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Abstract

Machine Learning has recently found a fertile ground in EMG signal de-

coding for prosthesis control. However, its understanding and acceptance are

strongly limited by the notion of AI models as black-boxes. In critical fields, such

as medicine and neuroscience, understanding the neurophysiological phenomena

underlying models’ outcomes is as relevant as classification performance. In this

work, we adapt state-of-the-art XAI algorithms to EMG hand gesture classifi-

cation to understand the outcome of machine learning models with respect to

physiological processes, evaluating the contribution of each input feature to the

prediction and showing that AI models recognize the hand gestures by mapping

and fusing efficiently high amplitude activity of synergic muscles.

This allows us to (i) drastically reduce the number of required electrodes

without a significant loss in classification performances, ensuring the suitability

of the system for a larger population of amputees and simplifying the realization

of near real-time applications and (ii) perform an efficient selection of features

based on their classification relevance, apprehended by the XAI algorithms.

This feature selection leads to classification improvements in term of robustness

and computational time, outperforming correlation based methods. Finally, (iii)

comparing the physiological explanations produced by the XAI algorithms with

the experimental setting highlights inconsistencies in the electrodes positioning
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over different rounds or users, then improving the overall quality of the process.

Keywords: EMG signal decoding, eXplainable AI, myo-controlled prosthesis

1. Introduction and Motivation

Myo-controlled control for upper limb prostheses is commonly used in clin-

ical prosthetic systems, and have proven to be effective in replacing missing

functions providing conscious control of the movement [1, 2]. Myo-controlled

prostheses are artificial devices intended to restore the normal functions of a

missing limb, using the residual neuromuscular activity (EMG) as a control sig-

nal. EMG signal is the electrical activity of a muscle in response to a stimulus

from the motor cortex in the central nervous system. The EMG electrical ac-

tivity can be measured with non-invasive surface electrodes placed on the body

surface and used to classify movement intention or production. Classical Ma-

chine Learning [3, 4, 5, 6, 7, 8] and Deep Learning [9, 6, 10, 11] algorithms have

recently shown promising performances in surface EMG pattern recognition for

hand movement classification. Nevertheless, the acceptance of AI in prosthe-

sis control is strongly limited by the intrinsic black-box nature of AI models

and the trade-off between performance and interpretability [12, 13]. In criti-

cal fields such as medicine and neuroscience, reaching a deep understanding of

the neurophysiological phenomena underlying model outcomes is as relevant as

the classification performances. EMG signal represents the output of a brain

processing in the motor cortex; gaining insights about how it works and how

synergic muscles perform complex movements is fundamental to eventually use

the classified signals properly in the control of prosthetic devices. EXplainable

AI (XAI) may be a powerful tool to interpret AI models for EMG pattern recog-

nition with respect to physiological processes and phenomena under study and,

to the best of our knowledge, it is still an unexplored field.

The benefits of XAI in EMG pattern recognition are not only confined to

open the black-box itself. XAI can address different challenges, such as feature

selection and reduction [4, 14, 3], curse of dimensionality, choice of the classifier
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[5, 6, 9, 15, 10] and the number of channels [3, 5, 6, 16, 17], electrode placements

and number of movements (which impact a lot the easiness of the experimental

acquisitions) [3, 5] that are all open questions in the field.

In this research, we show that, with the aim of Explainable AI (XAI), it

is possible to (i) reduce the number of classification features maintaining com-

petitive classification performances and (ii) simplify the EMG electrodes’ con-

figuration. While machine learning methods have reached high accuracies in

pattern recognition-based myoelectric control, their computational complexity

limits their use in real-time applications [18, 19]. Reducing the number of fea-

tures, and therefore the computational complexity of the classification, without

a drop in performances lead to more robust and reliable models and and paves

the way for new real-time applications. Furthermore, the number of EMG

electrodes to be used in such applications is a pivotal parameter. While some

researchers claim that using a large number of sensors improves the classification

accuracy [20, 3], at the same time, it can be uncomfortable for the user [18] and,

in some cases, it might even be impractical due to the limited usable surface of

the amputee [3, 6]. Moreover, having several EMG sensors limit a large num-

ber of real-world applications because of computational complexity, practicality,

and cost of the hardware [21, 22].

This paper aims to investigate the functioning of black-box models to classify

hand movements and to simplify the system settings, mainly addressing the

following questions:

Q1: Can we explain through XAI, and with physiologically plausible explanations,

a black-box model for the classification of EMG hand movement?

Q2: Can we exploit XAI to simplify the electrodes’ setting, reducing hardware and

software complexity and improving the comfort and usability of the device?

Q3: Can XAI drive improvements towards real applications of myo-controlled

prostheses for amputees?
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1.1. Contribution

We propose to apply XAI to the field of EMG signal decoding for myo-

controlled prosthesis, providing physiologically highly plausible local and global

explanations of how AI models classify hand gestures. AI is combined with

domain expertise in a ”human in the loop” approach that is fundamental to

effectively understand the explanations in the specific application domain. In

particular, our contributions can be summarized as:

1. We apply XAI to the EMG hand movement classification task to

ensure explainability and causability of the models, providing highly plausible

explanations of how black-boxes classify EMG. We succeed in revealing that

AI models recognize the hand gestures by mapping and fusing efficiently high

amplitude activity of synergic muscles.

2. We exploit XAI results to perform feature selection reducing the

number of features without a drop in classification metrics, leading to clas-

sification improvements in term of robustness and computational time and

showing that this method outperforms correlation based methods.

3. We reduce the complexity of electrodes’ configuration, reducing the

hardware and software complexity while achieving competitive performances.

This allows to (i) make the system suitable for a larger population of am-

putees and (ii) reduce computational times and complexity, thus simplifying

the realization of near real-time applications.

4. We use the XAI insights to detect inconsistencies in the placement

of electrodes, comparing the activated electrodes with domain knowledge.

2. Related works

In this section, we review the relevant literature related to the main topics

paper: EMG pattern recognition and Explainable AI (XAI).

2.1. EMG pattern recognition

Recently, thanks to the availability of large amounts of data and high pro-

cessing capabilities, data-driven approaches such as Machine Learning and Deep
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Learning are achieving good performances for EMG signal decoding. Machine

Learning models, such as LDA, SVM, and Tree Ensembles, require a feature

selection step. Their performances rely on the choice of an optimal number

and set of features and on the selection of a correct number and setting of elec-

trodes. Phinyomark et al. [4, 14] presented a detailed study of all possible

features for EMG decoding, highlighting how many research works have ex-

plored different feature vectors for EMG decoding but without evaluating their

quantitative information and redundancy. In their first work [4], they recom-

mended Mean Absolute Value (MAV), Waveform Length (WL), Wilson Am-

plitude (WAMP), AutoRegressive coefficients (AR), and Mean Absolute Value

Slope (MAVS) as the most informative features derived from statistical anal-

ysis. However, in [14] a different set of four features, including Sample En-

tropy (SampEn), the fourth order cepstrum coefficients (CC), root mean square

(RMS) and WL, achieved the best performance in the classification of ten up-

per limb motions.Furthermore, their approach for feature selection did not rely

on class-specific feature contributions, and they did not discuss the number of

electrodes. Al-Timemy et al. [3], starting from coefficients of 6th order AR

model, RMS, WL, Zero Crossing (ZC), and integral absolute value and Slope

Sign Change (SSC), applied Principal Component Analysis (PCA) and Orthog-

onal Fuzzy Neighbourhood Discriminant Analysis (OFDNA) to the original set

of features for feature reduction and classified using LDA and SVM models. In

addition, they argued that limiting the number of electrodes is fundamental to

increase the usability of sEMG systems because several amputees have limited

body surface where to place electrodes. They removed the worst channel at each

step by computing the accuracy without that channel. However, their empirical

channel elimination technique may lead to a sub-optimal selection of electrodes.

They proposed the ratio between the number of movements and electrodes as

an index of the complexity of a system. Rehman et al. [6] proposed a classifica-

tion with LDA and autoencoders achieving good performances with only four

features: MAV, WL, SSC and ZC; however, features selection is not discussed

with a reduction of sensors. Another major challenge is EMG variability, deeply
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analyzed in [5, 6, 8]; EMG patterns vary depending on electrode shift, subject’s

mobility, changes in arm posture, and fatigue among other causes and these

differences affect classification performances. The capability of generalization

over patterns variability is a possible advantage of data-driven classification ap-

proaches. However, it needs to be demonstrated and applied with a minimum

set of sensors for feasibility. To overcome feature selection limitations, [9, 6, 10]

proposed different approaches based on Deep Learning, shifting the process from

feature engineering to feature learning. They exploited the automatic feature

extraction stage performed in different layers by Deep Neural Networks (espe-

cially CNN) on raw signal inputs to increase the robustness and performance

of the models. Côté-Allard et al. [23, 17] and Rehman et al. [16], have shown

that CNet architectures are able to correctly classify between six to eight hand

movements. Furthremore, CNet architectures with transfer learning have shown

promising capabilities to overcome EMG variability [23]. In the literature, there

is still no agreement about the best set of features, or the use of deep learning

on raw datasets, the optimal model, or neither about the electrodes’ configura-

tion setting: all these works are proposing different solutions based on heuristic

assumptions and attempts. Furthermore, these models are difficult to inter-

pret: the black-box nature of AI classification models is a significant obstacle

for reflecting the achieved accuracy of classification back to the minimization

of sensors. To this step, an effort to make the black-box approach explainable

becomes mandatory.

