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Abstract—Globalization of the integrated circuit (IC) supply
chain exposes designs to security threats such as reverse engineer-
ing and intellectual property (IP) theft. Designers may want to
protect specific high-level synthesis (HLS) optimizations or micro-
architectural solutions of their designs. Hence, protecting the IP
of ICs is essential. Behavioral locking is an approach to thwart
these threats by operating at high levels of abstraction instead of
reasoning on the circuit structure. Like any security protection,
behavioral locking requires additional area. Existing locking
techniques have a different impact on security and overhead,
but they do not explore the effects of alternatives when making
locking decisions. We develop a design-space exploration (DSE)
framework to optimize behavioral locking for a given security
metric. For instance, we optimize differential entropy under area
or key-bit constraints. We define a set of heuristics to score each
locking point by analyzing the system dependence graph of the
design. The solution yields better results for 92% of the cases
when compared to baseline, state-of-the-art (SOTA) techniques.
The approach has results comparable to evolutionary DSE while
requiring 100× to 400× less computational time.

I. INTRODUCTION

Owning IC foundries has high costs, so design houses are
outsourcing IC manufacturing [24]. IP protection is critical
since foundries have access to the IC design files, exposing
them to reverse engineering that enables IP theft and malicious
modifications. An example is the attempted trade of counterfeit
Cisco equipment to the US Department of Defense [31]. In
2011, the estimated losses due to counterfeits were around
$169 billions [15]. Since over 80% of counterfeited parts
reported in 2019 by ERAI were not reported before [7], the
real numbers are likely higher. Security protections must be
introduced since the early stages of the design (e.g., during
high-level synthesis - HLS) for IP protection [3, 17, 20].

Logic Locking is a family of hardware locking techniques
that aim to thwart reverse engineering. They add extra logic
to the original design that is controlled by a new set of inputs
called key inputs [30]. The correct functionality is obtained
only if the correct sequence of bits is provided to the key
inputs. Since logic locking adds extra logic into the design, it
introduces area, power and time overheads. The overheads are
proportional to the number of key bits used [20, 18]. Designers
need to protect their IP while curbing the overheads. This
means that in the real-world one cannot lock the whole design.

Locking different parts of a design will yield different
security guarantees. Designers must explore the design space
to understand how to effectively use the budgeted key bits.

Effects of locking techniques are difficult to predict, especially
in large designs. Locking at a high level (i.e., before logic
synthesis) allows reasoning about the semantics of the design,
which in turn helps protect sensitive information before it is
synthesized and embedded into the netlist. TAO [20] and AS-
SURE [18] apply high-level locking during and after HLS, re-
spectively. However, these high-level locking methods analyze
and lock the design using a greedy, topological exploration of
the design. The order in which high-level statements appear
in the design impacts the security and overhead.

Researchers developed a design space exploration (DSE)
framework to optimize locking during HLS [19]. While this
DSE supports trade offs, it requires access to proprietary
code-bases of commercial HLS tools, limiting application to
existing IPs and HLS-generated components. This DSE does
a ”blind” search using a genetic algorithm. It does not reason
about the properties of the design, making the optimization
computationally expensive or even infeasible.

This study proposes a DSE framework to optimize behav-
ioral locking by selecting the parts to be locked. This behavior-
level DSE extracts and analyzes the System Dependence Graph
of the design. We formulate heuristics that analyze properties
extracted from signal dependencies in the design and score
the locking points. The higher the score of a locking point,
the more likely it is used in the design. Our scoring heuristics
are composable, i.e., one can add new heuristics to evaluate
other aspects. The contributions of this study are threefold:
1) A modular DSE framework to apply behavioral locking

using RTL simulations and synthesis estimators.
2) Composable scoring heuristics to analyze the System De-

pendence Graph of a design.
3) A prototype DSE framework and its evaluation.
Our composable DSE framework yields results that are better
than topologically-ordered locking in 92% of the cases while
requiring up to 400× less time than ”blind”, genetic DSE.

