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Abstract: Autonomous navigation on sidewalks and pedestrian areas is a complex problem,
that requires the solution of different challenging tasks. One that is particularly hard to tackle
is that of autonomous street crossing, which requires the robot to be aware of the position and
speed of surrounding vehicles in order to decide whether is safe to cross. This work is dedicated
to the development of an obstacle speed estimation algorithm to be applied to the context of
autonomous navigation at crosswalks. In particular, a novel approach to the extended-target
tracking problem is presented, which leverages a nested structure and a clustering algorithm
that reduces the problem to a standard target tracking one. The effectiveness of the algorithm
is demonstrated through testing on a prototype parcel-delivery robot operating in a real-world
urban environment.
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1. INTRODUCTION

Recently, the interest in mobile robotics applied to side-
walks has been growing. The main use-case prompting this
type of research is that of transportation of goods. A high
level of autonomy is in general desirable, with the intent
of having fleets of urban-navigating robots operating with
minimum supervision. In this context, one of the most
challenging tasks to be tackled is that of autonomously
navigating crosswalks and intersections. This is because in
those places the robot interacts with non-pedestrian road
users, like cars, trucks or motorcycles. Robotic vehicles
are therefore required to be able of detecting incoming
vehicles and estimating their velocity in order to decide
when is the best moment to initiate crossing. Whereas the
general problem of autonomous navigation at crosswalks
has scarcely been investigated in the literature, the related
speed estimation problem can be cast into a target track-
ing framework. Target tracking is an extensively explored
problem in which the goal is to estimate the actual and
future trajectory of an obstacle moving in the surrounding
environment, given a collection of measurements taken
from an exteroceptive sensor. Typically utilized sensors in
this field are radars, Lidars and cameras, but any sensor
measuring the distance of surrounding obstacles could
also be used. Standard target tracking algorithms can be
clustered based on the choice of motion model (see Li and
Jilkov (2003)), data association and filtering algorithm (see
Bar-Shalom and Osborne (2015)), and track management
techniques (see Vo et al. (1999)). A further classification
separates the problem of tracking a single object from
that of simultaneously tracking multiple dynamics objects,
which is referred to as Multiple Target Tracking (MTT). A
common assumption in traditional MTT algorithms were
developed under the so called ”small-object” assumption,
according to which each obstacle in the scene generates

at most one measurement per each time instant. This
hypothesis is reasonable when low resolution sensors are
utilized and in case of tracking remote objects which are
very far from the sensor. However, this is generally not
true in mobile robotics, in which obstacles are typically
detected using Lidars or stereocameras which produce
many measurement points for each of them. As such,
applying MTT to autonomous navigation requires a more
complex model, in which each obstacle produces in general
more than one measurement, so that not only the number
of obstacles is unknown, but also which and how many
measurements should be associated to each of them is
not known a priori. This problem is known as Extended-
Target Tracking (ETT); a detailed analysis of the various
approaches to the solution of this problem is presented in
Granstrom et al. (2016). Most of the approaches to ETT
are based on including the shape of the object in the tracks
model, which is done by means of more or less complex
statistical models. The price to be paid is either given by
the model complexity or by the hypothesis that need to
be done on the class of shapes which are considered for
the obstacles, and on the nature of the stochastic objects
used to model the measurement process. To overcome
these limitations we propose a cascade approach in which
standard MTT techniques are combined with a clustering
algorithm to reduce the ETT problem to a standard MTT.
To the best of our knowledge, a cascade ETT algorithm
was never developed before. In particular, our approach
involves a first target tracking layer that aims at enhanc-
ing the position measurements with an estimate of their
speed; subsequently, measures are clustered based both on
their relative position and speed; finally, a second target
tracking algorithm is applied to the clustered measures,
which outputs an estimate of the position and speed of
the obstacles in the scene. Our technique makes no as-
sumption on the shape of the detected obstacles, and as
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To the best of our knowledge, a cascade ETT algorithm
was never developed before. In particular, our approach
involves a first target tracking layer that aims at enhanc-
ing the position measurements with an estimate of their
speed; subsequently, measures are clustered based both on
their relative position and speed; finally, a second target
tracking algorithm is applied to the clustered measures,
which outputs an estimate of the position and speed of
the obstacles in the scene. Our technique makes no as-
sumption on the shape of the detected obstacles, and as
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1. INTRODUCTION
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has scarcely been investigated in the literature, the related
speed estimation problem can be cast into a target track-
ing framework. Target tracking is an extensively explored
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at most one measurement per each time instant. This
hypothesis is reasonable when low resolution sensors are
utilized and in case of tracking remote objects which are
very far from the sensor. However, this is generally not
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detected using Lidars or stereocameras which produce
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complex model, in which each obstacle produces in general
more than one measurement, so that not only the number
of obstacles is unknown, but also which and how many
measurements should be associated to each of them is
not known a priori. This problem is known as Extended-
Target Tracking (ETT); a detailed analysis of the various
approaches to the solution of this problem is presented in
Granstrom et al. (2016). Most of the approaches to ETT
are based on including the shape of the object in the tracks
model, which is done by means of more or less complex
statistical models. The price to be paid is either given by
the model complexity or by the hypothesis that need to
be done on the class of shapes which are considered for
the obstacles, and on the nature of the stochastic objects
used to model the measurement process. To overcome
these limitations we propose a cascade approach in which
standard MTT techniques are combined with a clustering
algorithm to reduce the ETT problem to a standard MTT.
To the best of our knowledge, a cascade ETT algorithm
was never developed before. In particular, our approach
involves a first target tracking layer that aims at enhanc-
ing the position measurements with an estimate of their
speed; subsequently, measures are clustered based both on
their relative position and speed; finally, a second target
tracking algorithm is applied to the clustered measures,
which outputs an estimate of the position and speed of
the obstacles in the scene. Our technique makes no as-
sumption on the shape of the detected obstacles, and as