2.2. Explainable AI

XAI can address these challenges and, at the same time, give physiological

explanations in terms of how AI models have decoded EMG signals, producing

details or reasons to make their functioning clear and easy to understand [12].

Post-hoc explanation techniques are based on a reverse engineering approach,

i.e. opening the black-box model that has been already optimized for classifi-

cation through independent XAI algorithms [24, 25]. These methods have the

advantage of exploiting the high classification capabilities of not-interpretable
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models while investigating their inner structure and the reasoning behind the

black-box predictions. Post-hoc explanation techniques include those who pro-

vide feature importance [26, 27] and saliency masks [28, 29, 30]. XAI algorithms

have been widely applied to images, text, and tabular data, but their use in

real-world applications is still in a growing phase. In particular, XAI applied

to physiological time series has been rarely investigated, although the topic

strongly demands comprehensibility and interpretability. Some research groups

have proposed to explain Electroencephalogram (EEG) time series, a brain sig-

nal that is recorded similarly to EMG, and they share common characteristics

and challenges. Sturm et al. [31] is considered the benchmark for EEG interpre-

tation and visualization. They proposed Layer-wise Relevance Propagation to

explain a DNN trained for motor-imaginary Brain Computer Interface (BCI),

highlighting the relevance of each input feature of EEG data using heatmaps.

They obtained neurophysiological explanations, inferring the influence of visual

activity and eye movements in the classification of motor tasks. Schirrmeister et

al. [32]proposed two different approaches to interpret EEG CNN classification

for motor tasks. They demonstrated that the network was reliable and learned

EEG characteristics in agreement with domain knowledge. EEGNet [33] con-

tributed with a comprehensive study about the best network architecture for

EEG classification and proposed three different visualization approaches show-

ing that neurophysiologically interpretable features can be extracted from the

EEGNet model. Similarly, [34] assessed the importance of kernel dimension and

filter values to produce band-pass filtering, showing that kernel learned by the

model gives insights into the morphology and patterns of the input. Finally, [35]

investigated amplitude changes, frequency bands, and phase changes at different

layers of a network; the visualization helped to better understand the structure

and characteristics of EEG time series. Recently, Côté-Allard and his group

[17], have applied local saliency maps to Adaptive Domain Adversarial Neural

Network for EMG classification to explain single EMG examples. Yu et al. [36],

proposed a simple analysis based on principal components extracted directly

from the activations of the last ReLU layer. These works support the applica-
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tion of XAI as a tool for explaining neurophysiological phenomena, and their

valuable contributions make XAI implementation for EMG pattern recognition

promising.

3. The Proposed Approach

This Section provides an in-depth description of the proposed methodology

for EMG classification and interpretation, summarized in Fig. 1. Step 1 is re-

lated to data collection and preprocessing. In Step 2, we perform hand gesture

classification in two different ways. The first one is by means of ”classical”

machine learning methods, using 15 features obtained through a preliminary

feature engineering phase. The second one is through deep learning, thus with-

out a manual, expert-based feature selection. Those two methods are carried

on in parallel because they provide different insights. On the one side, the

machine learning models provide useful information on the importance of sta-

tistical and domain-related important features, in accordance to the literature,

like, for instance, the average of the rectified signal or the number of times the

signal crosses the zero. On the other side, the deep neural networks use directly

the raw EMG signal, they provide important information on the topology of

the problem and allow to infer highly plausible physiologically explanations of

the classification results. Moreover, while deep learning methods show slightly

better classification performance and promising solutions for addressing inter-

session variability, machine learning methods provide, after the feature selection,

good result in lower computational times, taking a step towards novel real-time

applications. Even in Step 3, the XAI analysis, we interpret the classification

results separately for machine learning and deep learning classification, aiming

to obtain a deeper understanding of the importance of the hand-crafted classi-

fication features from the machine learning models as well as the importance of

the hardware configuration from the deep learning models. Finally, in the final

discussion, we bring together the two, proposing a global simplification of the

EMG hand gesture classification problem both from a physical and a compu-
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tational viewpoint. In addition, in the feedback steps, namely Data collection

analysis and error decoding and Transfer Learning for intersession variability

we present two additional benefits derived from the our XAI analysis.

Figure 1: Pipeline of the proposed methodology for EMG classification and explanation

3.1. Experimental protocol and settings

The EMG data are collected within a real study [37] targeting different up-

per limb movements, following inclusion criteria according to the most frequent

daily gestures. Each gesture has been performed starting from different hand

starting posture, introducing variations to achieve higher robustness in pattern

recognition. Labels for classification are defined as the hand gesture, indepen-

dently from the starting postures. During the movement, the EMG activity

of upper limb muscles has been recorded through 10 bipolar channels (surface

electrodes) with a sampling frequency of 2048Hz. The electrodes were placed in

two circumferences, one placed 3 cm from the elbow with six electrodes equally

spaced around the circumference of the forearm, the other placed 3 cm distal to

the previous one, , according to SENIAM (Surface EMG for non invasive assess-

ment of muscles) guidelines [38]. Reference electrode was placed on the back of

the wrist as suggested by SENIAM directions [38]. The position of electrodes

is shown in Fig. 2. Despite the arrangement was geometrically defined, there

is a rough a priori correspondence between the electrodes and the underneath

muscles:

• Channel 1: flexor carpi ulnaris/flexor carpi radialis
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Figure 2: Schema of electrodes placement in the right forearm: six electrodes are placed

equally spaced in a circumference close to the elbow. The remaining four electrodes are

placed distally. The posterior part of the arm (dorsal) is in front of the viewer while the

anterior (palm) side is on the back.

• Channel 2: flexor carpi radialis/ pronator teres

• Channel 3: brachioradialis / pronator teres

• Channel 4: ulnaris extensor carpi radialis longus

• Channel 5: extensor digitorum/extensor carpi ulnaris

• Channel 6: flexor carpi ulnaris

• Channel 7: palmaris lonugs/flexor carpi ulnaris/ flexor digitorum

• Channel 8: brachioradialis

• Channel 9: extensor carpi radialis brevis/extensor digitorum

• Channel 10: flexor carpi ulnaris

Then, raw EMG signals were collected and filtered using a 10 − 500 Hz band

pass filter (Butterworth order 4th) and a 50 Hz Notch filter (Butterworth order

2nd)[39]. Furthermore, since the steady-state signal of muscles was targeted,

100ms from the beginning and end of windows were removed to eliminate the

transient part of the movement signal. Aiming at online classification, segmen-

tation is a relevant step for the delay in the response. The windows length was

selected considering limitations for online applications. Finally, as suggested by

Côté-Allard et al. [23], sliding window approach is the most effective augmen-

tation technique for surface EMG classification. On the one hand, it increases

the database size to achieve high performance and better generalization in deep

learning methods. On the other hand, it mimics a real-time application where a
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sliding window approach allows to reduce the delay between intended movement

and classification, continously classifying the acquired EMG.

3.2. Personalized Models

EMG variability due to electrode positioning, anatomical differences, elec-

trode displacement, and other inter-subject differences strongly limits the use

of generalized models. Therefore, EMG classification often relies on personal-

ized models. For each subject, his own data are used both to train and test.

We classified hand movements with two approaches: classical machine learning,

based on domain knowledge for feature extraction, and deep learning with con-

volutional neural networks. Each movement class has been divided into training

(2/3 repetitions) and test (1/3 repetitions), equally balanced for hand starting

postures. Accuracy, F1 score and roc-auc score were used as evaluation metrics.