II. BACKGROUND

A. Threat model: An Oracle-less Attack

A rogue employee at a foundry may reverse engineer
an IC function and make unauthorized copies or malicious
modifications. The rogue employee has access to the locked
layout and can reverse engineer it to recover the RTL [22, 23].
The attacker has access to a testbench to simulate the RTL and
infer structure but no access to correct input-output pairs. We



assume the attacker can distinguish between primary inputs
and the locking key inputs [26], and between data and control
inputs and outputs. We assume the attacker has no access
either to the correct key or to a working IC (oracle). Therefore
the attacker does not know the true I/O behavior of the IC.
This oracle-less model is plausible for malicious foundries,
especially in low-volume applications [18, 26]. Techniques
that prevent oracle-based attacks, such as DisORC [12], can
be combined with locking [11]. We consider locking tech-
niques [18, 20] that are resilient to ML-guided structural
and functional analysis [5, 21, 28], de-synthesis [13], and
redundancy identification [10].

B. Behavioral Locking

Behavioral locking locks a function with a locking key K.
We consider three SOTA locking techniques [3, 18, 20]:
• Operation locking adds a multiplexer to select between the

right operation and a dummy one based on a key bit. For
example a=b+c is locked as a=Ko?(b+c):(b-c).

• Branch locking XORs the condition with a key bit, invert-
ing it when the key bit is 1. The condition a<b is locked
as (a>=b)∧Kb or (a<b)∧Kb depending on Kb.

• Constant locking replaces constants with key bits. For
example a=b+4’b0100 is locked as a=b+Kc where Kc

is the 4-bit constant stored as part of the locking key.
The locking key has two parts. One is randomly generated
and locks the control branches and operations, while the other
contains the constants extracted from the design. An input port
is added to apply the locking keys after fabrication. A locking
point is a semantic element (i.e. a constant, a branch, or an
operation) that can be locked by any of these techniques. We
aim at selecting the locking points to improve security and
reduce overhead.

C. Security Evaluation

In an oracle-less scenario an attacker can infer the key
only by looking at the design files or by observing the
design function through simulations. Locking techniques are
provably secure [18]. We evaluate security of locked solutions
by looking at output corruptibility, i.e. how much the lock
affects the output values. We use mean differential entropy to
quantify this effect [2] by measuring the differences between
the expected values and the ones obtained when applying a
key. Mean differential entropy is defined as follows:

H =

N∑
i=1

(
Pi · log

1

Pi
+ (1− Pi) · log

1

1− Pi

)
· 1
N

where N is the number of output bits. Pi ∈ [0, 1] is the
probability that output i (given an input and a key value) is
different from the correct one. H is independent of the number
of output bits and is maximized when Pi = 0.5. We aim to
maximize mean differential entropy making it close to 1. This
is the case when Pi = 0.5,∀i. The attacker cannot make any
educated guess on the design function, leading to a probability
to guess the correct key as 2−K (where K is the number of key
bits). In our threat model, the attacker can distinguish between

data and control inputs and outputs. We assign H = 0 to the
solutions with incorrect control signals (i.e. never asserting
ready or valid signals). They are avoided because they allow
an attacker to identify and discard wrong keys. A similar
approach was used for genetic algorithms based DSE, albeit
with high computational time [19].

D. Motivation

A fabless design house aims at protecting its IP designs but
locking them is costly. To limit costs, a designer can decide the
maximum area overhead and pre-define the size of the tamper-
proof memory used to store the key. This limits the number
of key bits used for locking. Traditional DSE solutions [19]
may not scale with the size of the designs, while current
heuristic solutions [18, 20] depend on the structure of design
(either at C or register-transfer level (RTL)) because they
identify the locking points and apply the locking techniques
in topological order. Designers need to refactor the design to
improve unsatisfactory security results. We propose a DSE
framework that allows exploration and selection of locking
points, optimizing the design under area or key bit constraints.
To ”predict” the effect of locking points on the outputs prior
to simulation, we consider dependencies between statements.

E. Dependence Graphs

Dependence graphs were proposed to describe dependencies
in a program [8, 9]. A Program Dependence Graph (PDG) is
a directed graph that represents a single procedure. A System
Dependence Graph (SDG) combines all PDG representations
of a complex program with edges that model procedure calls.
SDGs for hardware descriptions were first proposed for model
checking [32]. We analyze the SDG to predict specific effects
of the locking points and score them.

