for 
example, the former includes tackling the data connectivity and the 
model development, while the latter deals with the threshold definition, 
health rating and maintenance actions judgements [54].

Despite the wide knowledge about CBM and PdM solutions devel
opment, their uptake by OEMs to innovate their business models is still 
limited, and some barriers, or inhibitors, can be spotted [55]. The first 
family of inhibitors refers to failure data that may become obsolete due 
to the redesign of components and systems or may be due to highly 
reliable machines that hence do not provide robust and significant 
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datasets. The second family of inhibitors refers to over- or 
under-maintenance that implies, on one side, an abundance of preven
tive maintenance and, on the other side, an abundance of corrective 
maintenance; in turn, these imply that natural degradation processes are 
hidden behind the human interventions, preventing the full exploitation 
of algorithms’ capabilities, and, from a business perspective, customers 
may be not convinced to change maintenance policies as they have 
different risk aversion propensions with respect to the OEM. These in
hibitors work jointly with other two relevant barriers that prevent full 
exploitation of CBM and PdM as valuable services offered by OEMs: data 
privacy leading to “data islands” on the side of the OEM and the 
customer [56], and business model establishment so as to be convenient 
for both parties [31].

The scientific literature then appears still limited, or not ready, in 
terms of proving the viability and effectiveness of such service offerings 
in industrial settings implying customer-OEM relationships in an 
advanced maintenance strategy that exploits CBM and PdM solutions in 
an integrated manner. Recent examples include CBM evaluation for an 
optimal MRO strategy under a performance-based contracting, and 
concerning availability and cost optimization [57]. Mathematical opti
misation is also proposed to balance reliability and CBM in 
performance-based contracting [58]. One of the latest studies also an
alyses performance-based contracting considering CBM and spare parts 
management for better contract definition [59]. However, CBM in these 
works is intended as inspection-based, that is: a component/machine is 
monitored at those times in which the OEM planned an activity in the 
customer’s premises without any real-time data analysis. The integra
tion that could be gained from digital capabilities aimed at real-time 
data analysis for condition monitoring, is not yet evidently shown in 
real industrial settings.

2.3. Concluding remarks

Despite the relevance of CBM and PdM services as core solutions 
envisioned in new business models by OEMs, the scientific literature is 
still not supporting the evidence of a practical deployment that is 
capable of facing real-industry challenges in a viable and effective 
approach. On the whole, the challenges mostly refer to three spheres:

• the fulfilment of the PHM process, inhibited by data availability and 
quality in relation to the failures, and the constraints from the data 
privacy, which may prevent a full transfer of condition monitoring 
data by the running machines or systems out of the factory;

• the presence of human-based decisions in the PHM process, which 
may lead to subjectivity, especially in the definition of threshold, 
health rating and related actions; this makes service delivery chal
lenging, especially when scaling worldwide;

• the arrangement of an organizational setting and business model 
where benefits from the CBM/PdM services can be exploited in terms 
of value-adding and cost-effectiveness for both the OEM and 
customer companies.

This research work is particularly interested in proposing and 
demonstrating the viability and effectiveness of the PHM process and the 
subsequent decision-making in maintenance plan adaptation so that it is 
performed in an objective way, drawing on past experience, to finally 
scale up so as to uniform the approach toward an enhanced service of
fering. This integrated maintenance approach leverages fleet-wide data 
across the operational and tactical levels of maintenance management 
tasks.

3. Proposed method for data-driven maintenance plan 
adaptation

The method leverages the potentialities offered by CBM to extend 
maintenance service offerings by OEM with a focus on maintenance plan 

adaptation along the machine lifecycle. The method considers the 
relevant assumptions hereafter listed:

• The existence of an IT infrastructure able to collect data from the 
machines and make them available to the OEM itself, where algo
rithms and digital services can be deployed.

• Condition monitoring and algorithm/s for anomaly detection are 
already in place on servitised machines (i.e., CBM is already enabled 
through condition monitoring, running in each servitised machine) 
and allow the generation of historical data related to machine 
operations.

• Exclusively sharing machine status, i.e. machine states, is performed 
to provide the basic information so as to facilitate the identification 
of similar behaviour/s of machines within the fleet of servitised 
machines (i.e., while the data logs tracking the machine status are 
shared across the fleet of machines, the condition monitoring signals, 
such as vibration, temperature, and others, are not; this is respecting 
some data privacy requirements on the detailed knowledge of the 
machine behaviour demanded by the customer).

• A set of pre-defined maintenance plans is already in place, as it is 
developed by the OEM to cope with the customers’ requirements and 
contingent situations, defined according to past experience and 
knowledge. These pre-existing maintenance plans are not going to be 
changed in their content, sequence and structure, but will be auto
matically engaged upon verifying specific health rating results.

From a functional perspective, the goal of this work is to explore how 
to use the information coming from the anomaly detection algorithm/s 
to choose the proper maintenance plan adapting to the ongoing health 
rating of the machines in a way that is no longer subjective.

Fig. 1 reports where the novelty of this work stands, that is in the 
proposal of a data-driven method to guarantee objectivity and stability 
to the maintenance plan adaptation process.

Indeed, during the machine conduction, an anomaly detection al
gorithm is in charge of detecting deviations from expected behaviour. 
These anomalies become the knowledge base on which maintenance 
operators, technicians and managers may decide to confirm or change 
the maintenance plan based on experience and skills. The proposal this 
work aims to defend is to substitute this mechanism, which may imply 
different results as it is subjective, with a data-driven method that will 
guarantee an objective maintenance plan. Nonetheless, the solution is 
configured not to be prescriptive, but rather informative to the main
tenance team.

In Fig. 2, the proposed data-driven method (yellow box in Fig. 1) is 
exploded in all of its constituent algorithms and steps (blue boxes), 
pointing out if the proposed steps should happen on customer premises 
or, potentially, on the OEM computational platform. The novel part of 
the method refers to the algorithms and steps running on the OEM 
computational platform (blue boxes) and the influence they have on the 
machines’ conduction at customer’s premises (grey boxes).

The main constituents of the method are hereafter summarized:

a. The creation of the Transition Matrix representing the machine 
behaviour is triggered by the arising of an anomaly.

b. The application of the Non-negative Matrix Factorization (NMF) 
helps in discerning between baseline production conduction and the 
specific behaviour of the machine under study.

c. The comprehension of the machine behaviour is then performed by 
the application of the Hidden Markov Model (HMM), which – in 
return – generates a posterior matrix per each set of data collected.

d. The calculation of the similarity index (on the HMM posterior ma
trix) enables similarity evaluation; in particular, the step performs 
the comparison of the posterior matrix with the existing benchmark 
(of past sets of data) of the machine behaviour so as to habilitate 
health rating.