3.2.1. Classical Machine Learning

When dealing with classical machine learning and time series, a typical ap-

proach is to window the signal and extract relevant features from each window,

namely the feature engineering step. In an optimal scenario, the features are

carefully selected to represent in a different dimensional space the same informa-

tion that was present in the original signal. 15 different statistical and domain-

based features, based on literature suggestions [40, 41, 4, 14, 23, 42], were ex-

tracted from each window, for each channel (Table 1). The formula of each

feature is presented in Appendix A. These features were then grouped in two

feature sets, Improved Time Domain (ITD) (MAV, ZC, SSC, WL, RMS, IEMG,

HP A, HP M, HP C) and Full Dataset (FULL) (MAV, ZC, SSC, WL, HP A,

HP M, HP C,SE,CC 1-4, RMS, IEMG, SKEW9). Then, we used this features

set to train different machine learning algorithms: MLP, KNN, SVM, LDA and

Random Forest, AdaBoost, Bagging Ensemble Trees and XRT. For each model,

a grid-search approach has been applied to tune the hyper-parameters using the

training set of a randomly chosen subject with 3 fold cross-validation. Each fold

was created dividing different repetitions of each movement of the training set.
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Table 1: Features extracted from EMG signal for classical machine learning classification.

Feature name Explanation

Mean Average Value (MAV) average of the rectified signal

Zero Crossing (ZC) number of times the signals crosses

the zero line

Slope Sign Change (SSC) number of times that the signal slope

changes

Waveform Length (WL) a simple characterization of the signal’s

waveform, defined as cumulative length

of EMG waveform over the time segment

Hjorth Parameter (HP) statistical properties in signal processing

HPA: Activity

HPM : Mobility

HPC : Complexity

Sample Entropy (SE) measure of the complexity of

physiological time series

Cepstral Coefficients (CC) coefficient of inverse Fourier transform of

the log power spectrum magnitude of the

signal (up to 4th order)

Root Mean Square (RMS) quadratic mean

Integrated EMG (IEMG) sum of fully rectified signal

Skewness (SKEW) measure of asymmetry of a distribution

3.2.2. Deep Learning

Differently from traditional classifiers, deep learning algorithms have the

great advantage of learning effective data representations directly from the data,

without the need for hand-crafted features [43]. Recent works using simple CNet

architectures have shown promising performance for surface EMG-based gesture

recognition using raw EMG directly as the input of the network [23, 16, 17]. In

this work, the EMG input has been encoded as a 2D matrix with height equal
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to the number of channels and width equal to number of samples in a window.

It can be considered as a 2D grey-scale image where the axis are in the time-

space dimension. The first session of DL training included two different CNN

architectures: CNet1D and CNet2D.

Both architectures are designed with two main stages: the first stage is a

sequence of convolutional blocks working as “feature encoding”, and the sec-

ond one is composed of fully connected layers for the final classification step.

Each convolutional block consists of a convolutional layer with Rectified ReLU

activation function, batch normalization, max pooling, and dropout. CNet1D

has filters with shape (1xW ): it does not exploit the spatial relations between

channels in the first dimension of the input (height) in the feature encoding

stage, focusing on extracting information of individual channels only in time

(width). On the other hand, CNet2D also performs space convolution applying

a spatiotemporal convolution. It has the same architecture as CNet1D, but the

filter size of each convolutional layer is (2xW ). In this way, the discrete informa-

tion provided by single electrodes, which are juxtaposed in the first dimension

(height) of the input, is merged and filtered together. In order to find the

hyper-parameters of the networks, different combinations of hyper-parameters

(number of layers, number of filters, filter size and activation function) were

tested by trial and error on the validation set (1/5 of the training set). DL

models have been trained with categorical cross-entropy loss function:

CE = −
C∑

c=1

yi,c ∗ log ŷi,c (1)

with ŷi,c is the softmax probability for the cth class and ith instance. Then, the

total loss is the sum of CE loss for each instance in the batch size. The total

loss on the validation set was computed for early stopping. The best model on

validation loss was saved as a check point. During the training phase of the

proposed architecture, Adam Optimizer was used as an optimization method.
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3.3. XAI approaches

In this article, we employ and adapt two different XAI methods. One is

used to explain the classical machine learning classification fed with 15 hand-

crafted features typically used in this field, and to propose novel feature selection

approach based on the explanations obtained. The second one is used to ex-

plain and visualize the activations that are relevant for the target movement

in the neural networks’ classification; this will allow us to propose a simpli-

fication of the hardware, maintaining statistically similar classification perfor-

mances. For the first task we need, therefore, a global, feature-based explanation

methodology that can be applied agnostically to several machine learning algo-

rithms. As it emerges in one of the most recent surveys on XAI [13], among the

global, model-agnostic XAI alogrithms, most of them provides rules as output,

instead of feature relevance(see, e.g., [44, 45] and all the decision-tree based

surrogate models), thus are not suitable for feature selection. Among the fea-

ture based ones, SP-Lime and K-Lime provide methods to select representative

sets by means of submodular optimization [26], while SHAP provides global

explanations considering all the set of instances on which the model has been

trained based while ensuring several property derived from probabilistic game

theory [27, 46, 13].

The second task requires a method for post-hoc visual explanations of CNN

classifiers. Several relevant methods have been proposed in literature. Some of

them, despite producing fine-grained representations,are not class-discriminative [47].

Others, based on attention, needs to retrain the model adding attention mech-

anisms (see e.g. [30, 48]), which is our case is not doable, because, as common

in post-hoc explanations, we explain an already trained black-box model [37].

Among the high-resolution, class-discriminative, post-hoc visual explainers, Grad-

CAM has shown to achieve the best heatmap localization ability [29, 49] and

have shown promising result in EEG-classification [50, 51]. Furthermore, an-

other advantage of Grad-CAM is that it can be implemented on any CNet-based

architecture without requiring re-training.
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3.3.1. SHAP on classical machine learning

SHAP aims to explain the prediction of an instance x by computing the

contribution of each feature to the prediction, exploiting Shapley values from

coalitional game theory. SHAP belong to the category of methods referred to

as Additive feature attribution methods. Additive feature attribution methods

provide an explanation model that is a linear function of binary variables:

g(z
′
) = Φ0 +

M∑
i=1

Φiz
′

i (2)

where g() is the explanation model, z
′
is an interpretable representation of a

simplified input (x
′

i) ∈ {0, 1}M , M is the number of input features and Φi the

effect of each feature ∈ ℜ. The idea in Eq. 2 is that summing the effect of all

features in a linear explainable model is possible to achieve an approximation of

f(x), the output of the original opaque model. SHAP [27] provides a solution

to Eq. 2 that respects three desirable properties: local accuracy, missingness

and consistency. SHAP values, i.e. each feature contribution, of the instance x,

can be computed as follow:

1. Sample coalitions z′k ∈ {0, 1}M (1 feature present, 0 feature absent), with

k = 1...K different coalitions

2. Converting z′k in the original space using hx(z); if the feature is present

(1) its value is equal to the value in the original instance x, if the feature

is absent its value is randomly sampled by the marginal distribution; find

the prediction f(hx(z
′
k)) with the original opaque model

3. Compute the weight Φk for each z′k

4. Fit weighted linear model g(z′) (Eq. 2) minimizing a loss functions weighted

depending on the number of present features in the coalition

5. Return Shapley values Φk the coefficients from the linear model

The solution of the linear model is obtained minimizing the following loss func-

tion:
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L(f, g, πx′) =
∑
z′∈Z

[f(hx(z
′))− g(z′)]2πx′(z′) (3)

πx′(z′) =
(M − 1)(

M
z′

)
|z′|(M − |z′|)

(4)

where |z′| is the number of non-zero elements in z′. The distance kernel in Eq. 4

aims to return largest weights for small coalitions (i.e. few 1’s) and large coali-

tions (i.e. many 1’s). The idea is that from small/large coalitions it is possible

to learn more about individual features since their effect is studied isolated from

the others [52].

We computed SHAP values independently for each instance resulting in SHAPscnf

(with s subjects, c classes of movements, n number of observations for each sub-

ject s and f features).

SHAP for Feature Selection.

We proposed a correlation-XAI approach for feature selection merging

generalized feature importance obtained with SHAP and correlation analysis to

achieve the optimal feature vector for classification. The selection of the best

set of features is problem-specific, and it is constrained by feature significance,

reliability, robustness, complexity and maximum class separability [53, 54]. A

common agreement about the best set of feature has not been yet achieved

and feature selection is usually carried out with sub-optimal unsupervised ap-

proaches. In our approach, we firstly computed correlation matrices of all fea-

tures, dropping features with correlation higher than 0.9. Then we computed:

µSHAP,cf =
1

S

S−1∑
s=0

1

Ns

Ns−1∑
n=0

|SHAPscnf | (5)

and in the same way the variance σSHAP . The average SHAP value µSHAP,cf

was an index of the absolute importance and contribution of the feature f for

the prediction of class c, i.e. the gesture, while the variance represented its

consistency. Following a deep analysis of scatterplots representing µSHAP,cf
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and σSHAP , we highlighted five different possible set of features and used each

of them to re-train the models. These sets were:

• Original FULL set

• Original ITD set

• Not-correlated features obtained after the correlation analysis

• Best set, obtained after correlation-XAI analysis

• Worst set, features identified as not important with SHAP

We compared performances and validate the results with Wilcoxon Signed-Rank

test. Statistical significance was set to 0.05.