Fig. 1. YAPE: The prototype used in the experimentation

such it is capable of simultaneously tracking objects which
are very different in size,such as pedestrians and cars.
This technique has been implemented and experimentally
tested on real-world urban scenarios using a prototype
vehicle designed for autonomous last mile delivery, and
provided promising results in the context of autonomous
navigation on crosswalks. The outline of the rest of the
paper is as follows: Section 2 describes the experimental
setup, describing the vehicle mechanical structure and
the sensors. Section 3 presents the algorithm structure,
followed by Section 4 in which the experimental results
are discussed.

2. EXPERIMENTAL SETUP

YAPE (Fig. 1) is a prototype vehicle designed for au-
tonomous parcel delivery in urban environment (see Saba-
tini et al. (2018)). Structurally YAPE is a Two Wheeled
Inverted Pendulum (TWIP) composed of a steel chassis
and two parallel driving wheels; such structure allows
turn-on-the-spot maneuvers, but it also implies a tilting
motion of the chassis which is proportional to the vehicle
longitudinal acceleration. In order to be able to operate
autonomously, YAPE is equipped with a suite of sensors
enabling it to perceive the external environment and its
own motion. Our target tracking algorithm relies on a
Quanergy-M8 3D Lidar mounted on the top lid. This sen-
sor has 8 scanning layers providing 360◦ horizontal Field
Of View (FOV) and 20◦ vertical FOV (+3◦/−17◦). Despite
a declared measurement range of more than 150 [m] for
each laser beam, we found 30 [m] to be the range at which
the point cloud produced by the sensor was dense enough
for our purposes. Particular attention has to be paid to the
effects of the tilting behavior of the chassis on the sensor
usable FOV. Tilting motion, which is intrinsically related
to TWIP structure, can be measured and corrected but
brings an inevitable reduction of the usable FOV in the
longitudinal direction.

3. CASCADE TARGET TRACKING

This section describes the structure of our cascade al-
gorithm for extended-target tracking, which develops as
follows: first, a 2D grid representation of the environment

is produced (Sec. 3.1) in which only dynamical obstacles
are included (Sec. 3.2); extended-targets in the scene are
then tracked using a three-stage algorithm composed of a
low-level tracking stage (Sec. 3.3), a clustering algorithm
(Sec. 3.4) and a high-level tracking stage (Sec. 3.5) pro-
viding the actual speed estimation for the obstacles in the
scene.

3.1 Point cloud processing

YAPE’s Lidar produces a 3D representation of the environ-
ment. However, since this application deals with vehicles
navigating a two dimensional world we preferred to work
with a 2D representation, which yields a reduction in the
computational complexity. As such, the first step of our
algorithm is to build a compact representation of the robot
surroundings, in the form of a 2D binary-grid. This is done
starting from the 3D point cloud produced by the Lidar
sensor and running it through a set of steps.