A. Ruberti et al.                                                                                                                                                                                                                                 Journal of Manufacturing Systems 77 (2024) 368–383 

370 



e. Similarity with the existing benchmark and the subsequent health 
rating finally allows to compare the current health state to the 
designed, known and “accepted” state in order to select the main
tenance plan that best fits the latest observed conditions in the ma
chine under study; the customer is then informed whether the 
maintenance plan adaptation has to be updated on the specific ser
vitised machine for which anomaly has been initially detected.

It is worth remarking that the maintenance plan is not only due to the 
system design and features – as determined by OEM knowledge – but 
also delivered in the light of the way the system (and each machine 
within the system) is operated – which leads to data-driven planning 
decisions.

For the sake of completeness, the entire data-driven method is pre
sented, including also anomaly detection, limiting it to the functional 
utility as the triggering step of the method, despite the anomaly detec
tion algorithm, its definition, configuration and development are 
outside the scope of this work. Each step is then described with the 
related modelling decisions, inputs, and outputs. Then, before applying 
the method to a real case (Section 4), the pseudo-code is proposed so as 
to give a flavor of its implementation view.

3.1. Anomaly detection

Anomaly detection is in charge of detecting possible anomalies in the 
machine’s behaviour, arising during the running of the production op
erations. The anomaly detection is configured based on the following 

general assumptions:

• Several signals can be used to enable the detection capability, 
depending especially on the type of machine under analysis. Vibra
tions collected via accelerometers are one of the most frequent and 
widespread collected signals due to their relevance in detecting 
anomalies in rotary components.

• For what concern data analytics, there are many different techniques 
and algorithms that can be used for anomaly detection, including 
statistical methods, machine learning algorithms, and time series 
analysis [60]. The selection is based on the gathered signals, the 
availability of labels and the computational power at the stack.

In the proposed method for data-driven maintenance plant adapta
tion, anomaly detection triggers and starts the key steps of the method 
with the purpose of verifying the validity of the current maintenance 
plan and, when not validated, replan the maintenance activities based 
on current machine behaviors and existing benchmarks provided by the 
past machine conditions and states.

It is also worth remarking that the proposed method works under the 
assumption of limited access to data, which corresponds to transferring 
only machine status as data logs from the customers to the OEM. In other 
words, the detailed information arising from the condition monitoring at 
every single servitised machine is used for the CBM onsite, but not 
transferred to the OEM, which receives only data logs tracking the 
machine status.

Fig. 1. Novelty of the work: data-driven method (yellow box) that improves maintenance plan adaptation.

Fig. 2. Proposed method for data-driven maintenance plan adaptation.
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3.2. Transition Matrix creation

The data logs, consisting of a sequence of machine states, is trans
formed into the so-called Transition Matrix. The machine states of the 
production asset are defined according to the European Standard 
415–11 “Safety of packaging machines – Part 11: Determination of ef
ficiency and availability” published in 2021 [61] and are collected by a 
monitoring tool. With these machine states, a Transition Matrix, also 
known as probability matrix or Markov matrix, is generated; the Tran
sition Matrix is a mathematical transformation used to model a system 
that undergoes transitions from one state to another over time. It is 
commonly used in fields such as economics, finance, physics, and en
gineering to analyze the behaviour of complex systems.

In a Transition Matrix, both the rows and the columns represent the 
machine states of the system under study and each value cell in the 
matrix represents the probability of transitioning from one state to 
another; for example in Fig. 3, the numeric value inside the matrix cell at 
the crossing between row “2” (“state #2″) and column “3” (“state #3″) is 
the probability in percentage that, from the present state “state #2″, the 
machine will go into state “state #3″. The machine states may include, 
for example, disconnection and errors. Therefore, the entries in the 
matrix are typically non-negative, and the sum of the entries in each row 
must be equal to 1, representing the fact that the machine must make a 
transition to a new state at a given time step.

The Transition Matrix can be used to compute the probabilities of 
different sequences of transitions over time, as well as to analyze the 
long-term behaviour of the system. For example, the dominant eigen
value of the matrix can be used to compute the long-term behaviour of 
the system, while the eigenvectors can be used to identify the most likely 
paths or sequences of transitions. In the specific case of maintenance 
plan adaptation, the Transition Matrix enables the analysis of the ma
chine condition as well as possible deviations in terms of state change.

3.3. Non-negative matrix factorization application

The first transformation of the Transition Matrix is through the NMF, 
later followed by the HMM. The adoption of the NMF comes from the 
need to reduce the data complexity from the multiple machines and aims 
at isolating the relevant information to properly enable a collaborative 
prognostics approach. Therefore, the goal is to extract information about 
machine conduction.

An NMF is a technique for factorizing a non-negative matrix into two 
or more non-negative matrices. It is widely used for feature extraction, 
pattern recognition, and data compression [62]. NMF is a form of un
supervised learning, meaning that it does not require labelled data or the 
knowledge of pre-existing conditions to perform the factorization.

In this work, the goal of NMF is to find two non-negative matrices, W 
and H, such that their product approximates the original non-negative 
matrix X as closely as possible, where the matrix X represents the orig
inal Transition Matrix. The general representation of the method is 
represented as in Fig. 4.

The matrix W is a matrix of basis vectors or base matrix, where each 
column represents a basis vector that captures a particular feature or 
pattern in the data. The matrix H is a matrix of coefficients, where each 
row represents the coefficients that determine how much each basis 
vector contributes to the observations in the Transition Matrix X.

The factorization is performed iteratively, using an optimization al
gorithm on the NMF objective functions based on the Frobenius norm to 
update the values of W and H until a good approximation of the original 
matrix is achieved. The solution of the optimization algorithm can 
depend on the specific problem and the characteristics of the data; in 
general, it can be solved either with gradient descent, alternating least 
squares (ALS) or multiplicative updates of the matrices [63,64].

One of the main benefits of the NMF is that it can produce sparse 
representations of the data, meaning that only a small number of basis 
vectors are required to represent the data accurately. This can be useful 
in reducing the dimensionality of the data and removing noise or irrel
evant features. NMF can be also used for feature extraction, where the 
basis vectors are used as a reduced set of features for further analysis.