SHAP for EMG Variability.

The variability of EMG features due to electrode shift, different arm position,

changes in arm posture and fatigue among other causes, is an important charac-

teristic for the robustness and reliability of a model. We exploited SHAP values

to understand both qualitatively and quantitatively whether features were ro-

bust in time, inter-posture, inter-session or inter-subject. We visualized

the results of EMG variability analysis in heatmaps representing feature impor-

tance according to Eq. 6:

SHAPnf =
|SHAPnf |

max(SHAPnf )
(6)

We computed the absolute value of Shapley values and then normalized it,

resulting in S × C × P matrices of SHAP values (S number of subjects, C

number of classes-gestures, P number of postures). Firstly, we evaluated fea-

ture importance in time, comparing SHAP values for different windows of the

same movement evaluating the robustness of the features. The second step

was to compare heatmaps obtained for the same subject but in different hand

starting postures. Thirdly, an inter-session analysis was conducted for two sub-

jects whom performed the experiment twice. Finally, an inter-subject analy-

sis was performed to evaluated differences in the electrodes placement and in
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the anatomy. The qualitative observation of these heatmaps was supported by

Kruskal-Wallis tests.

3.3.2. Grad-CAM for CNNs

Grad-CAM [29] is a model-specific, outcome explanation method based on

saliency maps. It proposes a class-discriminative localization technique for CNN

interpretation that outputs a visualization of the regions of the input (heatmaps)

that are relevant for a specific prediction. Firstly, the gradient of yc (score for

the class c) is computed with respect to each feature map activation Ak, ∂yc

∂Ak ,

with k index of the specific feature map. Then ∂yc

∂Ak are global average pooled

to obtain the weights αc
k:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(7)

with Z number of pixel in the feature map and i and j are indexing along width

u and height v of the feature map ( ∂yc

∂Ak
ij

refers to the activation at location

i, j of the feature map Ak). αc
k represents the importance of the feature map

k for the class c. Then the class-discriminative localization map Grad-CAM

Lc
Grad−CAM ∈ ℜuxv is computed as:

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (8)

returning the importance of each neuron of the last convolutional layer. Lastly,

Lc
Grad−CAM is upsampled to the input image dimension using linear interpo-

lation, returning the importance of each pixel of the input image. Selvaraju

et al. [29] proposed Grad-CAM as a local XAI model that can be applied to

image classification (e.g. with ImageNet weights), image captioning, and visual

question answering (VQA). These examples require proper images that are dif-

ferent from EMG signals, i.e. dynamical physiological time series characterized

by time-space dimensions. Furthermore, EMG signal is characterized by high

dimensionality (e.g. sampling rate), channel correlation, artifacts, and noise

that are not typical of static images, making learning features in CNN layers

and extracting explanations with XAI, more difficult for EMG signals than for
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classical images. On the other hand, EMG signals analyzed as a 2D image have

the advantage to present similar pattern in different windows, since each chan-

nels is always placed in the same position. In this work, starting from the local

explanations computed with the original algorithm [29], we propose a general-

ization to obtain global explanations. Firstly, we compute Grad-CAM saliency

mask for each instance as in Eq. 7 and 8, obtaining Ls,c
n feature importance

maps with n instance ∈ {1...Nc}, c class ∈ {1...C} and s subject ∈ {1...S}. Ls,c
n

has dimension ChxT that is the width (time) and height (channel) dimensions

of input image. Then, each saliency maps is normalized:

Ls,c
n =

Ls,c
n −minch,t(L

s,c
n )

maxch,t(L
s,c
n )−minch,t(L

s,c
n )

(9)

For each Ls,c
n we compute the average value in time (from Ch ∗ T to a vector

Ch∗1). Then, we averaged all vectors importance for each subject and for each

class weighting depending on the value of the prediction ŷc:

Ls,c
ch =

1

Nc

Nc−1∑
n=0

ŷs,cn

[
1

T

T−1∑
t=0

∗Ls,c
n,(t,ch)

]
(10)

Ls,c
ch represent the average importance of each channel ch for the prediction of

the class c for subject s. In order to analyze the achieved results, we firstly pro-

pose an input feature importance visualization based on the local explanations

(Eq. 8) aiming at analyzing relevant input features that have led to gesture clas-

sification and how they are connected with physiological characteristics. Local

explanations are plotted as a 2D heatmap (time x space). Besides heatmaps,

we plot the original EMG signals with Grad-CAM explanation superimposed to

analyze the dynamics of the signals.

Grad-CAM for reducing hardware and software complexity.

The usability of upper limb prostheses is a significant obstacle to prostheses

application and is strongly influenced by the number of electrodes [3, 22]. Fol-

lowing results and observations that will be presented in Section 4.4, we select

the optimal number of electrodes. Four Convolutional Neural Network mod-

els have been designed to classify hand movements using only six channels.
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The architecture choice has focused on 2D convolution to compensate for the

information loss with 2D filtering in space. Then, we have further validated

the new set of electrodes, harnessing them to address another challenge related

to myoelectric prostheses, i.e. inter-session variability [8, 16]. The aim of myo-

controlled prostheses is not the laboratory but real-world conditions, where day-

to-day variations might strongly influence the classification performance. To this

end, we proposed a continuous learning approach with preliminary experiments

on the inter-session variability between two different independent measurement

sessions of the same subject. Continuous learning is a popular approach, espe-

cially in AI-powered devices and IoT [55, 56], defined as the ability of a model

to learn continually from a stream of data. This can be done by triggering

a learning phase periodically. Myo-controlled prostheses is a suitable field for

continuous learning: it enables to collect more data increasing the classification

performance progressively, and at the same time proposing a solution for day-

to-day variability. Generally, continuous learning can be done both retraining

the model from scratch or tuning a pre-trained model on new data, minimizing

the time required for the training phase. We tested our hypothesis on a subject

that has performed hand movements in two independent measurement sessions.

The subject’s first session was used to train a CNN model with six channels;

the best model on the validation set was selected, and the weights of the first

two convolutional blocks were frozen. Then, the data from the second session

were used to fine tune latest convolutional and fully connected layers.

4. Experimental Results

In this Section, we briefly introduce the results of the best performing models

(SVM, LDA, XRT, and CNN) on EMG signal decoding. A extensive analysis of

the other machine learning methods used in this work is presented in Appendix

B. Then, we proceed with SHAP and Grad-CAM with an in-depth domain

knowledge analysis of the explanations achieved towards real-world applications.
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Figure 3: Representation of the 8 targeted hand movements

4.1. Experimental Study Design and Settings

The experimental study involved 11 subjects, 5 females and 6 males, with

no history of neuromuscular diseases; two subjects repeated the experiment

twice. Among hand movements, eight gestures have been targeted: wrist flexion,

wrist extension, supination, pronation, hand open, pinch, lateral pinch, grip/fist.

The protocol included all hand gestures performed from three different starting

postures: palm faced upward, palm faced sideways, palm faced downward. In

each hand starting posture, each gesture was repeated 5 times, resulting in 8

gestures ×5 repetitions ×3 starting postures = 120 total movements. For each

movement, the 15 repetitions were divided into training (2/3) and test (1/3) set;

then, the training repetitions were further divided into training and validation

set. Each gesture was performed for 5 seconds. Considering that for online

applications window length plus processing time to generate classified control

commands should be less than 300ms [57], window size of 250 ms was selected,

with a stride of 62.4ms, resulting in overlap among consecutive windows of

187.5ms.
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4.2. Personalized Models Classification Results

4.2.1. Classical Machine Learning

We selected 8 ML apporaches: KNN, MLP, SVM, LDA, XRT, Bagging,

Adaboost e Random Forest. For each of them we performed a grid-search on

several hyperparamenters, to maximize Accuracy and F1 score, similarly to

what have been done in [58] and [59]. The models have been validated using

3-fold cross-validation. For sake of reproducibility, the random seed has been

fixed. The full set of hyperparameters and the classification results are reported

in Appendix B. LDA with svd solver, SVM with regularization=1, a linear

kernel, and γ = 0.01 and XRT with 50 estimators, have produced the best

performance, shown in Table 2. Best LDA (with FULL feature set) and best

Table 2: Classical Machine Learning results in term of average accuracy (%), f1 score (%) and

roc-auc sscore (%) with inter-subject standard deviation

Accuracy F1-score Roc Auc score

Classifier Improved TD FULL Improved TD FULL Improved TD FULL

LDA 91.62 ±4.18 92.55 ± 4.23 91.69 ±3.95 92.60 ± 4.02 95.22 ± 2.28 95.75 ± 2.31

SVM 91.72 ± 3.60 91.47 ±3.42 91.70 ± 3.38 91.44 ±3.21 95.23 ± 1.93 95.11 ± 1.86

XRT 90.12 ± 3.85 90.02 ±3.70 90.13 ± 3.73 89.93 ±3.71 94.40 ± 2.13 94.38 ± 2.15

SVM (with ITD feature set) showed no statistical difference ( pval = 0.248).