Ground removal. Measures generated by laser beam
pointing to the ground are removed from the point cloud,
so that ground points are not mistaken as actual obstacles
in the following steps. Since our algorithm is specifically
designed to tackle crosswalks, which are generally charac-
terized by a flat road surface, we found that a RANSAC
plane fitting was enough to obtain satisfactory ground
removal. Remaining ground points which are not excluded
by the RANSAC fitting are treated as noise and handled
by the following processing steps.

Scan registration. Since the Lidar reference frame is
rigidly connected to the vehicle, objects in the point cloud
are subject to an apparent motion which is opposite to that
of the vehicle. In order to discriminate between static and
dynamic obstacles is therefore necessary to compensate for
such apparent motion, in a process that we referred to as
scan registration. The rationale behind scan registration
is that expressing the point clouds measurements with
respect to a common, static reference frame eliminates
the apparent motion, so that variations in the scene are
imputable to dynamic objects only. This can be seen as
a localization problem, as the sensor pose with respect to
the static frame needs to be known in order to perform
the change of coordinates on each point cloud. In our use
case, we found a dead-reckoning estimate to be reliable
enough to solve the localization process. In fact, even
though odometric measures are known to be subject to
slow drifting behavior due to error accumulation, in case
of crosswalk navigation the estimation process is limited
to a relatively small region of space (i.e. the width of the
street that needs to be crossed), and to a relatively short
trajectory. In other words, the robot does not travel far
enough to accumulate a relevant error, and the resulting
localization drift is slow enough to be considered negligible
with respect to the motion of the dynamic obstacles in the
scene. Our dead-reckoning localization algorithm exploits
a Lidar-based odometry measure, which is mainly based on
the concept of scan matching. A scan matching algorithm
computes the rototranslation occurring between two Lidar
acquisitions by optimizing the overlap obtained by project-
ing one point cloud over the other. This is done under the
hypothesis that most of the scene observed by the sensor
is static, so that variations between subsequent scans are
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such it is capable of simultaneously tracking objects which
are very different in size,such as pedestrians and cars.
This technique has been implemented and experimentally
tested on real-world urban scenarios using a prototype
vehicle designed for autonomous last mile delivery, and
provided promising results in the context of autonomous
navigation on crosswalks. The outline of the rest of the
paper is as follows: Section 2 describes the experimental
setup, describing the vehicle mechanical structure and
the sensors. Section 3 presents the algorithm structure,
followed by Section 4 in which the experimental results
are discussed.

2. EXPERIMENTAL SETUP

YAPE (Fig. 1) is a prototype vehicle designed for au-
tonomous parcel delivery in urban environment (see Saba-
tini et al. (2018)). Structurally YAPE is a Two Wheeled
Inverted Pendulum (TWIP) composed of a steel chassis
and two parallel driving wheels; such structure allows
turn-on-the-spot maneuvers, but it also implies a tilting
motion of the chassis which is proportional to the vehicle
longitudinal acceleration. In order to be able to operate
autonomously, YAPE is equipped with a suite of sensors
enabling it to perceive the external environment and its
own motion. Our target tracking algorithm relies on a
Quanergy-M8 3D Lidar mounted on the top lid. This sen-
sor has 8 scanning layers providing 360◦ horizontal Field
Of View (FOV) and 20◦ vertical FOV (+3◦/−17◦). Despite
a declared measurement range of more than 150 [m] for
each laser beam, we found 30 [m] to be the range at which
the point cloud produced by the sensor was dense enough
for our purposes. Particular attention has to be paid to the
effects of the tilting behavior of the chassis on the sensor
usable FOV. Tilting motion, which is intrinsically related
to TWIP structure, can be measured and corrected but
brings an inevitable reduction of the usable FOV in the
longitudinal direction.

3. CASCADE TARGET TRACKING

This section describes the structure of our cascade al-
gorithm for extended-target tracking, which develops as
follows: first, a 2D grid representation of the environment

is produced (Sec. 3.1) in which only dynamical obstacles
are included (Sec. 3.2); extended-targets in the scene are
then tracked using a three-stage algorithm composed of a
low-level tracking stage (Sec. 3.3), a clustering algorithm
(Sec. 3.4) and a high-level tracking stage (Sec. 3.5) pro-
viding the actual speed estimation for the obstacles in the
scene.