Considering a procedural viewpoint of NMF application in the pro
posed method, a few steps are required:

a. The NMF technique is developed upon a batch of historical data 
composed of past Transition Matrices, collected over a long period of 
time: in this way, it is possible to calculate the common base matrix 
shared among all the (collected and calculated) Transition Matrices.

b. The application of the NMF upon historical data then grants the 
ability to identify a unique base matrix (identical per each machine 
type) thanks to Eq. 1: 

(H1, H2, …, Hn) = NMF{W * (X1, X2, …, Xn)}                                 (1)

where: 
Xi = Transition Matrix in input of the event i 
Hi = Coefficient Matrix in output of the event i 
W = common Base Matrix in output

c. As the base matrix W is known, when a new event is recorded (i.e., a 
new Transition Matrix Xcurr_date is created), a function (f NMF) based 
on the NMF and on the given base matrix W generates the new 
specific Coefficient Matrix related to the new event (Eq. 2): 

f NMF(Xcurr_date, W) = Hcurr_date                                                        (2)

It is worth remarking that, in order to apply the NMF, the batch of 
historical data is essential and should be made available as a pre- 
requisite: the batch is created upon the event i traced along the his
tory of the machine conduction, being it an anomaly detection. 
Considering the multitude of machines in a fleet (i.e., machines of the 
same type), the NMF and, in particular, the base matrix W can then be 
obtained during the training phase (i.e., step b), taking advantage of the 
machines featuring similar patterns in terms of anomalies along their 
history. Any new anomaly arising during the runtime (step c) should be 
evaluated in its deviation from the expected behaviour, resulting from 
the training phase.

On the whole, the NMF step is key for what follows as the common 
base matrix W holds the information about the machine type, its core 
features and its intended or predefined usage, while the coefficient 
matrix (Hi) holds only the specific information regarding the event and, 
specifically, the conduction that led it to that.

3.4. Hidden Markov Model application

After the NMF, the Hidden Markov Model (HMM) is a statistical tool 
used to model sequences of observed events linked to unknown or hid
den states. Commonly used in speech and handwriting recognition, 
bioinformatics, and financial time series analysis [65]. HMMs trace Fig. 3. General representation of a transition matrix.
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events back to invisible generating states. These hidden states are 
modelled as a Markov process, with the system’s current state only 
influenced by its previous state. Each observation is a probabilistic 
function of its hidden state, aiming to estimate the sequence of hidden 
states that most accurately explains the observed data.

The development of an HMM algorithm centres on exploring these 
hidden states and their dynamics, recognizing them as the true drivers 
behind observable events, regardless of whether anomalies are detected 
or if the system operates normally. The sequences of hidden states 
effectively ‘emit’ the visible states corresponding to observable events, 
allowing probabilistic insights into the causes behind these occurrences. 
This marks a shift from examining the effects to directly analyzing the 
causes.

Mathematically speaking, the HMM consists of three components, as 
represented in Fig. 5: the state transition probabilities or posterior 
probability matrix, the emission probabilities matrix (usually indicated 
with B), and the initial state distribution matrix. The posterior proba
bility matrix describes the probability of transitioning from one hidden 
state to another.

The emission probabilities matrix describes the probability of 
observing a particular observation given the hidden states. The initial 
state distribution describes the probability of starting in each of the 
hidden states. Therefore, whenever a common emission probabilities 
matrix is identified, each observed event is connected to the previous 
event in the observed sequence via the initial states which, combined 
with the common matrix B, generates the posterior probability matrix. 
The HMM algorithm is then used to estimate the sequence of hidden 
states that best explains the observed data.

The Baum-Welch algorithm [66] is the algorithm used in this specific 
analysis and is a variant of the Expectation-Maximization (EM) algo
rithm used to estimate the parameters of the model from a set of 
observed data. Using the batch of original input data, the algorithm 
iteratively estimates the parameters of the model to maximize the 
likelihood of the observed data [67].

Considering a procedural viewpoint of HMM application in the 
proposed method, a few steps are required:

a. A common emission probabilities matrix B is identified for all the 
machines of the same type by using historical data.

b. As a posterior probability matrix P depends both upon the initial 
states and the common emission probabilities matrix B, a model is 
trained using known sequences of observed events to optimize the 
weights as in Eq. 3 where H matrices represent the Coefficient 
Matrices from NMF: 

( P1, P2, …, Pn) = HMM{B*( H1, H2, …, Hn)}                                  (3)

where: 
Pi = Posterior Probability Matrix in input of the event i 
Hi = Coefficient Matrix in input of the event i (i.e., output of the 

previous NMF corresponding to event i), as the initial state in the 
HMM model 

B = common emission probabilities matrix

c. As the emission probabilities matrix B is known when a new event is 
recorded (i.e., a new coefficient matrix Hcurr_date is created and be
comes the new initial state) a function (f HMM) – based on the HMM 
and on the given base matrix B – generates the new specific posterior 
matrix [Pcurr_date] related to the new event [Hcurr_date] (Eq. 4): 

f HMM(Hcurr_date, B) = Pcurr_date                                                        (4)

The HMM model and, in particular, the common emission proba
bilities matrix B can then be obtained during the training phase (i.e., step 
a and b) using historical data by taking advantage of machines of the 
same type in the fleet, and with similar patterns of anomalies. Any new 
anomaly arising during the runtime (step c) should be evaluated in its 
deviation from the expected behaviour embedded inside the HMM 
model.

More specifically, the HMM step of the method is key for what fol
lows as the common emission matrix B holds the information about the 
relations for that specific machine type between (hidden) states, while 
the posterior probability matrix (Pi) holds the specific information 
regarding the causes of what will be observable manifestations in the 
machine. In terms of maintenance issues, this means that modelling the 
hidden states operating on the system/machine and the transition from 
one machine state to another translates into the ability to know when 
the machine is moving away from a specific health state before a 
manifestation occurs: from state of healthy production to an anomalous 
state. In particular, whenever the cause of an observable manifestation 
becomes evident through the posterior probability matrix which drifts 
and changes before an event becomes observable in the machine, this 
leads to a practical recognition of the health state and subsequent impact 
on the maintenance activities (and therefore plan) adopted as counter
measure of the cause of the observed event. The posterior matrix is then 
the information adopted to move further on to the next step of the 
method.

