# Supporting information

# Solid-state stability of Z' < 1 and Z' = 2 polymorphs of *N,N,N',N'*tetrabenzylethylenediamine: a combined experimental and theoretical study

Zhen Wang<sup>a</sup>, Xiaoxiao Cui<sup>a</sup>, Antonino Famulari<sup>b,c</sup>, Javier Martí-Rujas<sup>b,d\*</sup>, Benson M. Kariuki<sup>e\*</sup>, Fang Guo<sup>a\*</sup>

<sup>a</sup> College of Chemistry, Liaoning University, Shenyang, 110036, China. E-mail: fguo@Inu.edu.cn;
<sup>b</sup> Dipartimento di Chimica Materiali e Ingegneria Chimica. "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy.
<sup>c</sup>.INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, 50121, Florence, Italy.
<sup>d</sup> Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.
E-mail: javier.marti@polimi.it
<sup>g</sup> School of chemistry, Cardiff University, Cardiff CE10 30T, Wales

- <sup>e</sup> School of chemistry, Cardiff University, Cardiff CF10 3AT, Wales.
- E-mail: KariukiB@cardiff.ac.uk

### Figure captions and tables.

Figure S1. (a) Experimental powder XRD patterns of L crystallized from methanol,

with phases  $\alpha$  (black dots) and  $\beta$  (red dots) indicated. Simulated XRPD patterns of phases  $\beta$  (b) and  $\alpha$  (c).

**Figure S2**. IR spectrum of phase  $\alpha$ ,  $\beta$  and  $\gamma$ . (Red:  $\alpha/\beta$ ; Green:  $\gamma$ ).

**Figure S3**. Powder XRD recorded at different temperatures for a mixture of phases  $\alpha$  and  $\beta$ .

**Figure S4**. DSC of phase  $\alpha/\beta$ .

**Figure S5**. DSC of phase  $\gamma$ .

**Figure S6**. Powder XRD patterns for (a) DSC experiment stopped at 94 °C; (b) powder XRD simulated form single crystal data of  $\gamma$  polymorph.

**Figure S7**. ORTEP diagram of the  $\beta$  phase.

**Figure S8**. ORTEP diagram of the  $\gamma$  phase.

Figure S9. Electrostatic interactions in the  $\beta$  phase in dashed lines showed in Table S1.

**Table S1**. Electrostatic interactions shown in Figure S9 in the  $\beta$  polymorph.

**Figure S10.** Electrostatic interactions in the  $\gamma$  phase in dashed lines showed in Table S2.

**Table S2**. Electrostatic interactions in the  $\gamma$  polymorph shown in Figure S10.



**Figure S1.** (a) Experimental powder XRD patterns of L crystallized from methanol, with phases  $\alpha$  (black dots) and  $\beta$  (red dots) indicated. Simulated XRPD patterns of phases  $\beta$  (b) and  $\alpha$  (c).



**Figure S2.** IR spectrum of phase  $\alpha$ ,  $\beta$  and  $\gamma$ . (Red:  $\alpha/\beta$ ; Green:  $\gamma$ ).



**Figure S3.** Powder XRD recorded at different temperatures for a mixture of phases  $\alpha$  and  $\beta$ .



Figure S4. DSC of phase  $\alpha/\beta$ .



Figure S5. DSC of phase  $\gamma$ .



**Figure S6.** Powder XRD patterns for (a) DSC experiment stopped at 94 °C; (b) powder XRD simulated form single crystal data of  $\gamma$  polymorph.



**Figure S7.** ORTEP diagram of the  $\beta$  phase.



**Figure S8.** ORTEP diagram of the  $\gamma$  phase.



Figure S9. Electrostatic interactions in the  $\beta$  phase in dashed lines showed in Table S1.