XRT was statistically different from LDA (pval = 0.013) but not from SVM

(pval = 0.074). However, we considered XRT models because SHAP [60] is

considerably faster in computing feature importance on them with respect to

other models.

4.2.2. Deep Learning

The final CNet1D and CNet2D’s architectures are shown in Appendix C.

Both model are designed as a CNet architecture with three convolution blocks

followed by two fully connected blocks with a final softmax layer for classi-

fication. Each convolutional block includes convolution, batch normalization,

RRelu activation function, max pooling and drop-out. The main difference is

that CNet1D applies filtering only in the time dimension (along the width of
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the input) and it does not exploit the relations between channels while CNet2D

performs a 2D filtering both in time (width) and space (height). The filters pa-

rameter (number of filters, kernel size and stride size), as well as the max pooling

and dense parameters have been optimized with a trial-and-error strategy. Final

architecture hyperparameters are shown in Appendix C. Adam optimizer has

been used as optimization strategy. The final learning parameters for CNet1D

and CNet2D’s training are learning rate from 0.003 to 0.0005 with a factor of

0.5 and patience 30, 400 epochs with early stopping patience 100 (based on vali-

dation loss) and batch size equal to 128. The preprocessed raw data was passed

directly as an image of shape 10512 (Channel × Samples) to the CNet. The

final input size was (batch size x 10 x 512 x 1). CNet1D and CNet2D have been

trained for each subject achieving an overall average accuracy with variation

among subjects of 93.23% ± 2.77 and 92.81% ± 3.06 respectively. We have

tested both classical machine learning and deep learning models, with the latter

showing better performance. Therefore, we decided to focus on CNNs, applying

XAI for models and outcomes explanation to better understand their hidden

functioning.

4.3. SHAP

SHAP values were computed independently for each instance of all 11 sub-

jects (and models), resulting in SHAPscnf (with s subjects ∈ {1...11}, c classes

of gestures ∈ {1...8}, n number of observations for each subject s ∈ {1...Ns}

and f features ∈ {1...F}). Each SHAP value represented the importance of the

feature f for the prediction of class c for the instance n of the subject s.

4.3.1. Correlation-XAI approach for feature selection

In Eq. 5, we have introduced a generalization of SHAP local explanations

merged with correlation analysis for feature selection. We plotted µSHAP and

σSHAP (Eq. 5) in scatterplots (an example is shown in Figure 4).

Correlation-SHAP analysis through scatterplots highlighted RMS, HPM and

HPA as the most important features. In particular, RMS was relevant for all
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Figure 4: Scatterplot SHAP values for SVM class 4 (hand open) and 5 (pinch) obtained after

applying SHAP to SVM models trained without correlated features.The x axis represents

µSHAP , y axis σSHAP and the hue (color of different points, that can display a third variable)

summarizes the feature typology

classifiers and all classes, as evident by its positioning on the right side of the

scatterplots (Figure 4) This result is coherent with domain knowledge: indeed,

a stronger electrical activity is linked to a higher EMG signal and thus, to the

contraction of specific muscle fibers during the movement.

Thereafter, we trained ML models with five different feature sets to validate

our approach; the performances of SVM are shown in Figure 5 in term of ac-

curacy and F1-score, and Wilcoxon Signed-Rank test is presented in Table 3.

Similar resulst were achieved for the other classifiers. A broad analysis of SHAP

Table 3: Wilcoxon signed-rank tests for SVM with different feature sets: FULL, ITD, features

after correlation analysis, best set with best features obtained through correlation-XAI feature

selection and worst set with features discarded by SHAP

ITD Not Corr Best Worst

FULL pval 0.722 0.013 0.508 0.003

ITD pval - 0.091 0.722 0.003

results highlights that:

• Correlation feature selection alone may not lead to the best set of features:

Not correlated features show worse results than FULL features set (pval <
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Figure 5: SVM performances in correlation-XAI feature selection, in term of accuracy and

F1-score

0.05)

• The best set of features, i.e. the one obtained combining correlation and

SHAP (RMS, HPM, HPC), achieves competitive performances compara-

ble with the models trained both with FULL and ITD features (pval >>

0.05) while decreasing the inference time from 275 ms to 0.55 ms.

• The features identified by XAI as not important (ZC and SSC) are indeed

significantly worse that all the other feature sets.

• Features are robust among classifiers: SHAP achieved similar feature rel-

evance for SVM, LDA and XRT. The importance of these features do

not depend on the specific classifier, supporting their significance in the

specific domain.

Limiting the number of features has benefits not only for inference and training

time but is a great advantage to overcome the curse of dimensionality [61]:

with a large number of features, i.e. large hypothesis space, the variance of

the model increases requiring a larger dataset for a correct estimation of the

prediction error.
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4.3.2. EMG Variability

The evaluation of time, inter-postures, inter-session and inter-subject vari-

ability in EMG pattern recognition for robust myo-electric control, has been

carried out through a qualitative- quantitative analysis of SHAP features im-

portance. We firstly group SHAPscnf by hand starting posture, and then we

plot features and instances in heatmaps; an example is shown in Figure 6.

Figure 6: SHAP values for EMG variability. For each heatmap: x axis: features obtained

from the correlation analysis in the following order: ZC, SSC, HPM, HPC, RMS; each one

for 10 channels; y axis represents the time step (different instances are ordered in time);

color intensity changes according to the importance of the feature for the prediction (Eq. 6).

Each row is a different starting posture of the hand (upward, sideways and downward). The

first column shows fist/grip gesture for subject 6; the last two columns present the extension

gesture for subject 5 and 6.

We can notice that RMS, the last ten columns, has a significantly higher in-

tensity than the others, supporting the results achieved in Section 4.3.1. We ob-

serve that features importance appears to be consistent in time and posture. It
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is possible to evaluate the time dimension looking at the trend of each column in

the y axis. These heatmaps do exhibit a predominantly vertical pattern, where

the intensity of each point remains essentially uniform. Similarly, contiguous

figures present similar patterns; for instance, in Figure 6, RMS of channel 6 is

the most important feature and its value is almost constant in time and among

rounds. Qualitative observations have been validated through Kruskal-Wallis

statistical tests. Time and inter-posture variability is not significant

since the comparison of different heatmaps shows similarity of feature impor-

tance in time and in respect to different hand starting postures, supported by

Kruskal-Wallis pval >> 0.5. Therefore, electrode shift, short-time skin conduc-

tivity changes, hand starting posture and the orientation with respect to gravity

are not relevant factors that are affecting the classification performances. The

system is robust in short-time and against different starting position as usually

assumed in real life clinical applications.

On the other hand, inter-session (multiple independent acquisitions) and inter-

subject variability is significant, validated through Kruskal-Wallis statistical

tests that showed significant statistical differences. We observe that generally,

what is changing between subjects or sessions is not the feature type (e.g. RMS)

but the channel from which it is extracted, especially among close/ adjacent elec-

trodes. For instance, Figure 6 shows that for subject 5 RMS of channel 4 and

RMS of channel 9 are more important while for subject 6 RMS of channel 5

and RMS of channel 9 dominates. In Figure 2, we could notice that electrode

4 and 5 are adjacent; this is suggesting that the inter-session or inter-subject

variability is mainly due to slightly differences in the electrode placement or

anatomy of the subject. Improving the electrodes’ placement with more robust

protocols should improve inter-session or inter-subject performances.

4.4. Grad-CAM

We applied Grad-CAM on the test set classified using CNNs, following the

steps introduced in Section 3.3.2. Tab. 4 shows a global explanation in terms of

the most relevant channels for each hand gesture prediction. We linked general-
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Table 4: Most important electrodes for each gesture, obtained ordering channels in respect to

the averaged Grad-CAM values for all instances and subjects. Only the best three electrodes

for each gesture are presented. In the last row, Ls,c
ch in Eq. 10 have been further averaged

among subjects and the correspondent most importance channels are shown.

