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Abstract. A novel method to tackle black-box optimization for time-varying problems is pro-
posed. Using a Set Membership (SM) framework, the approach directly adjusts the uncertainty
associated with old data points as new samples are introduced. Uninformative old samples
are discarded, and the adjusted model guides the exploitation and exploration routines as
characteristic of black-box optimization. With the proposed method, there is no need to estimate
the time-related rate of change of the hidden function, as required in previous literature. We
provide results of a benchmark test, comparing the performance of the proposed method to
other approaches to time-varying black-box optimization, with promising results.
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1. INTRODUCTION

In many industrial fields and scientific/technological do-
mains, we are faced with non-convex optimization prob-
lems where the objective and/or constraints are black-
box functions (BBF). They are referred as “black-box”
due to the lack of closed-form expressions mapping the
input variables to the output. Moreover, objective and
constraint models whose complexity is prohibitive to be
handled analytically are also commonly treated as BBF.
Such functions arise in many fields, such as automotive
Silvas et al. (2016), aerospace Blasi et al. (2013), and
agricultural processes Picheny et al. (2017), among many
others.

There is a rich literature for black-box optimization (BBO)
in the time-invariant case, which entails the search for an
optimal value and point for a black-box function. Different
problem settings have been considered, whether in the
unconstrained case Jones et al. (1998); Finkel and Kelley
(2006); Malherbe and Vayatis (2017); Sabug et al. (2021),
with explicit constraints Bemporad (2020), and even for
constraints which are black-box Gelbart et al. (2014);
Antonio (2019); Hernández-Lobato et al. (2016); Sabug
et al. (2022). However, there are processes in which the
underlying phenomena changes over time, in a setting we
refer to as “time-varying” (TV), caused by plant degrada-
tion, prolonged use, or interactions with the environment.
In this case, the corresponding BBF changes over time,
leading to change in optimal value, and/or movement of
the optimal point within the search space. There have
been works which deal with TV-BBO for aerospace design,
evolutionary robotics, and path planning, among others, as
documented in the survey Cruz et al. (2011). Most initial
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approaches are based on swarm-based Blackwell (2007);
Fernandes et al. (2008) and evolutionary techniques Bar-
rico and Antunes (2007); Bosman (2007), among related
methods, which assume that multiple function evaluations
can be taken in parallel at each iteration, thus decoupling
the BBF time variations from the function evaluations.
However, in most real cases, a sequential sampling over
time is mandatory, so that each sampled value pertains
potentially to a different function, due to its variation over
time.

As the interest for Gaussian process (GP)-based methods
and Bayesian optimization (BO) rose in the past decade,
there have been several efforts to extend BO for solving
TV-BBO problems. The TV-related extensions propose
approaches to address the forgetting-remembering trade-
off of data samples based on their informativeness, mod-
ifying the GP model to approximate the actual time-
varying function. The updated model is then used to
address the existing trade-off between exploitation and
exploration, which is shared with time-invariant BBO.
Bogunovic et al. (2016) considered two approaches to
the forgetting-remembering trade-off. The first is using a
resetting mechanism, running BO by batch and clearing
the data set used in the GP modelling when a batch is
complete. This means that only the samples acquired in
the latest batch are considered in the construction of the
GP model. As noted in the same work Bogunovic et al.
(2016), the batch-based update of model only wastes the
data set from the previous batches, while the underly-
ing function is changing smoothly in most cases. It then
proposed the Time-Varying GP Upper Confidence Bound
(TV-GP-UCB) as the second approach, implementing a
smooth forgetting mechanism by using a GP posterior up-
date model. This model requires/assumes a hyperparam-
eter ϵTV , described as a forgetting factor. Their proposed
TV-GP-UCB presents a limitation because ϵTV needs to
be assumed, and the process evolution might not always
match with the GP posterior update model with this
factor. In Zhou and Shroff (2021), in addition to the reset-
based GP-based optimization, it also considered the use
of a fixed sliding window, which smoothly forgets older
samples as new ones are introduced. While the proposed
mechanism is intuitive and simple to implement, forgetting
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approaches are based on swarm-based Blackwell (2007);
Fernandes et al. (2008) and evolutionary techniques Bar-
rico and Antunes (2007); Bosman (2007), among related
methods, which assume that multiple function evaluations
can be taken in parallel at each iteration, thus decoupling
the BBF time variations from the function evaluations.
However, in most real cases, a sequential sampling over
time is mandatory, so that each sampled value pertains
potentially to a different function, due to its variation over
time.

As the interest for Gaussian process (GP)-based methods
and Bayesian optimization (BO) rose in the past decade,
there have been several efforts to extend BO for solving
TV-BBO problems. The TV-related extensions propose
approaches to address the forgetting-remembering trade-
off of data samples based on their informativeness, mod-
ifying the GP model to approximate the actual time-
varying function. The updated model is then used to
address the existing trade-off between exploitation and
exploration, which is shared with time-invariant BBO.
Bogunovic et al. (2016) considered two approaches to
the forgetting-remembering trade-off. The first is using a
resetting mechanism, running BO by batch and clearing
the data set used in the GP modelling when a batch is
complete. This means that only the samples acquired in
the latest batch are considered in the construction of the
GP model. As noted in the same work Bogunovic et al.
(2016), the batch-based update of model only wastes the
data set from the previous batches, while the underly-
ing function is changing smoothly in most cases. It then
proposed the Time-Varying GP Upper Confidence Bound
(TV-GP-UCB) as the second approach, implementing a
smooth forgetting mechanism by using a GP posterior up-
date model. This model requires/assumes a hyperparam-
eter ϵTV , described as a forgetting factor. Their proposed
TV-GP-UCB presents a limitation because ϵTV needs to
be assumed, and the process evolution might not always
match with the GP posterior update model with this
factor. In Zhou and Shroff (2021), in addition to the reset-
based GP-based optimization, it also considered the use
of a fixed sliding window, which smoothly forgets older
samples as new ones are introduced. While the proposed
mechanism is intuitive and simple to implement, forgetting
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lems where the objective and/or constraints are black-
box functions (BBF). They are referred as “black-box”
due to the lack of closed-form expressions mapping the
input variables to the output. Moreover, objective and
constraint models whose complexity is prohibitive to be
handled analytically are also commonly treated as BBF.
Such functions arise in many fields, such as automotive
Silvas et al. (2016), aerospace Blasi et al. (2013), and
agricultural processes Picheny et al. (2017), among many
others.