III. RELATED WORK

The techniques to thwart reverse engineering of hardware
designs can be divided in two classes: key-less locking (e.g.,
split manufacturing, camouflaging, watermarking, and finger-
printing) and key-based locking (e.g., logic locking). Split
manufacturing divides the manufacturing process between
different untrusted foundries [16]. IC camouflaging prevents
netlist extraction by introducing cell design changes at the
GDSII-level [6]. Watermarking and fingerprinting simplify
detection and tracking of illegal copies of a design [1]. Logic
locking applies design modifications that make it functional
only with the correct key, unknown to the foundry [4]. Locking
techniques can be applied at all steps of the IC design flow.
Post-synthesis techniques work at transistor [27] and netlist
level [33]. Pre-synthesis techniques work at RTL [18] or HLS
level [20, 34]. Locking techniques thwart reverse engineering,
according to the threat model. If the attacker has access to a
working IC (oracle) the technique must be resilient to SAT
attacks [25]. Without an oracle IC, attacks can rely only on
design files [5, 35] which do not reveal information about the
function. This research proposes techniques to prevent new
attacks or new attacks against existing techniques. Optimising



Fig. 1: Overview of the proposed locking framework.

locking overhead is a recent direction [19]. This work seeks to
improve RTL locking from a security vs overhead viewpoint.

IV. BEHAVIORAL LOCKING DSE FRAMEWORK

We propose a locking DSE framework to evaluate security
and overheads of locked designs and optimize them under
area or key budgets. Fig. 1 describes the DSE framework and
operates on HDL generated by HLS or by designers.

A. Overview

The workflow parses the input HDL to extract an Abstract
Syntax Tree (AST), which is an abstract representation of the
circuit specification. It then analyzes the AST to extract the
SDG and identify the locking points. The SDG has a node
for each statement so each SDG node is associated with an
arbitrary number of locking points. We evaluate a combination
of locking heuristics, i.e., methods to evaluate the locking
points based on different characteristics. Each heuristic gives a
score to each locking point, either a reward or a punishment.
A positive reward means that the locking point yields good
locking results. To combine heuristics, we build a score table
where each locking point has a score obtained by summing
scores of all heuristics.

Solution generation and evaluation phases are decoupled
to test different locking methods under different area/key
constraints. Solutions are evaluated by measuring differential
entropy, key size, and area overhead. The DSE framework
represents a locking solution as a binary string where each
element is a locking point and its value is 1 if and only if
the corresponding locking point is locked. Figure 2 shows
an example locking solution, locking points, their scores, and
depiction of the solution.

Given a score table, we can generate a solution in two
ways. The first way selects the locking points with the highest
score until we fulfill the constraints. The second way prob-
abilistically maps the scores in the range [0.25, 0.75]. This
value is the probability of selecting the locking point. So a

Fig. 2: Example of solution representation.

locking point with the lowest (highest) score is locked with
a probability of 25% (75%). The area overhead is a linear
combination of the number of bits used for locking constants
C, branches B and operations O, respectively. The values for
these parameters are either given by the designer or estimated
by the framework using three initial syntheses runs by locking
all points of the same type (i.e., all constants, operations, or
branches) and dividing the resulting overhead for the total
number of locked points.

B. SDG Extraction

We extract SDG representations from Verilog designs1 by
extending the flow in [32] to accommodate changes that fit our
locking analysis. To extract the SDG of a Verilog module, we
add an input vertex for each input, an output vertex for each
output, and an SDG vertex for each continuous assignment. We
create a PDG for each always block and merge these entities
with edges. Let GAB be the PDG of always block AB, then
GAB is a directed graph whose vertices v1, v2, ..., vn represent
the assignment statement and control predicates in AB and the
edges represent dependencies between nodes. Verilog has two
types of assignments in always blocks: blocking (=) and
non-blocking (<=). Blocking assignments are sequential. To
understand non-blocking assignment, consider the following
always block sensitive to the positive clock edge:

A <= Z;
B <= A + Y;
C <= B + W;

The order of the non-blocking assignments does not affect the
always block. At clock cycle X Z is assigned to A but is
propagated to B only at cycle X + 1. Dependencies between
non-blocking assignments occur between two activations of
the same always block. We distinguish between direct de-
pendencies and inter-cycle dependencies.