3.1 Point cloud processing

YAPE’s Lidar produces a 3D representation of the environ-
ment. However, since this application deals with vehicles
navigating a two dimensional world we preferred to work
with a 2D representation, which yields a reduction in the
computational complexity. As such, the first step of our
algorithm is to build a compact representation of the robot
surroundings, in the form of a 2D binary-grid. This is done
starting from the 3D point cloud produced by the Lidar
sensor and running it through a set of steps.

Ground removal. Measures generated by laser beam
pointing to the ground are removed from the point cloud,
so that ground points are not mistaken as actual obstacles
in the following steps. Since our algorithm is specifically
designed to tackle crosswalks, which are generally charac-
terized by a flat road surface, we found that a RANSAC
plane fitting was enough to obtain satisfactory ground
removal. Remaining ground points which are not excluded
by the RANSAC fitting are treated as noise and handled
by the following processing steps.

Scan registration. Since the Lidar reference frame is
rigidly connected to the vehicle, objects in the point cloud
are subject to an apparent motion which is opposite to that
of the vehicle. In order to discriminate between static and
dynamic obstacles is therefore necessary to compensate for
such apparent motion, in a process that we referred to as
scan registration. The rationale behind scan registration
is that expressing the point clouds measurements with
respect to a common, static reference frame eliminates
the apparent motion, so that variations in the scene are
imputable to dynamic objects only. This can be seen as
a localization problem, as the sensor pose with respect to
the static frame needs to be known in order to perform
the change of coordinates on each point cloud. In our use
case, we found a dead-reckoning estimate to be reliable
enough to solve the localization process. In fact, even
though odometric measures are known to be subject to
slow drifting behavior due to error accumulation, in case
of crosswalk navigation the estimation process is limited
to a relatively small region of space (i.e. the width of the
street that needs to be crossed), and to a relatively short
trajectory. In other words, the robot does not travel far
enough to accumulate a relevant error, and the resulting
localization drift is slow enough to be considered negligible
with respect to the motion of the dynamic obstacles in the
scene. Our dead-reckoning localization algorithm exploits
a Lidar-based odometry measure, which is mainly based on
the concept of scan matching. A scan matching algorithm
computes the rototranslation occurring between two Lidar
acquisitions by optimizing the overlap obtained by project-
ing one point cloud over the other. This is done under the
hypothesis that most of the scene observed by the sensor
is static, so that variations between subsequent scans are
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mainly occurring due to apparent motion. Among all the
scan matching algorithm available in the literature we
chose the Coherent Point Drift (see Myronenko and Song
(2010)).

Grid Quantization. The point cloud, which is now ex-
pressed in a world-fixed reference frame, can be defined as
a set of k points with their 3D coordinates:

P = {pk | pk ∈ R3 k = 1, ...,K}. (1)

The goal is that of building a grid-representation of a
certain region of space. Supposing to consider squared cells
of size γ, the matrix:

B = {bn,m | n = 1, ..., N m = 1, ...,M}. (2)

can be used to represent a rectangular space of γN ×
γM meters. In particular, we imposed N and M to be
even numbers, and prescribed the fixed frame origin to
be placed at the center of the grid (Fig. 2). Then, a
possible 3D to 2D conversion corresponds to counting how
many points in the point cloud are contained within a
virtual column extending above each cell. This is done by
assigning to bn,m a value corresponding to the number of
points belonging to P which fulfill the following inequality:

n− 1 ≤ xp

γ
+

N

2
< n ∧m− 1 ≤ yp

γ
+

M

2
< m. (3)

where xp and yp are the x and y coordinates of the generic
point expressed in the world-fixed reference frame.