There is a rich literature for black-box optimization (BBO)
in the time-invariant case, which entails the search for an
optimal value and point for a black-box function. Different
problem settings have been considered, whether in the
unconstrained case Jones et al. (1998); Finkel and Kelley
(2006); Malherbe and Vayatis (2017); Sabug et al. (2021),
with explicit constraints Bemporad (2020), and even for
constraints which are black-box Gelbart et al. (2014);
Antonio (2019); Hernández-Lobato et al. (2016); Sabug
et al. (2022). However, there are processes in which the
underlying phenomena changes over time, in a setting we
refer to as “time-varying” (TV), caused by plant degrada-
tion, prolonged use, or interactions with the environment.
In this case, the corresponding BBF changes over time,
leading to change in optimal value, and/or movement of
the optimal point within the search space. There have
been works which deal with TV-BBO for aerospace design,
evolutionary robotics, and path planning, among others, as
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varying function. The updated model is then used to
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resetting mechanism, running BO by batch and clearing
the data set used in the GP modelling when a batch is
complete. This means that only the samples acquired in
the latest batch are considered in the construction of the
GP model. As noted in the same work Bogunovic et al.
(2016), the batch-based update of model only wastes the
data set from the previous batches, while the underly-
ing function is changing smoothly in most cases. It then
proposed the Time-Varying GP Upper Confidence Bound
(TV-GP-UCB) as the second approach, implementing a
smooth forgetting mechanism by using a GP posterior up-
date model. This model requires/assumes a hyperparam-
eter ϵTV , described as a forgetting factor. Their proposed
TV-GP-UCB presents a limitation because ϵTV needs to
be assumed, and the process evolution might not always
match with the GP posterior update model with this
factor. In Zhou and Shroff (2021), in addition to the reset-
based GP-based optimization, it also considered the use
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approaches are based on swarm-based Blackwell (2007);
Fernandes et al. (2008) and evolutionary techniques Bar-
rico and Antunes (2007); Bosman (2007), among related
methods, which assume that multiple function evaluations
can be taken in parallel at each iteration, thus decoupling
the BBF time variations from the function evaluations.
However, in most real cases, a sequential sampling over
time is mandatory, so that each sampled value pertains
potentially to a different function, due to its variation over
time.

As the interest for Gaussian process (GP)-based methods
and Bayesian optimization (BO) rose in the past decade,
there have been several efforts to extend BO for solving
TV-BBO problems. The TV-related extensions propose
approaches to address the forgetting-remembering trade-
off of data samples based on their informativeness, mod-
ifying the GP model to approximate the actual time-
varying function. The updated model is then used to
address the existing trade-off between exploitation and
exploration, which is shared with time-invariant BBO.
Bogunovic et al. (2016) considered two approaches to
the forgetting-remembering trade-off. The first is using a
resetting mechanism, running BO by batch and clearing
the data set used in the GP modelling when a batch is
complete. This means that only the samples acquired in
the latest batch are considered in the construction of the
GP model. As noted in the same work Bogunovic et al.
(2016), the batch-based update of model only wastes the
data set from the previous batches, while the underly-
ing function is changing smoothly in most cases. It then
proposed the Time-Varying GP Upper Confidence Bound
(TV-GP-UCB) as the second approach, implementing a
smooth forgetting mechanism by using a GP posterior up-
date model. This model requires/assumes a hyperparam-
eter ϵTV , described as a forgetting factor. Their proposed
TV-GP-UCB presents a limitation because ϵTV needs to
be assumed, and the process evolution might not always
match with the GP posterior update model with this
factor. In Zhou and Shroff (2021), in addition to the reset-
based GP-based optimization, it also considered the use
of a fixed sliding window, which smoothly forgets older
samples as new ones are introduced. While the proposed
mechanism is intuitive and simple to implement, forgetting

of samples due to age ignores the informativeness that
these samples can still introduce even when old, e.g. in
the static areas of the search space. There were also recent
BO-based extensions for problem setups where both the
sampling point and timing are to be optimized Nyikosa
et al. (2018), and where the evaluation times are not
constant Imamura et al. (2020); however, these problem
contexts are out of the scope of this paper.

We propose in this paper a novel black-box optimiza-
tion method for time-varying problems. To deal with the
remembering-forgetting trade-off, we build on recent re-
sults Sabug et al. (2021, 2022) and use the Set Mem-
bership framework to directly assess the informativeness
of old samples, given the incoming data. The updates, in
turn, are used to discard uninformative old samples when
necessary. This differs from existing methods in that it
does not need/assume a time-based rate-of-change (which
is in most cases not available). For clarity of presenta-
tion, the proposed method is discussed in the context
of unconstrained optimization problems. Note, however,
that the proposed time-varying model update mechanism
is transferable to time-varying constraint functions with
relatively minor modifications.