**Table S1.** Electrostatic interactions shown in Figure S9 in the  $\beta$  polymorph.

| D-H…A   | D-H(Å) | H…A/π…π(Å) | D…A(Å) | D-H…A(°) |
|---------|--------|------------|--------|----------|
| C1-H1C5 | 0.97   | 2.85       | 3.63   | 138      |
| C14…C11 |        | 3 57       |        |          |
| (π…π)   |        | 5.57       |        |          |



**Figure S10.** Electrostatic interactions in the  $\gamma$  phase in dashed lines showed in Table S2.

| D-H…A       | D-H(Å) | H…A (Å) | D…A(Å) | D-H…A(°) |
|-------------|--------|---------|--------|----------|
| C28-H28…C11 | 0.93   | 2.94    | 3.63   | 138      |
| C12-H12…C27 | 0.93   | 2.98    | 4.08   | 175      |
| C22-H22…C48 | 0.93   | 3.09    | 3.95   | 154      |
| C21-H21…C58 | 0.93   | 2.82    | 3.75   | 176      |
| C40-H40…C10 | 0.93   | 3.12    | 3.98   | 154      |
| C41-H41…C4  | 0.93   | 2.98    | 3.87   | 160      |
| C5-H5…C22   | 0.93   | 3.02    | 3.95   | 174      |

**Table S2.** Electrostatic interactions in the  $\gamma$  polymorph shown in Figure S10.

#### **Density Functional Theory Calculations**

Molecular modelling studies are performed in the crystalline phase, (*i.e.*, under periodical conditions). The GGA PBE functional<sup>1</sup> is adopted together with explicit van der Waals corrections<sup>2</sup> to improve the description of van der Waals interactions.<sup>3</sup> A numerical double zeta numerical basis set centered on atoms (including polarisation functions on all atoms), roughly comparable with the usual 6-31G\*\* gaussian basis, has been employed. The DMol<sup>3</sup> package<sup>4</sup> was employed for all the calculations. The geometries of the crystalline assemplies have been obtained from experimental X-ray determined structures and optimized by fixing the cells under symmetry restrain conditions.

### DFT optimized coordinates in $\alpha$ , $\beta$ and $\gamma$ -phases.

## **Polymorph alpha:**

| REMARK | I | Mate  | rials S | Studio | PDB fi  | le   |         |          |        |        |              |   |
|--------|---|-------|---------|--------|---------|------|---------|----------|--------|--------|--------------|---|
| REMARK | ( | Crea  | ted: F  | ri Au  | g 05 13 | :58  | :21 ora | a solare | Euro   | ра осс | identale 202 | 2 |
| CRYST1 | Ę | 5.872 | 2 10.2  | 202    | 10.629  | 97   | .62 10  | 1.62 9   | 3.95 F | P-1    |              |   |
| ORIGX1 |   | 1.00  | 0000    | 0.000  | 0000 0  | .000 | 0000    | 0.00     | 0000   |        |              |   |
| ORIGX2 |   | 0.00  | 0000    | 1.000  | 0000 0  | .000 | 0000    | 0.00     | 0000   |        |              |   |
| ORIGX3 |   | 0.00  | 0000    | 0.000  | 0000 1  | .000 | 0000    | 0.00     | 0000   |        |              |   |
| SCALE1 |   | 0.17  | 70306   | 0.01   | 1763 0  | .03  | 7208    | 0.00     | 0000   |        |              |   |
| SCALE2 |   | 0.00  | 00000   | 0.098  | 3254 0  | .014 | 4899    | 0.00     | 0000   |        |              |   |
| SCALE3 |   | 0.00  | 00000   | 0.000  | 0 0000  | .09  | 7149    | 0.00     | 0000   |        |              |   |
| ATOM   | 1 | N1    | MOL     | 2      | 0.06    | 58   | 8.940   | 1.247    | 1.00   | 0.06   | Ν            |   |
| ATOM   | 2 | C1    | MOL     | 2      | -0.04   | 3 1  | 0.157   | 0.399    | 1.00   | 0.07   | С            |   |
| ATOM   | 3 | H1    | MOL     | 2      | 0.80    | 8 1  | 0.249   | -0.314   | 1.00   | 0.08   | Н            |   |
| ATOM   | 4 | H2    | MOL     | 2      | 0.02    | 31   | 1.016   | 1.084    | 1.00   | 0.08   | Н            |   |
| ATOM   | 5 | C2    | MOL     | 2      | 0.23    | 5    | 7.691   | 0.449    | 1.00   | 0.08   | С            |   |
| ATOM   | 6 | H3    | MOL     | 2      | 1.22    | 3    | 7.672   | -0.069   | 1.00   | 0.10   | Н            |   |
| ATOM   | 7 | H4    | MOL     | 2      | -0.53   | 1    | 7.678   | -0.338   | 1.00   | 0.10   | Н            |   |
| ATOM   | 8 | C3    | MOL     | 2      | 0.08    | 6 (  | 6.433   | 1.289    | 1.00   | 0.06   | С            |   |