Gesture

Subject Flex Ext Sup Pron Open Pinch Lat Pinch Fist

1 1,7,10 1,9,7 7,1,3 1,2,6 10,3,4 8,4,1 7,1,2 8,7,6

2 1,10,6 8,4,9 7,3,5 4,8,3 4,3,1 7,4,10 7,1,10 8,7,6

3 6,3,1 4,9,3 9,10,3 4,10,9 10,6,3 10,6,3 10,2,9 8,4,3

4 1,10,3 9,4,5 3,2,5 4,8,3 1,3,2 10,4,8 3,1,2 9,10,6

5 4,1,8 9,4,10 4,8,9 4,8,2 10,7,6 10,6,3 2,8,4 6,10,7

6 8,1,10 9,5,4 5,10,2 10,9,8 8,3,7 2,8,7 10,5,9 10,8,6

7 7,1,10 9,8,4 5,7,3 6,5,3 9,4,7 3,8,4 3,8,7 8,6,3

8 5,9,8 3,9,4 3,2,8 8,10,3 1,2,10 8,3,2 9,6,5 6,7,1

9 7,10,1 9,4,5 4,8,9 2,3,8 10,3,7 8,3,6 1,8,2 7,1,4

10 5,1,10 4,9,5 8,6,5 3,7,8 10,6,3 4,9,8 8,7,5 7,1,10

11 3,10,1 9,4,5 7,3,9 8,3,4 5,9,4 5,4,3 10,7,3 7,1,6

ALL 1,10,7 9,4,5 3,4,8 4,10,3 10,3,4 8,3,4 7,10,2 6,7,8

ized Grad-CAM results with domain knowledge about myo-controlled prostheses

and biomechanics of hand movements gaining the following insights.

4.4.1. Simple/complex movements provide less/more variability in channels’

importance.

We can assume that the simplicity/complexity of a hand movement depends

on the number and position of active muscles and actively involved joints, re-

flected in the noise and interference present in the recorded sEMG signals. In-

deed, some movements such as wrist flexion and wrist extension are a single

joint task carried out by specific, identified superficial muscles. For these move-

ments, the superficial positions of the muscles, located close to the skin where

the surface electrodes are placed, reduces the possible noise and artifacts. These

movements can be defined as ”simple” since, from a point of view of recording

and pattern recognition, they should be always identified and classified with

the same signals. Indeed, these movements (Tab. 4), especially wrist flexion

and wrist extension, showed high robustness of channels’ importance among
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subjects: for example, for almost all subjects, hand extension is identified em-

ploying channels 9, 4, and 5. On the other hand, more complex movements

such as supination, hand open and ”finger movements” such as pinch and lat-

eral pinch require either the use of deeper or thin muscles (e.g. supinator muscle

is really profound); they provide a noisy signal in other channels due to move-

ment artifacts or anthropometric differences. Thus, the variability of channels’

importance is higher since each model may have learned how to identify these

complex movements in a slightly different way.

4.4.2. Channels’ importance identifies areas rather than single electrodes.

Figure 7: Schema of important electrodes for supination and pinch. Electrodes 3,4,8 are

placed close to each other, 3 and 4 in the proximal circumference, 8 in the distal one

In Tab. 4, we can notice that channels’ importance identifies areas of the

forearm rather than single electrodes. For instance, supination and pinch are

classified exploiting mainly electrode 3,4,8. In the physical electrodes’ setting,

electrodes 3 and 4 are placed adjacently in the proximal circumference while

electrode 8 is placed distally between them (Fig. 7). Similarly, wrist flexion and

wrist extension are classified with electrodes 1,7,10 and 4,5,9, respectively; these

channels are placed in contiguous areas in the forearm.

A movement is usually carried out by the contraction of several functional syn-

ergic muscles, and each of them is active in its entire surface and not only

in the specific point where an electrode samples it. Our results support that

CNNs have automatically learned the correlation among close channels placed

on the same muscle, fusing the information of functional synergic muscles in

agreement with domain knowledge. On the other hand, this raises questions
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about the redundancy of all channels, possibly leading to system simplification.

For instance, channel 5 and channel 9 are both placed on a superficial area

that roughly corresponds to the extensor digitorum muscle; it is reasonable to

assume that by removing one channel, the model can still extract the relevant

information from the remaining one. To validate these assumptions, we will test

(Section 4.5) whether the CNNs are still able to learn relevant information and

maintain high performances even dropping some redundant channels.

4.4.3. A deep analysis of wrist flexion and wrist extension shows that the model

is learning meaningful and relevant characteristics in agreement with do-

main knowledge.

Following the division of the movements into simple and complex, we have

decided to investigate wrist flexion and extension extensively.

Wrist flexion is carried out by a group of muscles called flexors, including su-

perficial muscles (flexor carpi ulnaris, flexor carpi radialis, flexor digitorum) and

other deeper muscles. In Tab. 4, we have highlighted that our model identifies

wrist flexion through channels 1, which is placed superficially in correspondence

of the flexor carpi ulnaris and the flexor carpi radialis, 10 the distal part of flexor

carpi ulnaris, and 7 the flexor digitorum and the palmaris longus.

Therefore, our models have learned physiological relevant characteristics of

the input to classify wrist flexion, automatically highlighting the flexors’ elec-

trodes as the most important channels to extract information for this specific

class. Fig. 8e shows a saliency mask obtained applying Grad-CAM to one win-

dow labeled as wrist flexion. Fig. 8a represents the normalized average value

for each electrode in a schematic representation localized on a forearm schema,

to highlight the activity of the flexors.

We can notice that electrodes 1 and 10 are characterized by similar feature

importance simultaneously, 2,6,7 are partially contributing, and 3,4,8,9 are not

employed at all. Furthermore, the feature importance is not spread in time, but

it is focused only on a specific time range of the signal. To further investigate

the peculiarity of wrist flexion, time series signals are plotted and their impor-
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tance has been superimposed with colored markers in Fig. 8e. Firstly, EMG

signals present larger amplitude in electrodes placed on flexors’ area and larger

Grad-CAM values correspond to high amplitude EMG activity, coherently with

domain knowledge. Furthermore, in Section 4.3.1, we have shown that RMS is

the most significant feature for machine learning classification. RMS is defined

as the square root of the average power of the EMG signal for a given period

of time. Thus, our results show agreement among manually extracted features

and CNNs.

Wrist extension is carried out by a group of muscles, both superficial and

deep, called extensors. Channels 4, placed on the extensor carpi radialis longus,

9, on the extensor carpi radialis brevis and extensor digitorum, and 5, on the

extensor digitorum and the extensor carpi ulnaris, are mainly contributing to the

classification of wrist extension (Tab. 4). CNNs are learning relevant features

and automatically detect electrodes placed on extensors’ muscles as the ones that

contribute the most to wrist extension classification. Fig. 8d presents a heatmap

for wrist extension; Fig. 8b represents the average value on a forearm schema;

Fig. 8f further supports that signals with high amplitude and large oscillations

are relevant for the prediction. These signals correspond to electrodes placed

on extensor muscles, the physiologically activated muscles for wrist extension.

In this context, our explanations have a great value, verifying that CNNs

automatically learn channels and properties of EMG signals relevant to the pre-

diction as expected from the state of the art in the field. Thus, the classification

is not performed based on some random noise or artifactual components but on

meaningful characteristics of hand gestures. Furthermore, the correspondence

found between oscillations and the importance of different channels further sup-

ports the redundancy of the information provided by all electrodes.

4.5. Insights towards optimized experimental solutions

This section presents the optimization of EMG electrode configuration fol-

lowing the insights derived through XAI analysis. We trained four CNNs

(Tab. 5) using as inputs only the six proximal EMG channels while the four distal
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(a) Wrist Flexion - Forearm schema (b) Wrist Extension - Forearm schema

(c) Wrist Flexion - Saliency heatmap (d) Wrist Extension - Saliency heatmap

(e) Wrist Flexion - EMG signals (f) Wrist Extension - EMG signals

Figure 8: Grad-CAM results - Wrist Flexion (left) and Extension (right). In Fig. a the

electrodes placed on flexors muscles are mostly activated, while Fig. 8b presents a more in-

tense activation for muscles on the extensor, correctly identifying muscles’ synergies. Saliency

heatmaps (Fig. 8c and 8d): x-axis, time (total length=512 samples), y-axis, channels. The

color intensity of each pixel is proportional to the importance of the specific channel-time

point. Channels 1,6,7,10, placed on flexor carpi radialis, flexor carpi urnali e flexor digitorum

are the most important channels for flexion, while channels 4 and 9, placed on extensor carpi

radialis longus, and extensor carpi radialis brevis and extensor digitorum are the most im-

portant for extension. Finally, in Fig. 8e and 8f, feature importance is proportional to larger

amplitude activity and oscillations.
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have been removed. Our choice to keep the proximal sensors instead of randomly

Table 5: CNet architectures with 6 channels input; for all convolutional layer padding=same,

while for maxpooling layers padding=valid.