This paper is organized as follows: Section 2 states the
problem settings and assumptions used in this work. Sec-
tion 3 introduces the Set Membership Global Optimization
method from Sabug et al. (2022). Section 4 describes the
direct data-driven model updates for time-varying black-
box functions. Section 5 compares the performance of the
proposed time-varying optimization method with the ones
from literature, and we conclude in Section 6.

2. PROBLEM STATEMENT

We consider a scalar function f(x, τ), dependent on the
sampling location x ∈ X , as well as time τ ∈ R+. The
search space X is a compact convex set in RD withD being
the dimensionality of the problem. f has no analytical
expression, and the only a priori knowledge about f is
given by the following assumptions:
Assumption 1. At any τ ∈ R+, f is Lipschitz-continuous
with unknown but finite constant γ, i.e.

|f(x1, τ)− f(x2, τ)| ≤ γ∥x1 − x2∥, ∀x1,x2 ∈ X .

Assumption 2. At any x ∈ X , f evolves with a finite
rate of change γτ :

|f(x, τ1)− f(x, τ2)| ≤ γτ |τ1 − τ2|, ∀τ1, τ2 ∈ R+.

Assumption 2 simply states that f does not jump from one
form to another, i.e., f changes gradually with τ . Lastly,
we assume that we can acquire individual values of f by
sampling:
Assumption 3. Given x ∈ X and τ ∈ R+, f can be
sampled with finite and time-invariant noise bound ϵ:

z = f(x, τ) + ϵ, |ϵ|≤ ϵ < ∞.
Now we state the problem addressed in this paper.
Problem 1. Design an algorithm that generates a se-
quence of points

{
x(1),x(2), . . .

}
,x(i) ∈ X , to search and

track a time-varying minimizer point x∗(τ) of f , such that

x∗(τ) = arg min
x∈X

f(x, τ).

3. SET MEMBERSHIP GLOBAL OPTIMIZATION
(SMGO-∆)

We give an overview of the considered optimization al-
gorithm SMGO-∆ from Sabug et al. (2022), for which
we propose the model update mechanism for time-varying
problems. For simplicity of discussion, we introduce the
method in the context of unconstrained and time-invariant
problems.

3.1 Set Membership (SM) model from data

At each iteration n = 1, . . . , N , a point x(n) ∈ X is
sampled, either via simulation, experiment, or a com-
bination of both. Such an evaluation results in a tuple
x̆(n) :=

(
x(n), z(n)

)
. The resulting tuple is added to the

existing data points to iteratively construct the unordered
data set X⟨n⟩:

X⟨n⟩ = X⟨n−1⟩ ∪ x̆(n).

X⟨n⟩ only contains the valid tuples up to the latest sample
index n, because some might have been discarded/forgot-
ten due to the mechanism to be discussed in the next sec-
tion. As a result, the cardinality of X⟨n⟩ is not necessarily
equal to n.

Given a known Lipschitz constant γ and noise bound
ϵ, we can build the SM-based upper- and lower-bound
functions for the underlying objective f following Milanese
and Novara (2004):

f
⟨n⟩

(x) = min
x̆(k)∈X⟨n⟩

(
z(k) + ϵ+ γ∥x− x(k)∥

)
, (1)

f⟨n⟩(x) = max
x̆(k)∈X⟨n⟩

(
z(k) − ϵ− γ∥x− x(k)∥

)
. (2)

Furthermore, we can obtain a central approximation of f ,

f̃⟨n⟩(x) =
1

2

(
f
⟨n⟩

(x) + f⟨n⟩(x)

)
, (3)

and its corresponding uncertainty measure

λ⟨n⟩(x) = f
⟨n⟩

(x)− f⟨n⟩(x). (4)

Since in practice the quantities γ and noise bound ϵ
are unknown, the optimization algorithm computes and
updates their estimates from data as well, see Sabug et al.
(2022) for details.

3.2 Generation of candidate points

From the sampled locations x(i) ∈ X⟨n⟩, we methodically
generate a set of candidate points E⟨n⟩ around X , from
which we choose the next sampling point by running
the exploitation and (if necessary) exploration routines.
Details regarding the candidate points generation can be
found in Sabug et al. (2022).

3.3 Exploitation

We now consider the best tuple from X⟨n⟩, defined as

x̆∗⟨n⟩ =
(
x∗⟨n⟩, z∗⟨n⟩

)
:= arg min

x̆(i)∈X⟨n⟩
z(i). (5)

Given x∗⟨n⟩, we attempt to find a candidate point with
maximum predicted improvement w.r.t. the current best
one z∗⟨n⟩. For this, we perform a optimization on a small
trust region T ⟨n⟩ around x∗⟨n⟩, and using a combination
of the SM-based center approximation and uncertainty,

x
⟨n⟩
θ = arg min

x∈E⟨n⟩∩T ⟨n⟩
f̃ ⟨n⟩(x)− βλ⟨n⟩(x) (6)

with a weighting parameter β. The selected x
⟨n⟩
θ is then

subjected to an expected improvement test to evaluate
worthiness for evaluation

f ⟨n⟩(x
⟨n⟩
θ ) ≤ z∗⟨n⟩ − η, (7)
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of samples due to age ignores the informativeness that
these samples can still introduce even when old, e.g. in
the static areas of the search space. There were also recent
BO-based extensions for problem setups where both the
sampling point and timing are to be optimized Nyikosa
et al. (2018), and where the evaluation times are not
constant Imamura et al. (2020); however, these problem
contexts are out of the scope of this paper.