| ATOM | 9 C4 MOL   | 2 | -1.091 | 6.198 2. | 022 1.00   | 0.08 | С |
|------|------------|---|--------|----------|------------|------|---|
| ATOM | 10 H5 MOL  | 2 | -1.885 | 6.944 1  | .999 1.00  | 0.09 | Н |
| ATOM | 11 C5 MOL  | 2 | -1.237 | 5.025 2  | .778 1.00  | 0.09 | С |
| ATOM | 12 H6 MOL  | 2 | -2.155 | 4.852 3  | .341 1.00  | 0.11 | Н |
| ATOM | 13 C6 MOL  | 2 | -0.209 | 4.072 2  | .803 1.00  | 0.10 | С |
| ATOM | 14 H7 MOL  | 2 | -0.315 | 3.152 3  | .377 1.00  | 0.12 | Н |
| ATOM | 15 C7 MOL  | 2 | 0.970  | 4.300 2  | .079 1.00  | 0.10 | С |
| ATOM | 16 H8 MOL  | 2 | 1.773  | 3.563 2  | .107 1.00  | 0.12 | Н |
| ATOM | 17 C8 MOL  | 2 | 1.113  | 5.478 1  | .327 1.00  | 80.0 | С |
| ATOM | 18 H9 MOL  | 2 | 2.033  | 5.662 0  | .770 1.00  | 0.10 | Н |
| ATOM | 19 C9 MOL  | 2 | 1.140  | 9.040 2  | .275 1.00  | 0.07 | С |
| ATOM | 20 H10 MOL | 2 | 2.141  | 9.142 ´  | 1.792 1.00 | 0.08 | Н |
| ATOM | 21 H11 MOL | 2 | 1.148  | 8.078 2  | 2.810 1.00 | 0.08 | Н |
| ATOM | 22 C10 MOL | 2 | 0.959  | 10.156   | 3.285 1.00 | 0.06 | С |
| ATOM | 23 C11 MOL | 2 | 1.998  | 11.083   | 3.498 1.00 | 0.07 | С |
| ATOM | 24 H12 MOL | 2 | 2.904  | 11.026   | 2.893 1.00 | 0.09 | Н |
| ATOM | 25 C12 MOL | 2 | 1.899  | 12.050   | 4.508 1.00 | 0.09 | С |
| ATOM | 26 H13 MOL | 2 | 2.709  | 12.757   | 4.682 1.00 | 0.11 | Н |
| ATOM | 27 C13 MOL | 2 | 0.751  | 12.114   | 5.312 1.00 | 0.09 | С |
| ATOM | 28 H14 MOL | 2 | 0.688  | 12.857   | 6.105 1.00 | 0.10 | Н |
| ATOM | 29 C14 MOL | 2 | -0.304 | 11.208   | 5.094 1.00 | 0.08 | С |
| ATOM | 30 H15 MOL | 2 | -1.204 | 11.258   | 5.708 1.00 | 0.10 | Н |
| ATOM | 31 C15 MOL | 2 | -0.201 | 10.239   | 4.085 1.00 | 0.07 | С |
| ATOM | 32 H16 MOL | 2 | -1.009 | 9.530    | 3.913 1.00 | 80.0 | Н |
| TER  | 33         |   |        |          |            |      |   |