3.5. Similarity evaluation and maintenance plan identification

The similarity evaluation takes place to match the newly obtained 
posterior probability matrix (i.e., output of the previous HMM step) with 
past, existing ones from historical records: by assessing the similarity of 
a new posterior probability matrix with past matrices, the health rating 
is then habilitated, and it becomes possible to draw certain conclusions 
on the healthiness of the machine, finally taking into consideration the 
possibility of a maintenance plan adaptation.

More specifically, the posterior probability matrices of past events 
constitute the ‘memory’, traced in the historical data of the machine in 
the light of matrices W and B as information of the correspondent ma
chine type. As such, it contains information on the conduction of the 
machine and its states (production, stop, failure, product quality devi
ation, etc.) together with the health state of the machine itself.

This determines the ability to detect when health rating changes and, 
therefore, to potentially adapt maintenance plans so to return to the 
ideal health status of the machine by observing the conduction and the 

Fig. 4. General representation of the Non-negative Matrix Factorization.
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sequence of the related machine states: this is inherently due to the fact 
that the cause of an observed event, at the basis of the health rating, can 
be related to the recommended maintenance activities as countermea
sures. This depends on the OEM engineering knowledge. Indeed, a set of 
maintenance plans is already in place as countermeasures of the 
different causes of observable events; the plans are then picked up based 
on the evaluated machine behaviour, which comes with the posterior 
probability matrices.

To make the similarity evaluation, the following requirements apply 
with respect to the historical data:

• The historical database should be built by collecting a proper number 
of production periods (e.g., weeks) coming from different machines 
in complex production systems over a period of operations.

• The historical database should be then analysed and clustered and 
the posterior matrices of past events should be split into a number of 
groups based on their health label. In this work, 3 groups are 
considered: matrices of past events that underwent minimal or reg
ular and standard maintenance interventions [group #1, this corre
sponds to causes of observed events that require standard 
maintenance], matrices of past events that underwent significant but 
not critical maintenance interventions [group #2: this maintenance 
requires the substitution of parts subjected to wear and fatigue, and 
is required by more impacting causes of observed events] and finally 
matrices related to critical failures and urgent maintenance in
terventions [group #3, this can mean substitution of hardware 
components as major equipment/functional unit of the machine, 
which is the worst case when the causes of observed events are the 
most impacting ones].

Once the historical database is available, for each machine type and 
for each of the identified historical cases of the individual machines of 
that type, there is the ordered sequence (in time) of the posterior 
probability matrices generated by the algorithm (from the HMM step) 
and that constitutes the history of the machine states: when a new 
posterior probability matrix is recorded, this one is compared by simi
larity with each cluster and their latest (in time) posterior matrix.

The similarity is calculated using the Jaccard method, which is one of 
the general-purpose similarity coefficients used in the industry [68]. 
Jaccard similarity is calculated by dividing the size of the intersection of 
the two sets by the size of the union of the two sets. In other words, the 
Jaccard similarity coefficient is the number of items that the two sets 
have in common divided by the total number of distinct items in both 
sets. For example, consider two sets: set A contains {1, 2, 3} and set B 
contains {2, 3, 4}. The intersection of the two sets is {2, 3}, and the 
union of the two sets is {1, 2, 3, 4}. Therefore, the Jaccard similarity 
coefficient of A and B is 2/4 or 0.5.

Jaccard similarity is commonly used in data mining, machine 
learning, and information retrieval applications [69]. It is particularly 
useful when dealing with categorical data, such as text documents, 
where the sets represent the presence or absence of certain terms or 
features.

One advantage of Jaccard similarity is that it is simple to compute 

and can be calculated quickly for large datasets. It also provides a 
measure of similarity that is independent of the size of the sets being 
compared. However, Jaccard similarity has some limitations. Firstly, it 
does not take into account the frequency or importance of the items in 
the sets, and it can be biased towards sets with a larger number of items, 
even if the sets have low overall similarity. In addition, Jaccard simi
larity may not be appropriate for datasets with a high degree of sparsity 
or where the sets are of different sizes.

Within the algorithm, the value of Jaccard similarity is used for the 
attribution of similarities and eventual labelling for health rating: the 
new (latest in time) posterior probability matrix will be then associated 
with the cluster with the highest similarity. Each cluster of similarity is 
characterized by a specific level of health rating: the first level (with the 
highest health rating) corresponds to an Overall Equipment Effective
ness4 above 85 % for all the labelled periods under consideration; the 
second level has an OEE between 70 % and 85 %; while the level (#3) 
has OEE below the 70 %. Upon this cluster attribution, the health rating 
is updated in order to reflect the latest conditions of the machine; sub
sequently, the maintenance plan may also be adapted or not. More 
specifically, the following cases may happen, as synthesized in Table 1.

Summarizing, all the above-mentioned levels (#1, #2, #3) are 
essentially different levels of health ratings based on posterior proba
bility matrices comparison, as represented in Fig. 6.

The maintenance plans to be adopted by the user of the machines are 
correspondingly adapted, when it is the case (only levels #2, and #3).

Fig. 5. General representation of the Hidden Markov Model.

Table 1 
Attribution of similarities, health rating and maintenance plan adaptation.

Health level Description

Health level 
#1

If the latest recorded matrix of the individual machine under control 
is similar (as Jaccard Similarity) to the cluster of posterior 
probability matrices of past events that have a good health rating, 
then no further, additional maintenance is needed; the machine 
stays in health level #1 or “healthy” state.

Health level 
#2

If the latest recorded matrix is similar (as Jaccard Similarity) to the 
cluster of posterior probability matrices of past events that have 
worse (compared to the level #1) health rating, then additional 
maintenance might be necessary such as increase in frequency of 
inspections, mandatory clean-ups at the end of each production 
shift, daily system deep analysis, log check and alarms analysis; the 
machine is considered in health level #2 or “monitored” state.

Health level 
#3

If the latest recorded matrix is similar (as Jaccard Similarity) to the 
cluster of posterior probability matrices of past events that have 
much worse (compared to the level #1) health rating, then an 
important set of maintenance interventions might be necessary such 
as complete stop of the machine, complete clean-up, deep 
maintenance service and substitution of key components; finally, the 
machine is considered in health level #3 or “critical” state.

4 As well known, the OEE formula is the following: OEE = Availability 
× Performance × Quality
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3.6. Implementation view of the proposed method

The following Fig. 7 reports the pseudo-code of the method proposed 
in this Section 3 and summarised in the above Fig. 2. This provides a 
general idea of the implementation view, as well as a summary 
perspective, of how the underlying algorithm is organised.