We propose in this paper a novel black-box optimiza-
tion method for time-varying problems. To deal with the
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necessary. This differs from existing methods in that it
does not need/assume a time-based rate-of-change (which
is in most cases not available). For clarity of presenta-
tion, the proposed method is discussed in the context
of unconstrained optimization problems. Note, however,
that the proposed time-varying model update mechanism
is transferable to time-varying constraint functions with
relatively minor modifications.
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direct data-driven model updates for time-varying black-
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problems. For simplicity of discussion, we introduce the
method in the context of unconstrained and time-invariant
problems.

3.1 Set Membership (SM) model from data

At each iteration n = 1, . . . , N , a point x(n) ∈ X is
sampled, either via simulation, experiment, or a com-
bination of both. Such an evaluation results in a tuple
x̆(n) :=

(
x(n), z(n)

)
. The resulting tuple is added to the

existing data points to iteratively construct the unordered
data set X⟨n⟩:

X⟨n⟩ = X⟨n−1⟩ ∪ x̆(n).

X⟨n⟩ only contains the valid tuples up to the latest sample
index n, because some might have been discarded/forgot-
ten due to the mechanism to be discussed in the next sec-
tion. As a result, the cardinality of X⟨n⟩ is not necessarily
equal to n.

Given a known Lipschitz constant γ and noise bound
ϵ, we can build the SM-based upper- and lower-bound
functions for the underlying objective f following Milanese
and Novara (2004):

f
⟨n⟩

(x) = min
x̆(k)∈X⟨n⟩

(
z(k) + ϵ+ γ∥x− x(k)∥

)
, (1)

f⟨n⟩(x) = max
x̆(k)∈X⟨n⟩

(
z(k) − ϵ− γ∥x− x(k)∥

)
. (2)

Furthermore, we can obtain a central approximation of f ,

f̃⟨n⟩(x) =
1

2

(
f
⟨n⟩

(x) + f⟨n⟩(x)

)
, (3)

and its corresponding uncertainty measure

λ⟨n⟩(x) = f
⟨n⟩

(x)− f⟨n⟩(x). (4)

Since in practice the quantities γ and noise bound ϵ
are unknown, the optimization algorithm computes and
updates their estimates from data as well, see Sabug et al.
(2022) for details.

3.2 Generation of candidate points

From the sampled locations x(i) ∈ X⟨n⟩, we methodically
generate a set of candidate points E⟨n⟩ around X , from
which we choose the next sampling point by running
the exploitation and (if necessary) exploration routines.
Details regarding the candidate points generation can be
found in Sabug et al. (2022).

3.3 Exploitation

We now consider the best tuple from X⟨n⟩, defined as

x̆∗⟨n⟩ =
(
x∗⟨n⟩, z∗⟨n⟩

)
:= arg min

x̆(i)∈X⟨n⟩
z(i). (5)

Given x∗⟨n⟩, we attempt to find a candidate point with
maximum predicted improvement w.r.t. the current best
one z∗⟨n⟩. For this, we perform a optimization on a small
trust region T ⟨n⟩ around x∗⟨n⟩, and using a combination
of the SM-based center approximation and uncertainty,

x
⟨n⟩
θ = arg min

x∈E⟨n⟩∩T ⟨n⟩
f̃ ⟨n⟩(x)− βλ⟨n⟩(x) (6)

with a weighting parameter β. The selected x
⟨n⟩
θ is then

subjected to an expected improvement test to evaluate
worthiness for evaluation

f ⟨n⟩(x
⟨n⟩
θ ) ≤ z∗⟨n⟩ − η, (7)
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with η = αγ̃⟨n⟩ being the minimum improvement thresh-

old, and a parameter α > 0. If (7) is satisfied, x
⟨n⟩
θ is

assigned as the next evaluation point x(n+1). Otherwise,
SMGO-∆ proceeds to the exploration routine.

3.4 Exploration

The rationale of this routine is to discover the shape of the
f(x), whose added information can be used for succeeding

iterations. We select the exploration point x
⟨n⟩
ϕ ,

x
⟨n⟩
ϕ = arg max

x∈E⟨n⟩
ξϕ(x), (8)

where ξϕ(x) is the exploration merit function

ξϕ(x) := d(x)λ⟨n⟩(x) + kν⟨n⟩(x). (9)
The first expression in (9) is composed of the uncertainty
λ⟨n⟩(x) (see (4)) and remoteness

d(x) := min
x(i)∈X⟨n⟩

x− x(i)
 .

Meanwhile, the second expression in (9) is a small factor
k = 1 × 10−6 multiplied with the candidate point age
ν⟨n⟩(x), ensuring theoretical convergence of the algorithm
for time-invariant problems (as proven in Sabug et al.
(2022)). The point selected in this routine is directly
selected as the next sampling point x(n+1).

4. SM-BASED DIRECT MODEL
UPDATES FROM DATA

The common challenge in optimizing time-varying prob-
lems is to detect time-related changes to f . In the SM-
based framework, this translates to recognizing whether:

• the variation of the incoming data serves to refine the
model of f w.r.t. x, or

• if this variation is instead due to the evolution of f(x)
w.r.t. τ .

In the proposed method, given an initial model, we at-
tempt to recognize whether incoming samples are due to
a time evolution of f . This is achieved directly from data
and the SM-based bounds, without need to estimate the
time-related rate-of-change of the function as required in
Bogunovic et al. (2016).