Layers CNet2D 3L CNet2D 2L CNet 2D 2L big CNet 1D 2D

1 Input

Conv (2x13)x32 (2x15)x32 (2x15)x32 (1x15)x32

BatchNorm

RReLU

Maxpool (1x4), s=(1x4) (1x4), s=(1x4) (1x4), s=(1x4) (1x4), s=(1x4)

Dropout 0.5 0.5 0.5 0.5

2 Conv (2x9)x48 (2x15)x48 (2x30)x48 (2x30)x48

BatchNorm

RReLU

Maxpool (1x4), s=(1x4) (1x4), s=(1x4) (1x8), s=(1x8) (1x8), s=(1x8)

Dropout 0.5 0.5 0.5 0.5

3 Conv (2x5)x64 - - -

BatchNorm - - -

RReLU - - -

Maxpool (1x4), s=(1x4) - - -

Dropout 0.5 - - -

4 Flatten -

Dense 50, act=ReLU 50, act=ReLU 50, act=ReLU 50, act=ReLU

BatchNorm

Dropout 0.5 0.5 0.5 0.5

Softmax 8 8 8 8

sampling six out of ten was driven by the fact that amputees generally have a

smaller - still intact and functioning - skin surface compared to healthy subjects,

thus selecting the most proximal electrodes increases the amputees’ population

suited for this system for real-world applications [3, 6]. In Fig. 9, we compare

CNet1D trained with 10 channels (average accuracy 93.23%), CNet2D trained

with 10 channels (average accuracy 92.81%) and CNet1D 2D trained with only

6 channels (average accuracy 93.07%); there are not significant differences be-

tween the three models (Wilcoxon Signed-Rank pval >> 0.05). Competitive

results are also obtained with all the different architectures proposed in Tab. 5

(92.34%, 92.61%, 93.02% respectively), supported by Wilcoxon Signed-Rank

statistical tests (pval >> 0.05). These results further validated the hypothesis
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Figure 9: Comparisons of CNNs results, original models trained with 10 channels and one

model, CNet1D 2D, trained with 6-channels input, in terms of accuracy. Wilcoxon signed-

rank test supports not significant differences between the models (CNet1D-10 vs CNet1D 2D-6

pval=0.929 , CNet2D-10 vs CNet1D 2D-6 pval=0.594)

of redundancy among channels, identified with Grad-CAM explanations in 4.4.

We have optimized the EMG electrodes’ configuration reducing the number of

superficial electrodes to six while maintaining the same performances of using a

complex setting with ten channels. Besides achieving competitive classification

performances, the benefits of the new setting with six proximal electrodes are

several. Firstly it requires only six electrodes, reducing the complexity and cost

of the hardware, thanks to a lower number of electrodes and simpler condition-

ing circuits also minimizing the risk of failure of the system. Then, it reduces

the computational time and resources needed for training and inference, en-

suring lower delay in real-time applications. The inference time of the original

network was 15ms while the inference time of new networks is ∼ 10ms, with-

out considering the time for sending and processing the data that decreases for

smaller input data. In particular, we minimized the required body surface for

electrode placement, making this system more comfortable and suitable for all
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amputation levels below the elbow. This is a great challenge in the EMG pat-

tern recognition field ([3],[6], [22], [21]) since amputee patients may be discarded

due to their limited available body surface.

4.5.1. Inter-session Transfer Learning

As introduced in Section 3.3.2, we applied the new networks trained on 6-

electrodes inputs to day-to-day and inter-session variability using transfer learn-

ing with fine tuning. Our aim is to study the adaptability of DL algorithms,

and their robustness over time and with respect to day-to-day variations. The

CNNs used for transfer learning between sessions are shown in Tab. 6.

Table 6: Transfer Learning architecture. CNet 2D 2L big (Tab. 5) is trained on the first

session of one patient and the first two convolutional blocks (in grey, block 1 and block 2) are

freezed. Then, the first TL-architecture (TL1) tunes both a new convolutional block (block

3) and a fully connected block with second session data. The second architecture is further

simplified (TL2), directly tuning the fully-connected block without the convolutional block 3.

Layers Filter size (HxW) # filters Output Options

1 Input (Ch,T)

Frozen Conv2D (2x15) 32 (32,Ch,T) padding=same

BatchNorm (32,Ch,T)

RRelu (32,Ch,T)

Maxpool (1x4), stride=(1x4) (32,Ch, T/4) padding=valid

Dropout (32,Ch, T/4) p=0.5

2 Conv2D (2x30) 48 (48,Ch,T/4) padding=same

Frozen BatchNorm (48,Ch,T/4)

RRelu (48,Ch,T/4)

Maxpool (1x8), stride=(1x8) (48,Ch, T/32) padding=valid

Dropout (48,Ch, T/32) p=0.5

(3) Input (Ch,T)

(TL1) Conv2D (2x15) 48 (48,Ch,T/32) padding=same

BatchNorm (48,Ch,T/32)

RRelu (48,Ch,T/32)

Maxpool (1x4), stride=(1x4) (48,Ch, T/128) padding=valid

Dropout (48,Ch, T/128) p=0.5

4 Flatten (48xChxT/128)

TL1 Dense ˜ 50 act=ReLU

TL2 BatchNorm 50

Dropout 50 p=0.5

Dense 8 act=softmax
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The inter-session transfer learning approach has achieved competitive results

for both architectures, with 97.97% and 96.80% of accuracy, respectively. The

training time required for fine-tuning was ∼ 9min and ∼ 4min, respectively.

The original models for the same patient trained and tested on one session

achieve on average 97.80% accuracy. These results support that transfer learn-

ing is a promising approach to overcome the limitations due to inter-session

variability [8, 7, 16, 10]. Furthermore, we have achieved competitive results

even retraining only the dense block (TL2): this means that the automatic fea-

ture extraction stage of CNNs can be shared among sessions, supporting the

superiority of DL extracted features over hand-crafted features. We reasonably

believe that further improvements in accuracy can be obtained with data from

more than one session for the first training phase. Employing more than one

session for training, thus introducing more variability, will improve the overall

performance of a transfer learning model for inter-session hand movement classi-

fication. These successful results unlock the opportunity for continuous learning

for myo-controlled prostheses, not only in a laboratory-controlled condition but

for real life clinical prostheses with near real-time calibrations. Indeed, with a

calibration phase of less than ∼ 10 min (6−7 min for data collection and 4 min

for tuning), it is possible to update and adapt the model to the new data. The

calibration phase can be triggered daily or periodically, significantly improving

the real use of the device.

4.5.2. Observing inconsistencies in electrodes’ positioning

This last paragraph will describe how XAI unlocks the possibility of finding

human error in a real problem. In our specific case, we have highlighted an

inconsistency between XAI results and the experimental setting. The data used

for this problem was collected by colleagues in the NearLab more than one

year ago. The experimental setting that was firstly provided for this work

had a different electrode placement. However, the global explanations obtained

with generalized Grad-CAM presented in Section 4.4 highlighted that the most

important channels for wrist flexion were 1,7 and 10 while for wrist extension
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were 4,9,5. In the previous configuration, electrodes 1,7,10 were placed in the

extensor area while electrodes 4,9,5 in the flexor muscles area. These results

were not in agreement with domain knowledge, arousing questions about the

correctness of the problem. Furthermore, plotting EMG signals for all channels,

we found that the amplitude of the channels was again not in agreement with

domain knowledge. During flexion, electrodes 1,7,10 showed larger oscillations

and amplitude, suggesting that subjects were using extensor muscles for wrist

flexion. Similarly, during extension, electrodes 4,5,9 were mostly activated,

suggesting that the subject used flexors muscles. These observations further

supported that flexion and extension seemed inverted. Further investigation,

made together with the colleagues who placed the sensors, led to finding the

error: the first configuration was a setting used for initial testing of the hardware

while the real configuration used during the experiments was different (as shown

in Fig. 2). The potential of XAI in error decoding (both human and machine)

is great, and it may significantly help developers while designing a model.

5. Discussion

In this research we have applied XAI to EMG pattern recognition for hand

gesture classification for myo-controlled prostheses. Explainability algorithms

for EMG signal decoding have shown promising applications and we have un-

derstood the outcomes of opaque decision making systems with respect to

physiological processes in the application domain of the neuromuscular system.

Through our detailed explanations and visualization techniques, we have better

comprehended the problem of hand gesture recognition, achieving the following

insights:

I1: XAI produces physiologically highly plausible explanations of how

the CNNs classify EMG. We generalized Grad-CAM to obtain global com-

prehensible explanations of how black-box Learning models have classified hand

movements. We verified that CNNs learn to extract and use well-known EMG

patterns from raw signals automatically, and they correctly identify channels
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placed on muscles effectively responsible for a movement; thus, they are not

relying on artifactual or random components.

I2: Hand gestures are mainly identified by higher amplitude and

larger dynamic of the electrical activity of the responsible muscles.