Grid Binarization. Because of the fixed angular resolu-
tion, the cartesian resolution of the measurement decreases
as the distance of the object from YAPE increases. It is
thus expected that the point cloud becomes sparser as the
distance from the sensor increases. In order to compensate
for this fact, the values of the cells bn,m are normalized
with respect to the maximum number of points b̄n,m that
each of them could potentially contain. The maximum
number of points per cell was computed as:

b̄n,m = α(n,m)δ. (4)

where δ is the angular point density of the sensor and
α(n,m) is the angular coverage of cell bn,m. The de-
pendence of α(n,m) from the cell position and distance
from the sensor is depicted in Fig.2. Notice that (4) only
considers a single layer covering the grid cells; therefore
the value b̄n,m represents an underestimation of the ac-
tual maximum number of points per cell. However, since
this approximation is more realistic as the distance from
the sensor increases, and since the normalization step is
particularly critical for peripheral cells, this assumption
was considered acceptable, and proved to be valid in all
experiments. Once the maximum value per each cell is
known the corresponding normalized value is

b̂n,m = bn,m/b̄n,m. (5)

Finally, since the tracking algorithm only needs a repre-
sentation in terms of occupied and free space, a binary
value is computed per each cell by means of thresholding.
The resulting normalized grid B̃ is defined by:

b̃n,m =

{
1 if b̂n,m > τbin
0 otherwise

. (6)

where τbin is a suitable threshold.

The results of the various point cloud processing steps are
depicted in Fig. 3. Notice that the resulting grid is in fact

Fig. 2. Angular coverage per cell

Fig. 3. Pointcloud preprocessing steps: a) original image
b) background removal c) grid quantization d) grid
binarization

a binary image in which black and white pixels correspond
to free and occupied space respectively.

3.2 Dynamical objects extraction

Once a binary image representing the surrounding en-
vironment is available, it is possible to segment it into
background and moving obstacles. This is once again done
in steps.

Background Removal. In order to separate moving ob-
stacles from the background, the time evolution of the
pixel value is considered. In particular, an estimate of the
background image at each time is computed as a thresh-
olded moving average over a window W of the previously
computed frames. First, the moving average is trivially
computed as

G(t) =

∑W
T=0 B̃(t− T )

W
. (7)

Then the background image G̃ is computed by requiring:

g̃n,m =

{
1 if gn,m > τbck
0 otherwise

. (8)

where τbck is a suitable threshold. Notice that averaging
the value and applying a threshold is equivalent to pre-
scribe that a pixel has to be occupied for at least τbckW
frames over the last W to be included in the background.

The final image F containing only dynamic pixels is ob-
tained as:

fn,m = b̃n,m ∧ ¬g̃n,m. (9)

As shown in Fig. 4, this process removes most of the back-
ground obstacles from the scene; however, the resulting
image presents some noise in the form of isolated pixels
which are still marked as occupied. In order to remove
them, a set of morphological operations are applied.

Image processing. The goal of the image processing
step is dual: it aims at removing noisy pixels and at
aggregating as much as possible those pixels which are
related to the same obstacle. Both goals are achieved
by applying a sequence of morphological operations (see
Haralick et al. (1987)) to the BEV image. As much of
the noise produced by background removal is located in
a neighbor of the stationary obstacles, a dilation filter
is applied to the background image before computing
the subtraction. Then, a closure filter is slid on the
resulting image to aggregate the sparse points belonging to
a same obstacle. Finally, connected components with total
area below a prescribed threshold are removed from the
resulting image to further exclude faulty detections and
noise. The resulting image is shown in Fig. 5

Shadow Management. As most radial range finders, Li-
dars are affected by a shadowing phenomenon for which
each obstacle detected by the sensor creates a shadow cone
hiding any other object which falls inside it. This has two
main negative effects on our target tracking algorithm.
First, any dynamical object can disappear and reappear
in the scene as it enters and exits shadow cones: this
problem and the adopted solution will be further discussed
in the following section. Secondly, moving shadow cones
generated by dynamical objects can produce relevant per-
formance degradation in the background removal step.
In order to understand how shadows affect background
removal, let’s consider a pixel that was correctly labeled as
background in a certain sequence of frames. If such pixel
is covered by a shadow cone for a sufficient amount of
time (which is related to the values of τbck and W ), it
will eventually be marked as free space and excluded from
B̃. Therefore, once the obstacle creating the shadow cone
is passed, that pixel will be recognized as occupied and
mistakenly labeled as dynamic until the moving average
filter includes it once again in the background image.
In order to cope with this problem, estimated shadow
cones are created for each dynamical object detected in
the scene. Then, pixels in B̃ which fall under any shadow
cone are kept constant until they are visible again. This is
done supposing that shadowed background doesn’t change
during the passage of the shadow cone, which proved to
be an acceptable hypothesis in the testing phase.