4.1 Initial SM-Based Model Training

In the proposed method, we are assumed to be given
an initial data set X⟨0⟩ to build our SM model, which
may be from an initial model characterization. X⟨0⟩ can
be acquired using a user-preferred sampling method, e.g.,
space-filling methods, pseudo-random sampling, or by run-
ning an optimization method (e.g., SMGO-∆ for time-
invariant problems), which has the added advantage of
simultaneously identifying a best point in x∗⟨0⟩.

This initial training serves mainly to compute the noise
bound (resp. Lipschitz constant) estimate ϵ̃ (resp. γ̃⟨0⟩),
if their true values are not available a priori. While the
noise bound estimate ϵ̃ is held constant throughout the
optimization process, the Lipschitz constant estimate γ̃⟨n⟩

can be adjusted as necessary, as will be discussed in
Section 4.4.

4.2 SM Model Adjustment

We adjust the SM-based model using the intuition that if
a new data point violates the existing SM-based model,

the function is deemed changing w.r.t. τ . In addition, in

updating the SM-based bounds f
⟨n⟩

and f ⟨n⟩, we should
trust the new data more than the older ones. From the
difference in the bounds from the existing model and the
new sample, we reflect the increasing distrust of the old
data by increasing their respective uncertainties.

Consider an existing data set X⟨n−1⟩, composed of data
collected before present time τ = t, and from which
we have built our SM-based models characterized by

f
⟨n−1⟩

(x) and f ⟨n−1⟩(x). Suppose that we have an incom-

ing data point x̊(n) :=
�
x(n), z(n), τ (n) = t


from evalu-

ation, which is added to X⟨n−1⟩. Using ϵ̃ and γ̃⟨n⟩, we
consider the SM-based bounds caused solely by x̊(n),

f
(n)

(x) = z(n) + ϵ̃+ γ̃⟨n⟩
x− x(n)

 , (10)

f (n)(x) = z(n) − ϵ̃− γ̃⟨n⟩
x− x(n)

 . (11)

By intuition, we want to trust the new sample x̊(n),
because it is the most recent one for the point x(n).
Hence, we can assert that the SM-based bounds at x(n)

are actually z(n) + ϵ̃ (upper) and z(n) − ϵ̃ (lower). As a
consequence, we adjust the existing bounds such that this
assertion is compatible to the updated model. Figure 1
shows a case when the new sample fits inside the previous
bounds, i.e.,

∀x ∈ X , f
(n)

(x) ≤ f
⟨n−1⟩

(x) (12)

f (n)(x) ≥ f ⟨n−1⟩(x). (13)

In such case, we interpret that we are only refining the

existing model using x̊(n). However, if f
(n)

(x) ≥ f
⟨n−1⟩

(x)

and/or f (n)(x) ≤ f ⟨n−1⟩(x) [Figure 1], we adjust the

existing bounds f
⟨n−1⟩

(x), f ⟨n−1⟩(x) such that

f
′⟨n−1⟩

(x) = f
⟨n−1⟩

(x) + λ
′⟨n⟩ (14)

f
′⟨n−1⟩(x) = f ⟨n−1⟩(x)− λ

′⟨n⟩ (15)

where

λ
′⟨n⟩ = max






0�
z(n) + ϵ̃


− f

⟨n−1⟩ �
x(n)


f⟨n−1⟩

�
x(n)


−
�
z(n) − ϵ̃






 . (16)

The physical significance of this is that we increase the
uncertainty (“distrust”) of the old data if the SM bound
(upper or lower) from the newly-introduced x̊(n) exceeds
that of the existing model. Consequently, this means that
every new data point that exceeds the existing bounds
decrease the informativeness of the old ones, motivating
the mechanism for forgetting/discarding data points.

4.3 Discarding Uninformative Samples

We propose a new method for discarding samples from the
data set X⟨n⟩. In summary, we discard a sample x̊(j) that
is not informative enough to decide any of the SM-based
bounds anywhere in the search space, i.e., it is a redundant
sample. In this method, we forget samples x̊(j) meeting one
of the following criteria:

new 
sample

hidden function
samples
(with noise bounds)

Figure 1. Refining an existing model using a new sample.

SM bounds
widened

old function
new (evolved) function
sample (with noise bounds)

new 
sample

Figure 2. Adjustment of SM bounds uncertainty with a
new data point.

(1) older than a minimum threshold, t − τ (j) ≥ T y (i.e.
“old enough”), and whose own upper- and lower
bounds are not anymore the tightest at location x(j);

(2) older than a maximum threshold age, t − τ (j) ≥ T g

(i.e. “too old”),

such that T g > T y. The first criterion for forgetting
samples is new in this work, which uses SM-based bounds
to quantify the informativeness of the samples. The second
criterion, on the other hand, is similar to the “sliding
time window” approach, as referred in Zhou and Shroff
(2021). Given the above two criteria, we actually have two
sliding windows, the one which makes old samples eligible
for discarding, and another which force-discards very old
samples.

4.4 Implementation aspects

Updates for Lipschitz constant estimate. To treat the
case of hidden functions whose evolution involves a chang-
ing Lipschitz constant, e.g. a bump evolving out of a flat
function, we propose a workaround to make sure that the
estimate γ̃⟨n⟩ follows that of the hidden function.

Consider a developing bump in f , increasing its true
Lipschitz constant γ. As new samples are introduced from
this developing bump, the SM-based uncertainty of the
old model continues to widen by virtue of (14)-(15). To
track the increase of the Lipschitz constant in this case,

we propose the use of a variable λ̆, which accumulates the
uncertainty increments λ⟨n⟩ added to the upper- and lower
bounds (see (16)). The updates will be as follows

λ̆⟨n+1⟩ = λ̆⟨n⟩ + λ
′⟨n⟩.