# Polymorph beta:

| REMARK | Materials Studio PDB file           |                               |
|--------|-------------------------------------|-------------------------------|
| REMARK | Created: Fri Aug 05 13:59:01 ora se | olare Europa occidentale 2022 |
| CRYST1 | 6.356 9.042 11.117 76.99 86.68      | 3 79.27 P-1                   |
| ORIGX1 | 1.000000 0.000000 0.000000          | 0.00000                       |
| ORIGX2 | 0.000000 1.000000 0.000000          | 0.00000                       |
| ORIGX3 | 0.000000 0.000000 1.000000          | 0.00000                       |
|        |                                     |                               |

| SCALE1 | 0.157332 -0.029799 -0.002 | 692 0.00000              |
|--------|---------------------------|--------------------------|
| SCALE2 | 0.000000 0.112561 -0.025  | 201 0.00000              |
| SCALE3 | 0.000000 0.000000 0.092   | 334 0.00000              |
| ATOM   | 1 N1 MOL 2 2.389 1        | .017 1.425 1.00 0.05 N   |
| ATOM   | 2 C1 MOL 2 2.921 0        | .030 3.690 1.00 0.05 C   |
| ATOM   | 3 C2 MOL 2 1.274 3        | .265 1.397 1.00 0.05 C   |
| ATOM   | 4 C3 MOL 2 2.762 -0       | .180 0.623 1.00 0.05 C   |
| ATOM   | 5 H3A MOL 2 3.356 -       | 0.822 1.291 1.00 0.08 H  |
| ATOM   | 6 H3B MOL 2 1.871 -       | 0.771 0.304 1.00 0.08 H  |
| ATOM   | 7 C4 MOL 2 4.195 0        | .611 3.823 1.00 0.06 C   |
| ATOM   | 8 H4A MOL 2 4.429         | 1.498 3.235 1.00 0.07 H  |
| ATOM   | 9 C5 MOL 2 1.886 0        | .655 2.778 1.00 0.05 C   |
| ATOM   | 10 H5A MOL 2 0.998 -      | 0.010 2.707 1.00 0.07 H  |
| ATOM   | 11 H5B MOL 2 1.538        | 1.594 3.236 1.00 0.07 H  |
| ATOM   | 12 C6 MOL 2 1.408 1       | .905 0.736 1.00 0.06 C   |
| ATOM   | 13 H6A MOL 2 0.408        | 1.418 0.686 1.00 0.08 H  |
| ATOM   | 14 H6B MOL 2 1.741        | 2.056 -0.298 1.00 0.08 H |
| ATOM   | 15 C7 MOL 2 2.607 -       | 1.088 4.487 1.00 0.06 C  |
| ATOM   | 16 H7A MOL 2 1.617 -      | 1.547 4.412 1.00 0.08 H  |
| ATOM   | 17 C8 MOL 2 3.542 -       | 1.608 5.394 1.00 0.08 C  |
| ATOM   | 18 H8A MOL 2 3.275 -      | 2.465 6.012 1.00 0.09 H  |
| ATOM   | 19 C9 MOL 2 0.034 3       | 3.690 1.906 1.00 0.07 C  |
| ATOM   | 20 H9A MOL 2 -0.827       | 3.023 1.839 1.00 0.08 H  |
| ATOM   | 21 C10 MOL 2 2.377        | 4.135 1.459 1.00 0.07 C  |
| ATOM   | 22 AH10 MOL 2 3.334       | 3.809 1.051 1.00 0.08 H  |
| ATOM   | 23 C11 MOL 2 4.821 -      | 1.041 5.500 1.00 0.07 C  |
| ATOM   | 24 AH11 MOL 2 5.558       | -1.468 6.179 1.00 0.09 H |
| ATOM   | 25 C12 MOL 2 0.998        | 5.828 2.536 1.00 0.08 C  |
| ATOM   | 26 AH12 MOL 2 0.889       | 6.818 2.979 1.00 0.10 H  |
| ATOM   | 27 C13 MOL 2 2.240        | 5.413 2.019 1.00 0.08 C  |
| ATOM   | 28 AH13 MOL 2 3.096       | 6.086 2.052 1.00 0.10 H  |
| ATOM   | 29 C14 MOL 2 5.135        | 0.080 4.714 1.00 0.07 C  |
| ATOM   | 30 AH14 MOL 2 6.119       | 0.540 4.796 1.00 0.08 H  |
| ATOM   | 31 C15 MOL 2 -0.107       | 4.966 2.477 1.00 0.09 C  |