3.3 Low Level Target Tracking

Starting from the processed BEV images, the problem
of estimating the speed of incoming vehicles can be cast
into an extended-target tracking framework. The term
extended-target indicates the fact that one obstacle can
in general produce more than one measure. In case of
our BEV images, this correspond to recognize that each
obstacle can produce more than one blob of white, or

Fig. 4. BEV image after background removal: white pixels
indicate dynamical objects detected in the scene.
Background is reported in gray for demonstration
purposes only.

Fig. 5. BEV image after image processing.

occupied, pixels. Our solution to this problem passes
trough a layered structured tracking algorithm. In the
first layer, each pixel blob is considered as a separate
target. The goal is that of associating each of them with
a speed estimate to be used in the successive clustering
layer. The measures used to track each blob are the x and
y coordinates of its geometrical center. As most traditional
target tracking algorithm, our first-layer target tracking is
based on a specific motion model, and it is composed of a
prediction step, a data association and tracks management
algorithm, and a correction step.

Motion Model. The motion model for the first-layer
target tracking is a Coordinated Turn (CT) model, which
is based on the hypothesis of planar motion with constant
rotational speed. The state vector associated to each track
is:

x = (x y vx vy ω)�. (10)

Discrete time evolution of the state is regulated by the
following discrete time dynamical system:

xk+1 = f(xk) +wk

yk = Hxk + vk
(11)

in which f(x) depends on the chosen motion model. In
case of CT it can be expressed as:
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The final image F containing only dynamic pixels is ob-
tained as:

fn,m = b̃n,m ∧ ¬g̃n,m. (9)

As shown in Fig. 4, this process removes most of the back-
ground obstacles from the scene; however, the resulting
image presents some noise in the form of isolated pixels
which are still marked as occupied. In order to remove
them, a set of morphological operations are applied.

Image processing. The goal of the image processing
step is dual: it aims at removing noisy pixels and at
aggregating as much as possible those pixels which are
related to the same obstacle. Both goals are achieved
by applying a sequence of morphological operations (see
Haralick et al. (1987)) to the BEV image. As much of
the noise produced by background removal is located in
a neighbor of the stationary obstacles, a dilation filter
is applied to the background image before computing
the subtraction. Then, a closure filter is slid on the
resulting image to aggregate the sparse points belonging to
a same obstacle. Finally, connected components with total
area below a prescribed threshold are removed from the
resulting image to further exclude faulty detections and
noise. The resulting image is shown in Fig. 5

Shadow Management. As most radial range finders, Li-
dars are affected by a shadowing phenomenon for which
each obstacle detected by the sensor creates a shadow cone
hiding any other object which falls inside it. This has two
main negative effects on our target tracking algorithm.
First, any dynamical object can disappear and reappear
in the scene as it enters and exits shadow cones: this
problem and the adopted solution will be further discussed
in the following section. Secondly, moving shadow cones
generated by dynamical objects can produce relevant per-
formance degradation in the background removal step.
In order to understand how shadows affect background
removal, let’s consider a pixel that was correctly labeled as
background in a certain sequence of frames. If such pixel
is covered by a shadow cone for a sufficient amount of
time (which is related to the values of τbck and W ), it
will eventually be marked as free space and excluded from
B̃. Therefore, once the obstacle creating the shadow cone
is passed, that pixel will be recognized as occupied and
mistakenly labeled as dynamic until the moving average
filter includes it once again in the background image.
In order to cope with this problem, estimated shadow
cones are created for each dynamical object detected in
the scene. Then, pixels in B̃ which fall under any shadow
cone are kept constant until they are visible again. This is
done supposing that shadowed background doesn’t change
during the passage of the shadow cone, which proved to
be an acceptable hypothesis in the testing phase.

3.3 Low Level Target Tracking

Starting from the processed BEV images, the problem
of estimating the speed of incoming vehicles can be cast
into an extended-target tracking framework. The term
extended-target indicates the fact that one obstacle can
in general produce more than one measure. In case of
our BEV images, this correspond to recognize that each
obstacle can produce more than one blob of white, or

Fig. 4. BEV image after background removal: white pixels
indicate dynamical objects detected in the scene.
Background is reported in gray for demonstration
purposes only.