Once λ̆⟨n⟩ reaches a threshold λ̄ (which we set here as
λ̄ = 10ϵ̃), we recalculate the Lipschitz constant estimate
γ̃⟨n⟩ according to the existing valid data.

Candidate points filtering. The proposed candidate
points generation scheme for SMGO-∆, as pointed out in
Sabug et al. (2022), results in candidate points quantity
of O(Dn + n2) w.r.t. dimensionality D and iterations n,
introducing a bottleneck for calculating (6) and (8) mainly

due to increasing n. To minimize the computational bur-
den, we propose a heuristic to filter out candidate points
to limit their quantity. Minimum computational times are
especially important in cases with endless streaming sam-
ples, as anticipated in time-varying optimization contexts.

The main argument behind the proposed approach is we
can ignore or discard candidate points which are not
likely to be sampled by exploration (8) within some given
iteration horizon. To proceed, we analyze the terms in the
exploration merit function (9).

• the remoteness d(e) of the candidate points w.r.t.
existing samples, is mostly non-increasing: assuming
that samples are never forgotten once introduced, a
candidate point will get nearer to a sample. However,
in the time-varying case where T y and T g are large,
this can be a reasonable assumption as well.

• the uncertainty measure wλ(e) is also mostly non-
increasing: with many samples, it can be claimed
that γ̃⟨n⟩ has stabilized. Hence, its major change
mechanism is triggered when λ⟨n⟩(x) decreases (due
to new nearby samples).

Given these information, we can infer if a certain candidate
point is worthy of keeping in the memory, or if we should
filter it out. Consider an iteration horizon of NM > 0,
which can be equal to the total iteration budget N , or
any fairly large integer. Furthermore, consider an implied
ranking of candidate points in E⟨n⟩, in order of decreasing
exploration merit

M⟨n⟩ :=

{
m

⟨n⟩
1 ,m

⟨n⟩
2 ,m

⟨n⟩
3 , . . .

}
. (17)

Given the ranking M ⟨n⟩, we propose to filter out a
candidate point e if

ξ̄⟨n+NM ⟩(e) := d⟨n⟩(e)λ⟨n⟩(e) + kτ ⟨n+NM ⟩(e) (18)

< ξ
⟨n⟩
ϕ

(
m

⟨n⟩
NM

)
. (19)

The above condition means that if e, after NM iterations,
has a best-case predicted merit ξ̄⟨n+NM ⟩(e) that is still not
placed in the first NM entries of M ⟨n⟩, we delete e from
E⟨n⟩.

We note that filtering action should only be performed
when the number of samples is large enough. If the filtering
is started at low n, the merit of the first-ranked candidate
point will be very large relative to the other points due
to high uncertainty (as expected with low number of
samples), and newly-generated candidate points will not
be retained. In this paper, we set a horizon value of
NM = 500, which is also the minimum n to enable
candidate points filtering.

5. SYNTHETIC BENCHMARK TESTS

5.1 Generation of benchmark problems

We consider different problems in this test, all of which are
based on the moving peaks benchmark (MPB) problem
Yazdani et al. (2022); Nyikosa et al. (2018), the most
commonly-used problem in the time-varying optimization
literature. The basic form that we use in the tests is

fa(x, τ) = − max
i∈{1,...,m}

hi(τ)

1 + wi(τ) (xi − ci(τ))
⊤ Wi(τ) (xi − ci(τ))

,

(20)
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(1) older than a minimum threshold, t − τ (j) ≥ T y (i.e.
“old enough”), and whose own upper- and lower
bounds are not anymore the tightest at location x(j);

(2) older than a maximum threshold age, t − τ (j) ≥ T g

(i.e. “too old”),

such that T g > T y. The first criterion for forgetting
samples is new in this work, which uses SM-based bounds
to quantify the informativeness of the samples. The second
criterion, on the other hand, is similar to the “sliding
time window” approach, as referred in Zhou and Shroff
(2021). Given the above two criteria, we actually have two
sliding windows, the one which makes old samples eligible
for discarding, and another which force-discards very old
samples.

4.4 Implementation aspects

Updates for Lipschitz constant estimate. To treat the
case of hidden functions whose evolution involves a chang-
ing Lipschitz constant, e.g. a bump evolving out of a flat
function, we propose a workaround to make sure that the
estimate γ̃⟨n⟩ follows that of the hidden function.

Consider a developing bump in f , increasing its true
Lipschitz constant γ. As new samples are introduced from
this developing bump, the SM-based uncertainty of the
old model continues to widen by virtue of (14)-(15). To
track the increase of the Lipschitz constant in this case,

we propose the use of a variable λ̆, which accumulates the
uncertainty increments λ⟨n⟩ added to the upper- and lower
bounds (see (16)). The updates will be as follows

λ̆⟨n+1⟩ = λ̆⟨n⟩ + λ
′⟨n⟩.

Once λ̆⟨n⟩ reaches a threshold λ̄ (which we set here as
λ̄ = 10ϵ̃), we recalculate the Lipschitz constant estimate
γ̃⟨n⟩ according to the existing valid data.