ATOM 32 AH15 MOL 2 -1.069 5.282 2.879 1.00 0.10 H TER 33

### Polymorph gamma:

**REMARK** Materials Studio PDB file REMARK Created: Mon Aug 15 09:39:20 ora solare Europa occidentale 2022 CRYST1 39.091 12.916 20.068 90.00 93.66 90.00 C2/C ORIGX1 1.000000 0.000000 0.000000 0.00000 ORIGX2 0.000000 1.000000 0.000000 0.00000 ORIGX3 0.000000 0.000000 1.000000 0.00000 SCALE1 0.025582 0.000000 0.001637 0.00000 SCALE2 0.000000 0.077423 0.000000 0.00000 SCALE3 0.000000 0.000000 0.049931 0.00000 ATOM 1 C1 MOL 2 26.384 9.887 -0.314 1.00 0.08 С 26.630 9.113 0.412 1.00 0.09 ATOM 2 H1A MOL 2 Н ATOM 3 H1B MOL 26.107 10.788 0.253 1.00 0.09 Н 2 4 C2 MOL 2 27.615 10.200 -1.143 1.00 0.07 С ATOM 27.994 9.387 -2.225 1.00 0.09 С ATOM 5 C3 MOL 2 ATOM 6 H3 MOL 2 27.368 8.554 -2.508 1.00 0.10 Н 7 C4 MOL ATOM 2 29.171 9.657 -2.934 1.00 0.11 С 8 H4 MOL 29.466 9.020 -3.752 1.00 0.13 ATOM 2 Н 29.974 10.756 -2.589 1.00 0.11 ATOM 9 C5 MOL 2 С ATOM 10 H5 MOL 2 30.879 10.968 -3.135 1.00 0.13 Н ATOM 11 C6 MOL 2 29.589 11.581 -1.525 1.00 0.10 С 12 H6 MOL 2 30.190 12.436 -1.258 1.00 0.12 Н ATOM ATOM 13 C7 MOL 2 28.421 11.299 -0.806 1.00 0.08 С 14 H7 MOL 28.130 11.931 0.018 1.00 0.10 ATOM 2 Н 24.669 10.516 -1.948 1.00 0.07 С ATOM 15 C8 MOL 2 ATOM 16 H8A MOL 2 25.509 11.065 -2.383 1.00 0.08 Н ATOM 17 H8B MOL 2 24.115 11.221 -1.313 1.00 0.08 Н 2 23.744 10.032 -3.055 1.00 0.06 С ATOM 18 C9 MOL С ATOM 19 C10 MOL 2 23.964 8.815 -3.724 1.00 0.08 ATOM 20 H10 MOL 2 24.775 8.178 -3.412 1.00 0.10 Н