4. Application to an OEM company with maintenance service 
offerings

The data-driven maintenance plan adaptation method is now 
assessed via a real case of an OEM providing maintenance services to 
production lines run on customers’ premises. This builds on the will
ingness to better define the maintenance plan over time adapting to the 
health rating, considering the customers’ need to keep the production 
lines the healthiest by having a prompt response from a maintenance 

Fig. 6. General representation of the Jaccard similarity for the state, and related maintenance plan, identification.

Fig. 7. Pseudo-code of the method for data-driven maintenance plan adaptation.
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standpoint.
To this end, the method has been applied to 8 production lines 

installed in two geographically dispersed plants of the same customer: 
all the production lines are quite similar and composed of modules. The 
production lines are furthermore making a sequence of automated, 
sequential operations leading to the realisation of the final product, 
which is a class IIa medical device for cosmetic or therapeutic purposes. 
A class IIa medical device is a non-invasive device used for channelling 
or storing blood, body liquids, cells or tissues (https://health.ec.europa. 
eu/). As such, the product must guarantee the highest possible quality, 
reflecting the need to have always control over the health states of the 
machines along the production line, so as to guarantee no operations are 
uncompliant with respect to the predefined requirements.

The essential components of the machines are brushless motors, 
which generate the movements needed to operate all mechanical parts. 
A brushless motor, also known as an electronically commutated motor, 
is a synchronous motor powered by direct current (DC). It operates with 
an electronic controller that switches DC currents to the motor windings, 
creating magnetic fields that the rotor follows. This controller fine-tunes 
the DC current’s phase and amplitude to manage the motor’s speed and 
torque.

For organizational efficiency, production lines are divided into sec
tions, each performing specific tasks within the production sequence. 
Each section includes five brushless motors managed by a dedicated 
Programmable Logic Controller (PLC). This PLC monitors the motors’ 
position, velocity, acceleration, and current, and also tracks important 
data for each section, such as states and alarms. Notably, while all 
brushless motors are identical across all production lines and sections, 
the load varies depending on the specific tasks each motor performs.

Since the initial installation, the production lines have been inspec
ted once a week by both the OEM and the customer to verify the con
ditions of the entire lines and also to assess the machine’s health state.

The available dataset has been generated over 241 production weeks 
of monitoring of 14 sections of 2 production lines over a period of 3 
months. The historical database is analysed and clustered and the pos
terior probability matrices of past events are split into 3 clusters - each 
with a specific level - based on their health label: matrices of past events 
with good health ratings [level #1], matrices of past events with higher 
health ratings where the motors underwent significant but not critical 
maintenance interventions as it is in the “monitor” state [level #2] and 
finally matrices related to low health ratings which showed critical 
failures and urgent maintenance interventions [level #3].

The assessment of the belonging group is performed manually by the 
operators, based on their experience and on a set of multiple pieces of 
information, namely, the log of the machine states and related alarms of 
a given week, and the register of maintenance interventions performed 
by the operators for regular setups, standard maintenance actions or 
exceptional interventions for the same week of analysis.

Based on this information, the practice is to classify any monitored 
window of production period (typically a week) in the three possible 
clusters of health states (expressed according to the current OEM- 
customer agreement and documented in accordance with what is 
generally presented in the previous Section 3.5) that are:

1.11. [level #1] good health ratings which means a week with no 
anomalies or with anomalies that, when detected, proved to be 
not harmful to the motors and, consequently, to the quality of the 
output: this level is called “healthy”.

1.12. [level #2] worse than level #1 health rating, which means a week 
with detected anomalies causing minor impacts on the produc
tion with low effort but regular interventions: this level is called 
“monitor” state.

1.13. [level #3] Critical/low health rating, which refers to a week with 
recorded anomalies with potential impacts on the machine’s 
health and therefore on the product quality and, hence, that must 
be dealt with as soon as possible: this level is called “critical”.

This is a practice not uncommon in OEM-customer relationships as 
proven by Wang et al., 2020 [58].

According to the levels above, when a new production period is 
analyzed, it is determined the belonging cluster so that the maintenance 
is planned accordingly. For example, if in the previous week, the 
maintenance team (or the future data-driven method, see next sub
sections) determined that a given section of the production line was in 
level #1 and in the current week in level #2, a new maintenance plan 
will be issued accordingly to improve the control of the machine’s 
health. In case, for n-periods in a row, the belonging group/cluster stays 
the same, the defined maintenance plan is kept unchanged.

It has to be noted that, contrary to the initial study phase, at regime 
the evaluation and the run of the full method will be done discretely, 
only when the anomaly detection algorithm is triggered. In synthesis, 
the proposed method has been applied so to develop a data-driven al
gorithm able to automatically inform about the need of maintenance 
plan adaptation, just when the anomaly is detected.

In subsection 4.1 the proposed method is applied and intermediate 
results are shown; then, in subsection 4.2 the assessment of the deployed 
solution is reported to support the goodness of the reached results.

4.1. Application of the proposed method

Due to the significant number of data and alerts that may occur in 
complex production lines, a surveillance algorithm is continuously in 
charge of triggering the evaluation of the ongoing production period 
(typically a week) in order to assess the need to evaluate any change in 
the current maintenance plan. The surveillance algorithm consists of an 
unsupervised anomaly detection model.

Even though the development of the anomaly detection algorithm is 
outside the scope of this work, the proposed model and reached results 
are reported for the sake of completeness.

The selected unsupervised algorithm is an isolation forest algorithm, 
which is often used as a machine learning algorithm for anomaly 
detection [70]. It is a tree-based algorithm that works by randomly 
partitioning the data points into subsets, or “isolation trees,” until the 
anomalies are isolated.

The algorithm starts by selecting a random feature and a random 
value within the range of that feature. The data is then partitioned into 
two subsets based on whether each point is above or below the selected 
value. This process is repeated recursively, with each new subset being 
split into two based on a randomly selected feature and value. This 
creates a binary tree structure where each leaf node represents an iso
lated subset of data points.

Once the isolation trees have been constructed, the anomalies are 
identified as the data points that are isolated in small subsets. The 
rationale behind this is that anomalies are likely to be isolated more 
quickly than normal data points, as they tend to have different values or 
characteristics that make them stand out.