Candidate points filtering. The proposed candidate
points generation scheme for SMGO-∆, as pointed out in
Sabug et al. (2022), results in candidate points quantity
of O(Dn + n2) w.r.t. dimensionality D and iterations n,
introducing a bottleneck for calculating (6) and (8) mainly

due to increasing n. To minimize the computational bur-
den, we propose a heuristic to filter out candidate points
to limit their quantity. Minimum computational times are
especially important in cases with endless streaming sam-
ples, as anticipated in time-varying optimization contexts.

The main argument behind the proposed approach is we
can ignore or discard candidate points which are not
likely to be sampled by exploration (8) within some given
iteration horizon. To proceed, we analyze the terms in the
exploration merit function (9).

• the remoteness d(e) of the candidate points w.r.t.
existing samples, is mostly non-increasing: assuming
that samples are never forgotten once introduced, a
candidate point will get nearer to a sample. However,
in the time-varying case where T y and T g are large,
this can be a reasonable assumption as well.

• the uncertainty measure wλ(e) is also mostly non-
increasing: with many samples, it can be claimed
that γ̃⟨n⟩ has stabilized. Hence, its major change
mechanism is triggered when λ⟨n⟩(x) decreases (due
to new nearby samples).

Given these information, we can infer if a certain candidate
point is worthy of keeping in the memory, or if we should
filter it out. Consider an iteration horizon of NM > 0,
which can be equal to the total iteration budget N , or
any fairly large integer. Furthermore, consider an implied
ranking of candidate points in E⟨n⟩, in order of decreasing
exploration merit

M⟨n⟩ :=

{
m

⟨n⟩
1 ,m

⟨n⟩
2 ,m

⟨n⟩
3 , . . .

}
. (17)

Given the ranking M ⟨n⟩, we propose to filter out a
candidate point e if

ξ̄⟨n+NM ⟩(e) := d⟨n⟩(e)λ⟨n⟩(e) + kτ ⟨n+NM ⟩(e) (18)

< ξ
⟨n⟩
ϕ

(
m

⟨n⟩
NM

)
. (19)

The above condition means that if e, after NM iterations,
has a best-case predicted merit ξ̄⟨n+NM ⟩(e) that is still not
placed in the first NM entries of M ⟨n⟩, we delete e from
E⟨n⟩.

We note that filtering action should only be performed
when the number of samples is large enough. If the filtering
is started at low n, the merit of the first-ranked candidate
point will be very large relative to the other points due
to high uncertainty (as expected with low number of
samples), and newly-generated candidate points will not
be retained. In this paper, we set a horizon value of
NM = 500, which is also the minimum n to enable
candidate points filtering.

5. SYNTHETIC BENCHMARK TESTS

5.1 Generation of benchmark problems

We consider different problems in this test, all of which are
based on the moving peaks benchmark (MPB) problem
Yazdani et al. (2022); Nyikosa et al. (2018), the most
commonly-used problem in the time-varying optimization
literature. The basic form that we use in the tests is

fa(x, τ) = − max
i∈{1,...,m}

hi(τ)

1 + wi(τ) (xi − ci(τ))
⊤ Wi(τ) (xi − ci(τ))

,

(20)
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where for each peak i, hi(τ) is the peak height, ci(τ) is the
center, wi(τ) is the weight, and Wi(τ) is a diagonal matrix
implementing the condition number κi of the peak. We
have considered testbench problems with D = 3 and D =
5, with each problem displaying 6 and 10 moving peaks,
respectively, and a search space of X = [−10, 10]D. We
have considered several characteristics, such as applying
different randomly-generated time-varying heights hi(τ),
higher condition numbers κi (ill-conditioning), and time-
varying κi(τ) to each peak i. The properties of the tested
functions are tabulated in Table 1.

Problem D Time-varying
hi(τ)

κi > 1 Time-varying
κi

P1 3 ✓
P2 3 ✓ ✓
P3 3 ✓ ✓ ✓
P4 5 ✓
P5 5 ✓ ✓
P6 5 ✓ ✓ ✓

Table 1. Objective function properties for the
time-varying optimization benchmark tests

In contrast to the benchmarks described in Yazdani et al.
(2022), we do not send any change signal to the optimiza-
tion algorithms. This means that the compared methods
should automatically update their models according to the
(gradual) change in the hidden functions.

5.2 Optimization tests

To solve the given problems, we consider the following
approaches for time-varying optimization:

• BO, with batch-based reset (BO-R) Zhou and Shroff
(2021); Bogunovic et al. (2016)

• BO, with sliding window (BO-W) Zhou and Shroff
(2021)

• SMGO-∆, with time-varying updates (this work)

We assume that all samplings are sequential, i.e. only
one sampling is allowed at every time step, and we can
use the time step counter τ to also mean the iteration
number n. Furthermore, we set the batch length for BO-
R as 125D, which we also set as the sliding window
length for BO-W. On the other hand, we set SMGO time-
varying hyperparameters as T y = 125D and T g = 2T y.
Furthermore, we set SMGO-∆-specific parameters β = 0.1
and α = 0.005, following Sabug et al. (2022).

For all the compared methods, are given an initial budget
of 125D evaluations to build an initial model and optimize
the initial objective function. Afterwards, we consider a
frame of T tv = 1000D time steps, during which we allow
the objectives to gradually evolve while we perform the
time-varying optimization. To enable statistical compari-
son, we performed 25 independent optimization runs for
each problem and method, using the same set of starting
points to maintain fairness of comparison.