| ATOM | 21 C11 MOL  | 2 | 23.128 8.429 -4.787 1.00 0.10  | С |
|------|-------------|---|--------------------------------|---|
| ATOM | 22 H11 MOL  | 2 | 23.300 7.490 -5.288 1.00 0.12  | н |
| ATOM | 23 C12 MOL  | 2 | 22.073 9.260 -5.196 1.00 0.11  | С |
| ATOM | 24 H12 MOL  | 2 | 21.440 8.963 -6.016 1.00 0.14  | Н |
| ATOM | 25 C13 MOL  | 2 | 21.845 10.470 -4.527 1.00 0.11 | С |
| ATOM | 26 H13 MOL  | 2 | 21.033 11.110 -4.833 1.00 0.14 | Н |
| ATOM | 27 C14 MOL  | 2 | 22.671 10.850 -3.459 1.00 0.09 | С |
| ATOM | 28 H14 MOL  | 2 | 22.484 11.779 -2.941 1.00 0.10 | Н |
| ATOM | 29 C15 MOL  | 2 | 24.187 8.791 -0.259 1.00 0.07  | С |
| ATOM | 30 AH15 MOL | 2 | 23.245 8.791 -0.804 1.00 0.08  | Н |
| ATOM | 31 BH15 MOL | 2 | 24.041 9.374 0.662 1.00 0.08   | Н |
| ATOM | 32 C16 MOL  | 2 | 24.571 7.352 0.111 1.00 0.07   | С |
| ATOM | 33 AH16 MOL | 2 | 24.698 6.778 -0.819 1.00 0.08  | Н |
| ATOM | 34 BH16 MOL | 2 | 25.523 7.344 0.639 1.00 0.08   | Н |
| ATOM | 35 C17 MOL  | 2 | 24.143 5.594 1.768 1.00 0.07   | С |
| ATOM | 36 AH17 MOL | 2 | 24.714 4.931 1.103 1.00 0.08   | Н |
| ATOM | 37 BH17 MOL | 2 | 23.323 5.003 2.183 1.00 0.08   | Н |
| ATOM | 38 C18 MOL  | 2 | 25.052 6.052 2.894 1.00 0.07   | С |
| ATOM | 39 C19 MOL  | 2 | 26.142 5.247 3.272 1.00 0.12   | С |
| ATOM | 40 H19 MOL  | 2 | 26.362 4.344 2.722 1.00 0.15   | Н |
| ATOM | 41 C20 MOL  | 2 | 26.945 5.612 4.363 1.00 0.20   | С |
| ATOM | 42 H20 MOL  | 2 | 27.786 4.993 4.633 1.00 0.24   | Н |
| ATOM | 43 C21 MOL  | 2 | 26.662 6.771 5.098 1.00 0.21   | С |
| ATOM | 44 H21 MOL  | 2 | 27.256 7.032 5.959 1.00 0.25   | Н |
| ATOM | 45 C22 MOL  | 2 | 25.597 7.592 4.699 1.00 0.18   | С |
| ATOM | 46 H22 MOL  | 2 | 25.389 8.506 5.232 1.00 0.22   | Н |
| ATOM | 47 C23 MOL  | 2 | 24.797 7.236 3.603 1.00 0.11   | С |
| ATOM | 48 H23 MOL  | 2 | 23.979 7.865 3.294 1.00 0.13   | Н |
| ATOM | 49 C24 MOL  | 2 | 22.373 6.257 0.205 1.00 0.07   | С |
| ATOM | 50 AH24 MOL | 2 | 22.628 5.369 -0.392 1.00 0.09  | Н |
| ATOM | 51 BH24 MOL | 2 | 22.106 7.049 -0.493 1.00 0.09  | Н |
| ATOM | 52 C25 MOL  | 2 | 21.168 5.930 1.069 1.00 0.07   | С |
| ATOM | 53 C26 MOL  | 2 | 20.353 4.835 0.740 1.00 0.08   | С |
| ATOM | 54 H26 MOL  | 2 | 20.613 4.215 -0.104 1.00 0.10  | Н |