1Our SDG extraction applies to Verilog designs due to parsing constraints;
it can extend to other HDLs.



Fig. 3: An example of verilog module flattening.

Definition 1. There is a direct dependency from v1 to v2 if
and only if v1 is a predicate vertex and the execution of v2
depends on v1; or v1 is a blocking assignment and for some X
in the left-hand side in v2 there exists an execution path from
v1 to v2 along which there is no assignment to X.

Definition 2. We have an inter-cycle dependency from v1 to
v2 if and only if v1 is a non-blocking assignment and there is
a signal X in the left-hand side that is used in v2.

When checking dependency from an assign vertex v1 to a
vertex v2 within a PDG P1, we add a direct dependency edge
if (1) there is a signal X in the left-hand side of v1, (2) X
is used in v2, and (3) X is in the sensitivity list of P1. We
add an inter-cycle dependency edge if (1) there is a signal
X in the left-hand side of v1, (2)X is used in v2, and (3) X
is not in the sensitivity list of P1. We assume only one type
of assignment in each always block (common practice in
hardware design). When a module instantiates a sub-module,
we insert an instance node connected with coupling nodes
for input/output ports of the sub-module to represent port
mapping. After extracting an SDG from each module, we
flatten the design starting from the top module. Each instance
node is replaced with the SDG of the sub-module. Coupling
nodes are connected with the corresponding inputs and outputs
with direct dependency edges (see Fig. 3).

C. Scoring Heuristics

We propose four heuristics to score locking points by
analyzing SDG. Scoring functions can be local and global.
Local functions explore SDG up to a distance from a locking
point. Global functions do not constrain SDG exploration.
Scoring functions are composable; we can use a subset to
compute scores to rank locking points. We normalize scores
in the [0, 100] so that they affect the solution in same way.

Control Disabling heuristic uses a set of controlling signals
divided as input and outputs. It disables locking points (by
assigning a value of −∞) in parents of the control outputs
and conditions that depend on a controlling input. EFFECT:
Avoids locking points that cause simulation failures.

TABLE I: Characteristics of MIT LL CEP RTL benchmarks.

# Locking points Total SDG

Design Modules Const Ops Branches # bits # nodes

FIR 5 10 24 0 344 157
IIR 5 19 43 0 651 231
SHA256 3 159 36 2 4,992 619
MD5 2 150 50 1 4,533 829
DES3 11 523 3 775 2,990 3,745

Bounded (Direct) Children heuristic takes a locking point
O and returns number of assignments and conditions up to
distance D that depend on O. EFFECT: Favors locking points
that propagate more and influence on the outputs. A node
influences parts of a design if it has many children in SDG.

Bounded Parents heuristic takes a locking point O and
returns number of locking points up to a distance D converging
in O. EFFECT: Favors locking points with high convergence.
They build long sequences of lock points which are harder to
break.

Max I/O Path Length heuristic assigns a value to each
locking point O equal to the maximum number of locking
points in input to output path passing through O. EFFECT:
Favors locking points that can build longer lock sequences.

V. EXPERIMENTAL RESULTS

We implemented a prototype DSE framework that em-
bodies our methodology by using Pyverilog [29] to parse
input Verilog and create its abstract syntax tree (AST). Once
locked, which is applied as AST transformations, Pyverilog
re-generates the locked Verilog description for logic synthesis.
We selected five modules from the MIT-LL Common Evalua-
tion Platform (CEP) [14]. The benchmarks have representative
control branches and overhead among those used in [18].
FIR and IIR modules represent designs generated by HLS
or hardware generators. Table I reports locking points for
each category, maximum number of key bits, and number of
SDG nodes for each benchmark. The DSE framework runs
synthesis using Synopsys Design Compiler (R-2020.09-SP1)
targeting Nangate 15nm technology at 25C standard operating
conditions. We use Synopsys VCS for RTL simulation. To
calculate the mean differential entropy we estimate the output
probability by running 10,000 simulations (100 random keys
× 100 random inputs) [2].