One of the advantages of the unsupervised isolation forest algorithm 
is that it does not require labelled data for training. This means that it 
can be used for anomaly detection in datasets where anomalies are rare 
or difficult to identify [71].

By modelling the unsupervised isolation forest for the brushless 
motors under analysis, it is possible to look for anomalies whenever they 
arise. Indeed, Fig. 4 reports an example over four days of monitoring of 
the vibration signals. The red dots are the anomalies classified as 
potentially dangerous for the machine..

To avoid and prevent misclassification of events and minimize noise, 
several steps are taken: an algorithm monitors mid-to-long-term drifts 
within the time series to detect shifts; the data is then de-noised by 
smoothing the original dataset and scaled and normalized using the Min- 
Max algorithm; finally, the outcomes of the selected anomaly detection 
algorithm are compared with other models like autoencoders and Local 
Outlier Factor to enhance robustness by compensating any limitation of 
each single models.
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As the algorithm picks up an anomaly, it triggers the core of the 
proposed method, that is the calculation of the Transition Matrix on the 
previous production period, application of NMF as the main trans
formation, subsequent modelling through HMM and the similarity 
evaluation.

When the surveillance algorithm is triggered, the Transition Matrix 
based on the machine states is evaluated (see Fig. 9); in this specific case, 
the brushless motors may experience ten states.

The Transition Matrix is then reduced by an NMF operation which 

removes the common base of the starting matrix and achieves the 
reduction of the complexity as well as highlights the specific situation of 
the analysed section of the production line. Afterwards, the HMM is 
applied and a new posterior matrix is generated: the displayed result of 
the HMM is reported in Fig. 10 as a fingerprint; indeed, posterior 
probability matrices can be also designated as the fingerprints of the 
events.

As explained in Section 3, the posterior probability matrix (Pi) does 
represent the specific chain of events leading to the anomaly, after 

Fig. 8. Application of unsupervised isolation forest for vibrations of brushless motors.

Fig. 9. Transition matrix with 10 machine states for a brushless motor.
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removing the baseline or common path for all sections in the production 
line, which do represent the nominal conduction of the machine.

Once a new posterior probability matrix is generated, the similarity 
evaluation happens, which compares the previous posterior probability 
matrices with the newly generated one. Thanks to the previous matching 
of each posterior probability matrix with the three possible clusters to 
classify the production period, it is possible to label it as “healthy”, 
“monitor”, or “critical”, according to its health ratings. The shift from 
one case to another impacts the maintenance plan for the following 
week, including production schedule modifications. It has to be noted 
that, in order to grant the maximum robustness of the solution, the 
production lines are not continuously operational but run in batches that 
last 2–3 days. Each batch is followed by a thorough check-up and setup 
for the next batch. This routine ensures that each production cycle starts 
under uniform conditions, effectively minimizing the impact of any 
short-term underlying variations while isolating more significant, 
longer-term effects. This also leads to a positive effect on the data ana
lytics as it allows to absorb potential weaknesses of the HMM step 
(namely potential lack of independence of each observation).

The overall picture of the functioning of the data-driven method is 
presented in Fig. 11, which draws graphically what the pseudo-code in 
Fig. 7 does continuously.

4.2. Results of the application

A 3-month long period of observations has been mined, so to validate 
the proposed method: from 2 production lines, 241 records (i.e., each 
record is a production week) have been collected. The 241 observations 
have been evaluated using the 2 technological solutions: on the one 
hand the human-based, experience-based assessment of the mainte
nance operators and asset managers, on the other the data-driven al
gorithm described in Section 3.

At the end of the data mining phase, it was available a dataset in 
which – for each observation – both the human experts and the algo
rithm reported the assessed health belonging cluster (level #1, #2 or 
#3): the results obtained by the proposed method in terms of classifi
cation in the three groups were eventually compared with the classifi
cation made by the operator. .

Over the application period, the results can be expressed through the 
confusion matrix reported in Fig. 7.

The matrix shows the comparison between observed assessment 
(verified, logged records by humans – y-axis) and suggested assessment 
(generated by the proposed data-driven method – x-axis): for example, 

in the 168 times that the state of the motors was considered healthy by 
human observation and verification, 159 times also the algorithm re
ported the state ‘healthy’ whereas, in 7 occasions, the algorithm stated a 
to be ‘monitored’ state and in 2 cases reported a critical health state.

Overall, the method’s accuracy is 91 % which was considered 
satisfactory as the target model’s performance. To calculate accuracy, all 
values in the main diagonal of the confusion matrix are summed up and 
then divided by the total number of instances, thus applying the well- 
known definition of the accuracy indicator. The accuracy provides an 
overall measure of the model’s performance by considering both true 
positives and true negatives. Table 2 summarizes the performance in 
terms of an entire set of well-known indicators (including related for
mulas), computed from the results reported in the confusion matrix.

It is worth now remarking on the change with respect to an extant 
solution. The previous method of health rating was based on the oper
ators’ experience and on the assessment involving all the stakeholders of 
the production line: the output of those multiple interactions among 
various parties can be considered as the “ground truth” thanks to the 
deep experience in maintenance activities on every single line. The new, 
proposed method is based on a data-driven health rating via the pro
posed method, thus using the human-experience-based assessment as a 
reference. With an accuracy of 91 %, the method proves that the 
maintenance assessment can be automatized and be performed contin
uously using the human experience not as the decision maker but as the 
supervisor of the automated method and its results.

Despite the cost of the IT infrastructure, the entire algorithm/s 
development and the creation of a knowledge base, the new, proposed 
solution manages to be faster and cheaper in comparison to the existing, 
human-based monitoring: for the existing solution, the higher cost was 
determined by the human capital and the time dedicated to maintaining 
the knowledge base so as to keep the assessments as objective and fact- 
based as possible. Over a longer period, the proposed method should 
also be compared with the real impacts on the production line/s, this is 
further considered in the managerial implications.

5. Managerial implications and reasonings over OEM adoption 
of maintenance service

5.1. Managerial implications of the proposed method

The method has been developed in coherence with the objective of 
an OEM to offer the proper maintenance services to the customers based 
on the conduction of their production lines and machines. This relates to 
a major business driver leading to the prominent need for customized 
maintenance service offerings based on the current requirements of the 
extant plants. Accordingly, the data-driven method has the end purpose 
of activating synergies between the knowledge and information from the 
OEM and the customer.