| ATOM | 55 C27 MOL  | 2 | 19.212 4.539 1.497 1.00 0.10  | С |
|------|-------------|---|-------------------------------|---|
| ATOM | 56 H27 MOL  | 2 | 18.601 3.688 1.237 1.00 0.12  | Н |
| ATOM | 57 C28 MOL  | 2 | 18.865 5.348 2.589 1.00 0.11  | С |
| ATOM | 58 H28 MOL  | 2 | 17.976 5.132 3.159 1.00 0.13  | Н |
| ATOM | 59 C29 MOL  | 2 | 19.684 6.435 2.931 1.00 0.10  | С |
| ATOM | 60 H29 MOL  | 2 | 19.428 7.049 3.781 1.00 0.12  | Н |
| ATOM | 61 C30 MOL  | 2 | 20.830 6.724 2.179 1.00 0.08  | С |
| ATOM | 62 H30 MOL  | 2 | 21.464 7.554 2.449 1.00 0.10  | Н |
| ATOM | 63 C31 MOL  | 2 | 36.734 5.295 -0.976 1.00 0.09 | С |
| ATOM | 64 AH31 MOL | 2 | 37.149 4.369 -1.398 1.00 0.11 | Н |
| ATOM | 65 BH31 MOL | 2 | 36.751 5.197 0.109 1.00 0.11  | Н |
| ATOM | 66 C32 MOL  | 2 | 37.607 6.468 -1.394 1.00 0.08 | С |
| ATOM | 67 C33 MOL  | 2 | 38.814 6.261 -2.082 1.00 0.11 | С |
| ATOM | 68 H33 MOL  | 2 | 39.122 5.254 -2.330 1.00 0.13 | Н |
| ATOM | 69 C34 MOL  | 2 | 39.618 7.353 -2.452 1.00 0.13 | С |
| ATOM | 70 H34 MOL  | 2 | 40.540 7.192 -2.990 1.00 0.15 | Н |
| ATOM | 71 C35 MOL  | 2 | 39.220 8.658 -2.134 1.00 0.12 | С |
| ATOM | 72 H35 MOL  | 2 | 39.841 9.493 -2.418 1.00 0.15 | Н |
| ATOM | 73 C36 MOL  | 2 | 38.011 8.870 -1.452 1.00 0.12 | С |
| ATOM | 74 H36 MOL  | 2 | 37.696 9.875 -1.217 1.00 0.14 | Н |
| ATOM | 75 C37 MOL  | 2 | 37.214 7.782 -1.085 1.00 0.09 | С |
| ATOM | 76 H37 MOL  | 2 | 36.285 7.943 -0.564 1.00 0.11 | Н |
| ATOM | 77 C38 MOL  | 2 | 35.210 5.293 -2.892 1.00 0.08 | С |
| ATOM | 78 AH38 MOL | 2 | 35.260 4.226 -3.140 1.00 0.10 | Н |
| ATOM | 79 BH38 MOL | 2 | 36.069 5.775 -3.361 1.00 0.10 | Н |
| ATOM | 80 C39 MOL  | 2 | 33.928 5.876 -3.454 1.00 0.07 | С |
| ATOM | 81 C40 MOL  | 2 | 33.204 5.199 -4.451 1.00 0.10 | С |
| ATOM | 82 H40 MOL  | 2 | 33.521 4.216 -4.769 1.00 0.12 | Н |
| ATOM | 83 C41 MOL  | 2 | 32.073 5.792 -5.037 1.00 0.12 | С |
| ATOM | 84 H41 MOL  | 2 | 31.533 5.271 -5.809 1.00 0.15 | Н |
| ATOM | 85 C42 MOL  | 2 | 31.652 7.059 -4.614 1.00 0.13 | С |
| ATOM | 86 H42 MOL  | 2 | 30.787 7.515 -5.067 1.00 0.15 | Н |
| ATOM | 87 C43 MOL  | 2 | 32.355 7.728 -3.603 1.00 0.11 | С |
| ATOM | 88 H43 MOL  | 2 | 32.026 8.696 -3.258 1.00 0.14 | н |