The local visualization of CNNs shows how the most important part of a sig-

nal is when the oscillations drastically increase and RMS is identified as the

most important feature. Furthermore, our explanations have identified areas

rather than single electrodes, supporting sensor fusions and functional synergies

between muscles.

I3: The experimental set-up can be simplified by reducing the num-

ber of electrodes making the solution suitable for all under elbow

amputees. In our specific setting, ten electrodes placed six proximal and four

distal, are redundant. The six proximal electrodes alone are informative enough

for a correct classification of eight hand gestures. Simplifying the configura-

tion to six proximal electrodes can drastically reduce the cost of hardware, the

computational time and the complexity of the system; at the same time, it min-

imizes the required body surface in the forearm, making this system suitable for

a larger amputees population. [3, 22, 21].

I4: The features can be reduced to three meaningful features (RMS,

HPM and HPC), achieving competitive performances while decreas-

ing the inference time from 275 ms to 0.55 ms compared to the original set.

We have verified the robustness and significance of the selected features and

their relevance in the domain knowledge. It is of our interest, in future re-

searches, investigating the performances, robustness and computational time

of the simplified setting (with 6 electrodes) and the machine learning methods

with meaningful features.

I5: Inter-session variability can be overcome by transfer learning,

opening the possibility of prostheses periodically calibrated that are not prone

to fail due to changes in electrodes’ shift, skin conductivity or others. [8]
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6. Conclusions

In this research, we applied XAI methods to opaque classifiers used for hand

movement decoding, understanding how they work and gaining knowledge about

the problem. As far as we know, this is the first time XAI is applied to this field.

We assessed that they extract physiologically highly plausible features and char-

acteristics well-known in domain knowledge, enhancing the acceptance and

trustworthiness of users, domain experts, and medical professionals in AI-

powered devices. Garner trust is always necessary to increase acceptance of any

new technology [12, 24] and XAI could be a pivotal step to accurately assess the

correctness and functioning of AI models in health-related applications. Fur-

thermore, XAI has provided scientific insights about the variability of the

signals, muscles’ importance and EMG patterns. These insights led to three

additional outputs: (1) the reduction of the number of classification features,

reducing the computational complexity, leading to more robust and reliable

models and paving the way for novel real-time applications, (2) the simplifica-

tion of the electrode setting for better usability (controllability, dexterity and

flexibility, and weight), better clinical translation (more patients), lower compu-

tational and hardware costs and (3) the detection of inconsistencies and errors

in the experimental setting uncovered comparing the algorithms explanations

with the presumed configuration of the EMG sensors. All these achievements

have been possible only through the cooperation between artificial intelligence

and human intelligence. Human knowledge and judgment have been fundamen-

tal in analyzing and validating the results, in error debugging, and in drawing

scientific insights from mathematical results. ”Human in the loop” is a key con-

cept for the future of AI and its application in critical fields such as medicine

and neuroscience, where experts’ opinion is valuable and deep-rooted.
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Appendix A. Features

This section presents the features selected in this work. Unless specified oth-

erwise, features are calculated by dividing the signal x into overlapping windows

of length L. The kth element of the ith window then corresponds to xi,k.

• Mean Absolute Value

MAV (xi) =
1

L

L∑
k=1

|xi,k| (A.1)

• Zero Crossing, number of times the signal crosses the zero

• Slope Sign Change, number of times the sign of the signal changes

• Waveform Length

WL(xi) =

L∑
k=1

|xi,k − xi,k−1| (A.2)

• Hjorth Parameter - Activity

A(xi) =
1

L

L∑
k=1

(xi,k − xi)
2 (A.3)

• Hjorth Parameter - Mobility

M(xi) =

√
A(x

′
i)

A(xi)
(A.4)

with xi the firt derivative with respect to time.

• Hjorth Parameter - Complexity

C(xi) =
M(x

′
i

xi
(A.5)

• Sample Entropy

SampEn(xi,m, r) = − ln
Am(r)

Bm(r)
(A.6)

with m the embedding dimension and r the tolerance.
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• Cepstral coefficients: they can be derived from AR coefficients as follows:

c1 = −a1 (A.7)

ci = ai −
i−1∑
n=1

(1− n

i
) ∗ an ∗ ci−n (A.8)

with 1 < i ≤ P , Ci is the ith Cepstral coefficient, ai is the ith auto-

regression coefficient and P is the order.

• Root Mean Square

RMS(xi) =

√√√√ 1

L

L∑
k=1

x2
i,k (A.9)

• Integrated EMG

IEMG(xi) =

L∑
k=1

|xi,k| (A.10)

• Skewness

Skew(xi) =
1

L

L∑
k=1

(
xi,k − xi

σ
)3 (A.11)
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Appendix B. ML hyperparameters and results

Table B.7: Classical Machine Learning Hyperparameters. Hyperparameter tuning has been

performed with a 3-cv cross validation on the training set on a randomly chosen subject. The

best set was selected based on average accuracy.

Classifier Parameter 1 Parameter 2 Parameter 3 Parameter 4

KNN K: 10, 20, 30, 40, 50 weights:

uniform distance

MLP

hidden layers:

(100,50,20), (50,20),

(10,8), (100), (200),

(100,20)

alpha: 0.001,

0.0001,

0.00001

activation function:

tanh, identity, relu,

logistic

solver: sgd,

Adam

SVM
regularization:

0.1, 1, 10, 100

kernel: linear,

poly, rbf,

sigmoid

degree for poly:

1,2,3,4

gamma: auto,

0.1, 10e-7

LDA solver: svd, lsqr, eigen

XRT number estimators: criterion

10, 50, 100, 150 gini, entropy

Bagging
number estimators:

10, 50, 100, 150

Base estimator

Decision Tree Classifier

(max depth=10, 15, 30)

Adaboost number estimators: Base Estimator

10, 50, 100, 150 Decision Tree Classifier

(max depth=10, 15, 30)

Random number estimators: criterion

Forest 10, 50, 100, 150 gini, entropy
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Table B.8: Classical Machine Learning results in term of average Precision (%), Recall (%)

and inter-subject standard deviation

Precision Recall

Classifier Improved TD FULL Improved TD FULL

LDA 92.23 ±3.67 93.11 ± 3.64 91.16 ±4.28 92.10 ± 4.48

SVM 92.38 ± 3.12 92.10 ±3.08 91.03 ± 3.69 90.79 ±3.35

XRT 90.66 ± 3.51 90.60 ±3.63 89.60 ± 3.85 89.27 ±3.79

Table B.9: Classical Machine Learning results of all models in term of average accuracy (%),

f1 score (%) on the two sets of data employed (Improved TD and FULL)

Accuracy F1-score

Classifier Improved TD FULL Improved TD FULL

KNN 89.20 ±4.35 88.70 ± 4.67 89.26 ± 4.12 88.63 ± 4.47

MLP 91.45 ± 2.97 91.26 ±3.15 91.32 ±2.96 91.23 ±3.22

Bagging 85.91 ± 3.49 85.77 ± 3.81 85.95 ± 3.54 85.64 ± 3.90

Random Forest 88.75 ± 3.85 88.95 ± 3.95 88.65 ± 3.43 88.84 ± 3.90

Adaboost 84.66 ± 2.70 83.73 ± 2.93 84.17 ± 3.22 83.49 ± 3.10
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Appendix C. CNET architectures

Table C.10: CNet architecture, with H=1 for CNet1D and H=2 for CNet2D. CNet1D applies

filtering only in the time dimension (along the width of the input) while CNet2D performs a

2D filtering both in time (width) and space (heigth).

Layers Filter size (HxW) # filters Output Options

1 Input (Ch,T)

Conv (Hx13) 32 (32,Ch,T) padding=same

BatchNorm (32,Ch,T)

RRelu (32,Ch,T)

Maxpool (1x4), stride=(1x4) (32,Ch, T/4) padding=valid

Dropout (32,Ch, T/4) p=0.5

2 Conv (Hx9) 48 (48,Ch,T/4) padding=same

BatchNorm (48,Ch,T/4)

RRelu (48,Ch,T/4)

Maxpool (1x4), stride=(1x4) (48,Ch, T/16) padding=valid

Dropout (48,Ch, T/16) p=0.5

3 Conv (Hx5) 64 (64,Ch,T/16) padding=same

BatchNorm (64,Ch,T/16)

RRelu (64,Ch,T/16)

Maxpool (1x4), stride=(1x4) (64,Ch, T/64) padding=valid

Dropout (64,Ch, T/64) p=0.5

4 Flatten (64xChxT/64)

Dense 300

BatchNorm 300

RRelu 300

Dropout 300 p=0.5

Dense 50

BatchNorm 50

RRelu 50

Dropout 50 p=0.5

Dense 8 activation=softmax
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