Considering the OEM viewpoint, it is remarkable that lines and 
machines, where this research is contextualized, are built on a core 
‘structure’ and some add-ons that can be configured according to 
customer requirements. This originates from the modularization of the 
design of the lines and is the common ground that motivates the OEM 
high-end capability to exploit engineering knowledge about each ma
chine type, to translate into well-known maintenance requirements and, 
subsequently, maintenance plans to be adopted for a running line/ 
machine.

Looking at the customer viewpoint, different factors in the runtime 
are influential for the observed behaviour, so the performance, of each 
line and its machines, and are monitored during the conduction of the 
line/machines. As postulated in the proposed method, the conduction of 
the machines should be made accessible by the OEM: a surveillance 
algorithm, aimed at detecting anomalies, leads to a first level of degra
dation control. However, the anomaly detection determines just the pre- 
requisite to start mobilizing knowledge and information between OEM 
and customers. The collaborative maintenance approach is further 

Fig. 10. Posterior probability matrix (Pi) realised after the detection of 
an anomaly.
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developed thanks to the data-driven method proposed in the paper.
In particular, the maintenance strategy, designed to proactively 

monitor and maintain based on the health ratings over time, can be 
provided leveraging a quite traditional way, building on regular in
spections and testing, but also extending to the condition monitoring 
habilitated by an IT infrastructure and surveillance algorithms, as it was 
the case of this research. This finally leads to real-time analytics to 
identify potential issues before they become serious problems as severe 
impacts from failures. Even if this already brings benefits, it is not 
deemed sufficient in the light of the complexity of the production lines: 

CBM programs could not be so cost-effective, as the maintenance 
working practice is driven majorly by local performance deviations and 
alarms without getting the overall picture over the behaviour of the 
machines running within the production line; this may induce a cogni
tive overload of maintenance and OEM technical operators, to evaluate 
the required follow-ups from monitoring tasks from each machine, with 
the hidden risk also to cause over-maintenance and line stoppages, due 
to the monitored conditions based on local deviations and alarms. This is 
one of the major problems at the origin of the research, leading to a 
service offering at a more tactical level of maintenance plan adaptation 

Fig. 11. Instantiation of the data-driven method for maintenance plan adaptation to the industrial case.
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based on machine status data. Therein, the method exploits the traced 
history of single machines in a production line, providing an automated 
approach to support a novel supervisory role to recommend the main
tenance plan adaptation. On the one hand, the supervisory role works in 
synergy with the tasks at the operational level, located in each servitised 
machine, through the anomaly detection algorithm/s; at this level, 
technical analysis is always possible, to get more insights from the 
condition monitoring. On the other hand, the supervisory role demon
strates, according to the validation results, to achieve a performance 
comparable to the experience-based judgements of the maintenance 
operators and asset managers; beyond that, the method is an automatic 
workflow, and therefore is scalable, thus enabling to take advantage, in 
a cost-effective practice, of more lines and machines supervised within 
the fleet of servitised plants, to fully grasp the benefits of the collabo
rative prognostics at large scale. The overall observation, collected from 
the operators in the lines where the method is now running, is that, with 
the method in place, the cognitive overload would be reduced, leading 
to idle times to develop more technical insights at the operational level 
when it is the case. Moreover, as feedback from the asset managers and 
OEM technical operators, assuming the quality of the data-driven 
method as evident in the validation, the decision-making becomes 
standardized, defining clear rules and processes for maintenance plan 
adaptation, which can be then automated. Eventually, such supervision 
at the tactical level may support a balanced approach, avoiding the risk 
of an excess of stoppages due to technical measurements and a hyper- 
protective approach adverse to any risk. As a cascade effect, this may 
lead to cost-effective management of the MRO materials to be replaced 
and related working capital.

The cost-effective scalability of the solution can be better understood 
in its feasibility considering the integrability of the proposed workflow 
within the IT infrastructure and the related monitoring activities. 
Hereafter, the OEM viewpoint is primarily taken. Different reasons are 
to be considered as a foundation to scale the proposed solution in a large 
scope of work (more customers, more lines, more machines).

First of all, for the OEM business model, adopting a workflow 
embedding a machine clustering aimed at similarity evaluation is a 
relevant objective of the proposed method, and can be justified within a 
larger perspective of the product-related service offerings including 
performance and health supervision of industrial assets in general (line, 
machines, components). In particular, it is worth noticing that, unlike 

most collaborative prognostics applications, using physical data from 
pressure and temperature sensors, vibrations and currents from accel
erometers, and speeds, the proposed method for data-driven machine 
clustering is designed to be used on a dataset comprised of only machine 
status data. This type of data is coherent for the calculation of well- 
known performance indicators in production lines, such as the OEE. 
Therefore, introducing the workflow up to the similarity-based clus
tering in pre-existing software services for the monitoring of machine 
performances, involves no additional storage costs, no modifications to 
configured connectivity and automation (i.e., connected PLCs), and no 
costly and time-consuming modifications to data pipelines. In addition 
to this, the machine status data is more easily standardized than data 
from physical variables, as the different machines are often equipped 
with distinct sensors. The sensor data and their heterogeneity are, ac
cording to this proposal, managed at the edge computing level, thus 
limiting herein the complexity of the design in the overall architecture. 
Last but not least, it is worth considering that the accumulation of data is 
typically constrained by data storage capacity and related costs; there
fore, it is remarkable that the volume of machine status data is certainly 
significantly smaller than that of physical variables data, which enables 
relevant savings to this regard. Nonetheless, the presence of historical 
data is fundamental for the full model accuracy. Without the historical 
base, it would be complicated to create critical components of the NMF 
and the HMM: having a baseline grants the success of the model. In case 
of missing historical data, it could be possible to use testing data from 
the machine testing or commissioning but this case is out of the scope of 
this research.

Combining the scalability herein discussed with the model perfor
mance expected in its automatic workflow from the results achieved in 
this work (as in Section 4), it can be concluded that the data-driven 
method for maintenance plan adaptation reveals both viable and with 
a potential to demonstrate its cost-effectiveness over the lifecycle of the 
machines.

5.2. Reasonings over maintenance services by OEM

In the current industrial market, OEMs are increasingly looking at 
maintenance service offerings to improve their profitability. Digital 
technologies are current levers to enable digitally enhanced services. 
Reaching this objective is not straightforward, which requires, to the 
authors understanding, to develop future research in order to address 
valuable scientific problems.