Fig. 5. BEV image after image processing.

occupied, pixels. Our solution to this problem passes
trough a layered structured tracking algorithm. In the
first layer, each pixel blob is considered as a separate
target. The goal is that of associating each of them with
a speed estimate to be used in the successive clustering
layer. The measures used to track each blob are the x and
y coordinates of its geometrical center. As most traditional
target tracking algorithm, our first-layer target tracking is
based on a specific motion model, and it is composed of a
prediction step, a data association and tracks management
algorithm, and a correction step.

Motion Model. The motion model for the first-layer
target tracking is a Coordinated Turn (CT) model, which
is based on the hypothesis of planar motion with constant
rotational speed. The state vector associated to each track
is:

x = (x y vx vy ω)�. (10)

Discrete time evolution of the state is regulated by the
following discrete time dynamical system:

xk+1 = f(xk) +wk

yk = Hxk + vk
(11)

in which f(x) depends on the chosen motion model. In
case of CT it can be expressed as:
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f(x) =




x+
vx
ω

sin(ωT )− vy
ω
(1− cos(ωT ))

y +
vx
ω
(1− cos(ωT )) +

vy
ω

sin(ωT )

vx cos(ωT )− vy sin(ωT )
vx sin(ωT ) + vy cos(ωT )

ω




. (12)

The measurement matrix H is:

H =

[
1 0 0 0 0
0 1 0 0 0

]
. (13)

Leveraging this model it is possible to set up an Extended
Kalman Filter, which evolves under the usual prediction-
correction scheme. However, two further steps are needed
between the filter prediction and correction phase, namely
a data association step and a tracking management step.

Data Association. The key concept is that at each time
step, new measurements are acquired from the obstacles
on the scene, but there is no prior knowledge on which
new measure should be associated to each existing track.
Tackling this problem requires the solution of two sub-
tasks, namely gating and association. Gating refers to a
process of selection of those measures which are potentially
compatible with each track. Once those measures are
selected an association problem must be solved trying
to associate each track with the most likely measure.
We base our gating step on the Mahalanobis distance
(see Mahalanobis (1936)). At each time instant, for each
measurement y and predicted track a distance measure is
computed as:

dM (y, ŷ) = (y − ŷ)
�
S−1 (y − ŷ) (14)

where y is the measure, ŷ is the predicted track posi-
tion and S is the innovation covariance defined as S =
HP ′H� +R. A measure y can be associated to ŷ only if:

dM (y, ŷ) ≤ τG. (15)

where τG is the gating threshold. Notice that in general
more than one measure can satisfy (15) for the same track,
and conversely the same measure can be acceptable for
more than one track. It is therefore necessary to solve
a data association problem which in our case was done
using the Global Nearest Neighbor (GNN) algorithm. This
requires each track-measurement couple to be associated
with a weight which is proportional to the Mahalanobis
distance. Measures which fall outside the gating threshold
are given infinite cost. The problem is then formulated
as a typical combinatory optimization problem known
as association problem, which is solved using Munkres
algorithm (Hungarian algorithm, see Kuhn (1955)).

Tracks Management. In general, the number of active
tracks at each time instant is different from the number
of newly acquired measures. This difference can have
different causes:

• A previously tracked object could have exited the
scene, so that there is a track with no associated
measure that should be eliminated from the list.

• A new object could have entered the scene, so that a
new track should be created to follow it.

• A previously tracked object could now be hidden
by the shadow produced by another obstacle in the
scene, so that there is a track with no associated

measure that should be kept alive until the tracked
object exits the shadow cone.

• A faulty measure could have survived the filtering
process, so that there is a measure with no associated
track that should be ignored.

In any of the previous cases, the data association step
will leave either measures with no track or tracks with no
measure. Both these cases are managed by introducing a
confirmation and an elimination logic for the tracks. First
of all, a new track is initiated every time there is a measure
with no associated track. However this is initially labeled
as a tentative track, and it is confirmed only if it receives at
least Mc measures in the next Nc time instants, otherwise
it is eliminated. This logic, which is known asM/N logic, is
also applied to track elimination, so that a track is removed
from the list if it doesn’t receive at least Me measures in
the last Ne instants.