Preliminary results show the heuristics are design- and
constraint-dependent. Since they are computationally light, we
run several combinations of them, reporting the best result.
We compare our results against DSE based on a genetic
algorithm [19], topological-order locking [18, 20], and ran-
dom locking. We use the following labels: CONTR DIS for
Control Disabling, NCHILD for Bounded children, DCHILD
for Bounded direct children, NPAR for Bounded parents,
and LPATH for Max I/O path. We use CONTR DIS in all
combinations, so it is omitted. We added the prefix PROB if
we use the probabilistic approach for solution generation.



20%20%

16%

12%
8%

8% 4%
4%
4%
4%

24%
16%

12%

8%
8%

8%

4%
4%

4%
4%

4%
4%

20%16%

12%

12%

8% 8%
8% 4%

4%
4%
4%

68%

16%
4%

4%
4%
4%

30%

10%
9%

8%

6%

6%
6%

5%

5%
5%

4%
2%
2%
2%

PROB NPAR LPATH NCHILD PROB CONTR DIS
PROB NPAR PROB NPAR LPATH DCHILD
NPAR PROB DCHILD
DCHILD PROB NCHILD
PROB LPATH TOPOLOGICAL
NCHILD NPAR LPATH NCHILD
LPATH NPAR LPATH DCHILD

1-5 % key budget 7.5-25% key budget 30-50% key budget 60-100% key budget

1-100% key budget

Fig. 4: Frequency of techniques for key budgets for all designs.

Effect of Heuristic Parameters: Increasing the distance
parameter for the bounded heuristics flattens the locking
points, reducing the performance. We set a distance of 3 for
the NCHILD/DCHILD and 2 for NPAR. For each benchmark,
we ran DSE with 20 constraints on the key budget: 1-5, 7.5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100%
of the maximum number of key bits. We configured DSE
to optimize the mean differential entropy of the design and
evaluated area overhead. The best solution was selected as
the one with mean differential entropy within 0.001 from
the best and with the lowest estimated area overhead, similar
to [19]. We evaluated mean differential entropy with respect to
topological order locking and random locking. We identified
the technique which yields the best results more often for
the key budgets (1-5%, 7.5-25%, 30-50%, 60-100%, 1-100%).
We ran the following heuristics by generating in-order and
probabilistic solutions: Control disabling and bounded direct
children; Control disabling and bounded children; Control
disabling and bounded parents; Control disabling and max
I/O path length; Control disabling, bounded direct children,
bounded parents and max I/O path length; Control disabling,
bounded children, bounded parents and max I/O path length.

Heuristic Behavior: Fig. 4 shows how many times each
heuristic yields a best solution. All heuristic combinations
yielded a best solution at least twice. Certain heuristics are
more likely to give a best result within a key budget. 60-100%
constraint interval is predominated by CONTR DIS with prob-
abilistic generation. Fig. 5 shows the entropy results for each
key budget, highlighting the technique with the best solution.
Different techniques are better on different designs and key
budgets. Fig. 6 compares the approach with topological and
random locking. Topological locking has a higher variability
in entropy and yields a best solution in 8% of the cases. In
designs with control signals, random locking selects points
that invalidate the solution.

DSE Comparison: Table II compares the entropy results of
our work with the ones obtained with topological ordering [18,
20] and the ones obtained with DSE [19] (i.e., standard genetic
algorithm with uniform crossover and mutation operators).
We also report the execution times of all methods. In case
of topological locking, solutions may invalidate the designs,

leading to null entropy. Our approach systematically achieves
much better differential entropy, closer to the values obtained
with evolutionary DSE but 100 to 400 times faster. The
reported time for our method includes the time to evaluate
the full set of 14 heuristic combinations. All methods include
also the time to evaluate the area of the best solution with
logic synthesis.
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VI. CONCLUSION

We propose a locking DSE framework that optimizes a
security metric subject to area or key size constraints. The
entropy results are better than the ones obtained by locking
in a topological order for 92% cases. In our DSE method
the security metric results do not depend on the topological
order of design exploration. To improve performance in less
constrained scenarios we may add heuristics to lower the
scores of locking points that have less impact on the locked
result. Future research includes new analyses on the SDG and
design of new estimators for overheads.
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