As evidence of this work, the collaborative prognostics approach 
seems to provide a promising innovative scheme to enrich the as- 
designed knowledge on machines and systems an OEM has, by adding 
information thanks to data federation from servitised systems and ma
chines [72]. Nevertheless, lots of challenges are still in place in the 
undergoing trend of digital servitisation. Keeping those that appear 
more relevant for this research and its possible follow-ups, the following 
can be considered remarkable:

• Advanced technologies may extend the portfolio of offered services 
as well as they can empower those already present. However, a 
technology-centred service offering does not match customers’ needs 
and is not enough. The effect on the maintenance process must be 
cleared out in the first place [73,74]; moreover, the business model 
establishment will be essential to effectively lead to the full exploi
tation of advanced valuable services [31] such as CBM and PdM run 

Fig. 12. Results from the testing over three months.

Table 2 
Model performance.

Total number of 
samples

Accuracy formula: (TP +TN)/ 
(TP+TN+FP+FN)

Precisionformula: TP / 
(TP+FP)

Recallformula: TP/ 
(TP+FN)

F1 scoreformula: 2 *recall*precision/ (recall +
precision)

241 91.3 % 94.6 % 92.2 % 93.4 %

Legend: TP = true positive; TN = true negative; FP = false positive; FN = false negative
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within a collaborative maintenance approach of the OEM with the 
customers.

• Information is a critical resource for the effective implementation of 
maintenance servitisation, and the OEMs can leverage upon wide 
product knowledge to better fit their offering [72], integrating it 
with proper data pooling from multiple machines/systems of various 
customers [75].

• Amongst the constraints and requirements, the data privacy and 
cybersecurity reasons could impact the effectiveness of the proposed 
maintenance service offerings, especially when including CBM and 
PdM, as datasets from operating machines may be restricted in their 
access, being partially or not available at all [56].

Considering these challenges, an OEM must find the proper organi
zational and technological settings to pursue profitability while ensuring 
cost-effectiveness through the offered services, to achieve higher gains 
from the two viewpoints, OEM and customer, with respect to the “do-it- 
yourselves” on the customer side [76]. The solution, leveraging the 
collaborative prognostics to identify similar behaviour in servitised 
machines, appears promising to the end purpose of a cost-effective 
maintenance servitisation.

6. Conclusions

This research work has proposed a data-driven maintenance plan 
adaptation method for servitised machines in complex production sys
tems. This is conceived by relying on similarity evaluation through a 
fleet-wide machine clustering that relates the extant behaviour of indi
vidual machines, as observed in the runtime (e.g. a production week), to 
a benchmark built from past datasets collected from machines of the 
same type (e.g., over different past weeks) so as to build a health rating 
system, and correspondingly enable to recommend the required main
tenance plan.

In the proposed concept, the method applies a collaborative prog
nostics approach that leverages events recorded in data logs of machine 
status to spot similar behaviour. This is a novel way with respect to what 
is currently put in evidence in collaborative prognostics, typically based 
on condition monitoring data (vibrations, pressures, temperatures, 
currents, etc.) only. This novelty is coherent with the concurrent need to 
deal with automatic maintenance planning, which requires a supervi
sory role at a tactical level. Maintenance plan adaptation is also a key 
issue within CBM research in general and is one of the focus traced in the 
research streams within maintenance servitisation, also in light of the 
enabler of digitalization for maintenance services. Thus, this work is 
meant to contribute both to the collaborative prognostics and the digital 
servitisation streams.

Overall, it is worth remarking that the major novelty provided by the 
present research relates to the automatic maintenance planning capa
bility based on health rating developed by proper data pooling from 
multiple machines/systems in different production systems. As this 
capability improves the operational level of CBM with adaptation at 
tactical planning, it fosters, through automated workflow, the adap
tiveness to the ever-evolving behaviour of the machines present in a 
complex production system. Over the long term, this may open the 
possibility of observing changing maintenance requirements impacted 
by ageing as well as newly introduced production requirements.

Limits of the work majorly regard the scope of experiments. The 
number of servitised lines/machines where the method is run will be 
extended, and this will allow a wider range of empirical proofs. More
over, the utilization over a longer time of the method will enable to 
confirm not only the model performance but also to measure the 
resulting contribution to the Key Performance Indicators (KPI) targeted 
by the customers in their lines, such as, e.g., the OEE or the level of 
working capital due to the managed MRO. This will finally enable to get 
proof also of the impacts at the business level.

Other limits regard the verification of the optimality of maintenance 

plans, to fit the current conditions. Nowadays, the plans, in their content 
in terms of maintenance tasks, are taken as given, according to the long- 
term experiences and knowledge of the OEM on the systems and lines is 
building. Nevertheless, it would be required to investigate if the opti
mality is close or far away when considering the current conditions of 
every single machine within a production system. This is also a research 
opportunity and should require extending the data-driven approach in 
order to further exploit the shreds of evidence that may result from other 
machine learning as well as optimization methods that may better fit in 
some parts of the proposed data-driven method.

Eventually, it is important to remember that the proposed solution 
considers the anomaly detection algorithm/s and related IT architecture 
as given for granted. Therefore, an additional effort has to be spent for a 
global solution on which the OEM could rely for improved maintenance 
service offerings, combining different options of services offered both at 
the operational and tactical level, namely as digital services local to each 
machine, and other digital services globally available for the fleet.

In future research, the collaborative prognostics architecture could 
be extended. In the current understanding of the authors, two main 
objectives can be suggested: i) to develop prognostics capability at the 
machine level, by exploiting at the edge (so local to the machines) the 
features and machine learning models that could be transferred from 
machines in other domain (i.e. other customer’s sites); this should be 
done while respecting the data privacy constraint and also the more 
technical need of dependability of the architecture in terms of managed 
information; this motivates the need to develop local algorithms at each 
machine, fed by some transfer learning outcome from federated ma
chines in the fleet; ii) to develop a supervisory approach to make optimal 
health management; this may extend the current achievements by 
means of an optimization methodology aimed to support in searching 
for the optimum of key characteristics in multi-objective functions, 
representative of both cost minimization and risk mitigation objectives. 
Last but not least, a study on the business impact of the adoption of 
collaborative prognostics in the provision of maintenance services will 
be an interesting extension of the current research experiences. This is 
clearly aimed at developing a different kind of study. The main interest 
would be to get evidence of the benefits, barriers and opportunities that 
may result from collaborative models in maintenance servitisation, with 
a special emphasis on the exploitation of the collaborative prognostics 
framework.
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