5.3 Comparative results: optimization performance

To compare performance of the optimization algorithms,
we first consider the optimality gap, which is the difference
between the latest identified best value and the actual
function minimizer at time step τ :

δ(τ) := f(x∗⟨τ⟩, τ)− f(x∗(τ), τ). (21)

In this test, we consider the optimality gap throughout
each run, and collect information on all runs. Now, con-
sider a run r on a test problem. The average optimality

gap over a run r is given by δ̃r =
1

T tv

∑T tv

t=1 δr(τ). Now,

given R independent runs, we collect all δ̃r and define
the “algorithm-related” mean optimality gap Cruz et al.
(2011) and its related standard deviation. Table 2 shows
the mean optimality gaps of each compared method on
the test functions, with the standard deviations inside the
parentheses. In both tables, we show in boldface the best
means (we highlight multiple results in a row when they
are within difference of 0.1).

We observe that for all considered problems, SMGO-∆
with the proposed time-varying model updates resulted
in a very competitive performance compared with both of
the BO-based approaches, when the means are considered.
In the first three problems with D = 3, our method
displayed much smaller standard deviations, pointing to
a more consistent performance even with different start-
ing optimization run conditions. Furthermore, SMGO-∆
showed the best mean optimality gaps for all problems
with D = 5, while the standard deviations are competitive
with those of the other methods.

Problem BO-R BO-W SMGO-∆
P1 3.94 (±1.45) 3.59 (±2.29) 4.07 (±0.90)
P2 4.85 (±1.51) 5.18 (±1.25) 5.06 (±1.03)
P3 5.47 (±1.13) 5.45 (±1.06) 5.50 (±0.56)
P4 6.42 (±0.67) 6.51 (±0.84) 5.29 (±1.10)
P5 6.41 (±0.69) 6.56 (±0.85) 6.30 (±0.85)
P6 6.72 (±0.80) 6.64 (±0.87) 6.38 (±0.87)

Table 2. Benchmark tests: mean and standard
deviation of optimality gaps.

5.4 Comparative results: computational times

In the previous comparisons on optimization performance,
we considered a generalized, unit-less time step in this
test rather than wall-clock time, to ignore the effects
of computational times of each algorithm, which may
influence the sampling timings. Hence, for each time step
in the same optimization run, all algorithms sample from
the same (evolved) objective to maintain fairness. In
this discussion, we now compare the computational times
across the competing methods, noting that the tests were
performed using MATLAB 2022a on a system with AMD
Ryzen 9 3900X (3.80 GHz) and 32 GB RAM. We show in
Figure 3 the spread of computational times required for
each algorithm for every time step on Problem P1. Both
BO-R and BO-W took higher computational times than
SMGO, because for every new incoming sample, BO has to
re-fit the required GP model on the updated data set. BO-
W had a constantly high per-iteration computational time
because of its constant size of samples set, i.e. for every
oldest sample discarded, another new sample arrives. BO-
R resulted in faster computing times than BO-W because
of the regular clearing up of the data set after every
batch. These problems can worsen significantly when we
consider longer sliding window sizes for BO-W and larger
batches for BO-R. On the other hand, SMGO had the
best computing times, which, with the candidate points
filtering method considered, has consistently kept most
per-iteration times less than 0.2 s.

6. CONCLUSION

We proposed a new approach for time-varying black-box
optimization, by using a Set Membership (SM) framework.
To deal with the remembering-forgetting trade-off, we
use the SM-based information from the new sample, and
adjust the old model to agree with the new data. This
adjustment renders old samples to be uninformative in the

Figure 3. Comparison of computational times for the time-varying problem P1

sense of the tightness of their SM-based bounds, leading
to their discarding from the data set. The updated model
is then utilized for choosing the next sampling point,
by automatically trading off between exploitation and
exploration. The proposed method has low computational
requirements and does not need any knowledge on the
rate-of-change of the underlying function. The proposed
technique is compared with BO-based methods on several
benchmark tests in different problem dimensionalities.
We demonstrated that the proposed method resulted in
highly competitive performance, with better optimality
gaps at five-dimensional benchmark problems, and with
much shorter computational times.

REFERENCES

Antonio, C. (2019). Sequential model based optimiza-
tion of partially defined functions under unknown con-
straints. Journal of Global Optimization, 79(2), 281–303.

Barrico, C. and Antunes, C.H. (2007). An evolution-
ary approach for assessing the degree of robustness of
solutions to multi-objective models. In Evolutionary
Computation in Dynamic and Uncertain Environments,
565–582. Springer.

Bemporad, A. (2020). Global optimization via inverse
distance weighting and radial basis functions. Compu-
tational Optimization and Applications, 77(2), 571–595.

Blackwell, T. (2007). Particle swarm optimization in
dynamic environments. Evolutionary computation in
dynamic and uncertain environments, 29–49.

Blasi, L., Barbato, S., and Mattei, M. (2013). A particle
swarm approach for flight path optimization in a con-
strained environment. Aerospace Science and Technol-
ogy, 26(1), 128–137.

Bogunovic, I., Scarlett, J., and Cevher, V. (2016). Time-
Varying Gaussian Process Bandit Optimization. In
A. Gretton and C.C. Robert (eds.), Proceedings of the
19th International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine
Learning Research, 314–323. PMLR, Cadiz, Spain.

Bosman, P.A. (2007). Learning and anticipation in on-
line dynamic optimization. In Evolutionary computa-
tion in dynamic and uncertain environments, 129–152.
Springer.
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exploration. The proposed method has low computational
requirements and does not need any knowledge on the
rate-of-change of the underlying function. The proposed
technique is compared with BO-based methods on several
benchmark tests in different problem dimensionalities.
We demonstrated that the proposed method resulted in
highly competitive performance, with better optimality
gaps at five-dimensional benchmark problems, and with
much shorter computational times.
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