3.4 Clustering

In order to group the targets produced by the low level
target tracking we developed a threshold based clustering
algorithm in which two distance metrics are used. In
particular, if we define a cluster C as a set of tracks q
each characterized by a state vector as in (10), the first
distance measure accounts for position, and is defined as:

δd(p, C) = min
q∈C

√
(xp − xq)2 + (yp − yq)2. (16)

Conversely, the second distance measure is computed in
the velocity domain according to:

δv(p, C) = max
q∈C

√
(vxp

− vxq
)2 + (vyp

− vyq
)2. (17)

The clustering algorithm then develops as follows:

(1) Randomly select a track from those generated by the
low lever target tracking algorithm. This is the seed
of the first cluster C1.

(2) For every unclustered track p compute δd(p, C1) and
δv(p, C1). The track is included in C1 if both δd(p, C)
and δv(p, C) are below two prescribed thresholds

(3) If there are still unclustered track, randomly select
one to be the seed of the next cluster, then repeat
step 2 for the new cluster.

(4) The algorithm ends when all tracks have been as-
signed to a cluster.

Using a threshold on the speed allows to deal with cases
in which two objects are very close to each other in the
scene (which happens very often on two-lanes roads),
so that a pure position based clustering would lead to
mistakenly aggregate blobs which are not produced by
a single obstacle. Notice that the minimum distance is
considered for track position in order to make the inclusion
criterion independent from the object dimension, whereas
the maximum distance is considered for track speed in
order to obtain a bounded speed variation within the same
cluster.

3.5 High Level Target Tracking

The goal of the clustering algorithm is to create exactly
one cluster for each obstacle in the scene. Moreover, by
averaging the position and speed of each track belonging to

a cluster, an averaged state vector of the same form of (10)
can be associated to each cluster. In this way, the original
extended target tracking problem can been reduced to a
standard target tracking one, which considers the averaged
state vectors as measures. An additional target tracking
layer is therefore implemented, on the same line of the first-
layer target tracking. In particular, the same CT motion
model is used, together with the EKF structure. The only
difference lies in the measurement matrix, which is defined
as:

H =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 . (18)

where cluster average x and y position and speeds are con-
sidered. The data association step is the exact equivalent of
that implemented in the low level target tracking, based
on Mahalanobis distance and GNN association. Finally,
concerning tracks management, no confirmation logic is
implemented, whereas the usual M/N logic is used for
cluster elimination. The rationale is that only confirmed
tracks are included in the clustering procedure, therefore
adding a further confirmation step would only increase
the detection delay without adding anything to the noise
reduction. On the other hand, cluster measures could be
subject to shadowing or misdetection, therefore an elimi-
nation logic is required to keep the cluster alive in those
cases.

4. EXPERIMENTAL RESULTS

The algorithm described in the previous section was ex-
perimentally validated with field tests in Milan. The robot
was manually operated in proximity of urban crosswalks
and Lidar data were acquired and processed. During the
operations the robot was interacting with a variety of
different agents, including pedestrian, cyclist, cars, trucks
and buses. This allowed us to assess the performance of the
algorithm in presence of large variations in the obstacles
size and speed. As expected, size plays a role in determin-
ing the distance at which an obstacle produces at least
one measurement point: with our Lidar sensor we found
the first detection distance for a car to be of approximately
30 meters with unobstructed view. The selected scenario
was actually particularly challenging in this respect due
to the presence of parked cars which which were partially
obstructing the sensor field of view at the beginning and at
the end of the crosswalk. Since the experiments took place
in a real world scenario, no ground-truth measurement
was available for the obstacle trajectories. The overall
performance of the algorithm was therefore assessed using
estimated ground-truth trajectories which were obtained
in post processing by manually selecting the Lidar points
belonging to each vehicle in each frame. Fig. 6 shows a
visual comparison between the estimated reference and
the trajectories obtained by our tracking algorithm, high-
lighting the good performance of the algorithm in tracking
both vehicles proceeding on a straight line and vehicles
performing turns. In particular, Fig. 6 reports the results
obtained in tracking a car, a bicycle and a pedestrian
respectively, proving the capability of our algorithm to
deal obstacles with relevant differences in size and speed.
Finally, a comparison between the reference and estimated
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Fig. 6. Ground truth (dashed line) and estimated trajec-
tories (solid line) for a car (green) a bicycle (orange)
and a pedestrian (purple).
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Fig. 7. Speed reference (red) and EKF estimate (blue) for
vehicle number 3

speed of one of the vehicles is reported in Fig. 7, once again
showing the effectiveness of the filter.
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