| ATOM | 89 C44 MOL   | 2 | 33.491 7.142 -3.033 | 1.00 0.09    | С |
|------|--------------|---|---------------------|--------------|---|
| ATOM | 90 H44 MOL   | 2 | 34.047 7.657 -2.266 | 1.00 0.11    | Н |
| ATOM | 91 C45 MOL   | 2 | 34.370 4.593 -0.699 | 1.00 0.08    | С |
| ATOM | 92 AH45 MOL  | 2 | 34.809 3.599 -0.55  | 8 1.00 0.10  | н |
| ATOM | 93 BH45 MOL  | 2 | 33.481 4.480 -1.31  | 5 1.00 0.10  | н |
| ATOM | 94 C46 MOL   | 2 | 33.977 5.156 0.673  | 1.00 0.08    | С |
| ATOM | 95 AH46 MOL  | 2 | 34.868 5.278 1.28   | 3 1.00 0.10  | Н |
| ATOM | 96 BH46 MOL  | 2 | 33.525 6.147 0.54   | 0.10 0.10    | Н |
| ATOM | 97 C47 MOL   | 2 | 33.118 4.437 2.859  | 1.00 0.08    | С |
| ATOM | 98 AH47 MOL  | 2 | 32.258 3.939 3.30   | 3 1.00 0.09  | Н |
| ATOM | 99 BH47 MOL  | 2 | 33.040 5.503 3.10   | 7 1.00 0.09  | Н |
| ATOM | 100 C48 MOL  | 2 | 34.403 3.889 3.45   | I 1.00 0.07  | С |
| ATOM | 101 C49 MOL  | 2 | 34.896 2.633 3.063  | 3 1.00 0.09  | С |
| ATOM | 102 H49 MOL  | 2 | 34.389 2.089 2.282  | 2 1.00 0.11  | Н |
| ATOM | 103 C50 MOL  | 2 | 36.031 2.093 3.686  | 3 1.00 0.13  | С |
| ATOM | 104 H50 MOL  | 2 | 36.406 1.129 3.375  | 5 1.00 0.16  | Н |
| ATOM | 105 C51 MOL  | 2 | 36.677 2.807 4.708  | 3 1.00 0.15  | С |
| ATOM | 106 H51 MOL  | 2 | 37.530 2.385 5.216  | 3 1.00 0.18  | Н |
| ATOM | 107 C52 MOL  | 2 | 36.216 4.078 5.069  | 9 1.00 0.15  | С |
| ATOM | 108 H52 MOL  | 2 | 36.731 4.642 5.830  | ) 1.00 0.18  | Н |
| ATOM | 109 C53 MOL  | 2 | 35.083 4.617 4.44   | I 1.00 0.10  | С |
| ATOM | 110 H53 MOL  | 2 | 34.729 5.598 4.715  | 5 1.00 0.13  | Н |
| ATOM | 111 C54 MOL  | 2 | 31.629 4.401 0.916  | 3 1.00 0.09  | С |
| ATOM | 112 AH54 MOL | 2 | 31.629 4.495 -0.17  | '0 1.00 0.11 | Н |
| ATOM | 113 BH54 MOL | 2 | 31.189 5.320 1.32   | 6 1.00 0.11  | Н |
| ATOM | 114 C55 MOL  | 2 | 30.768 3.216 1.31   | 5 1.00 0.08  | С |
| ATOM | 115 C56 MOL  | 2 | 29.558 3.405 2.005  | 5 1.00 0.11  | С |
| ATOM | 116 H56 MOL  | 2 | 29.243 4.406 2.264  | 1.00 0.13    | Н |
| ATOM | 117 C57 MOL  | 2 | 28.761 2.304 2.358  | 3 1.00 0.13  | С |
| ATOM | 118 H57 MOL  | 2 | 27.841 2.451 2.902  | 2 1.00 0.15  | Н |
| ATOM | 119 C58 MOL  | 2 | 29.161 1.007 2.01   | I 1.00 0.13  | С |
| ATOM | 120 H58 MOL  | 2 | 28.541 0.164 2.27   | I 1.00 0.15  | Н |
| ATOM | 121 C59 MOL  | 2 | 30.373 0.810 1.33   | 1.00 0.12    | С |
| ATOM | 122 H59 MOL  | 2 | 30.692 -0.190 1.079 | 9 1.00 0.14  | Н |

| ATOM | 123 | C60 | ) MOL | 2 | 31.169 | 1.909 | 0.988  | 1.00 | 0.09 | С |
|------|-----|-----|-------|---|--------|-------|--------|------|------|---|
| ATOM | 124 | H60 | ) MOL | 2 | 32.102 | 1.761 | 0.470  | 1.00 | 0.11 | Н |
| ATOM | 125 | N1  | MOL   | 2 | 25.229 | 9.413 | -1.124 | 1.00 | 0.06 | Ν |
| ATOM | 126 | N2  | MOL   | 2 | 23.552 | 6.711 | 0.987  | 1.00 | 0.06 | Ν |
| ATOM | 127 | N3  | MOL   | 2 | 35.322 | 5.488 | -1.418 | 1.00 | 0.07 | Ν |
| ATOM | 128 | N4  | MOL   | 2 | 33.040 | 4.242 | 1.383  | 1.00 | 0.07 | Ν |
| TER  | 129 |     |       |   |        |       |        |      |      |   |

#### References

<sup>3</sup> a) Baggioli, A.; Meille, S. V.; Raos, G.; Po, R.; Brinkmann, M. Famulari, A. Intramolecular CH/ $\pi$  interactions in alkylaromatics: Monomer conformations for poly(3-alkylthiophene) atomistic models. *Int. J. Quantum Chem.*, **2013**, *113*, 2154; b) Baggioli, A.; Famulari, A. On the inter-ring torsion potential of regioregular P3HT: a first principles reexamination with explicit side chains. *Phys. Chem. Chem. Phys.*, **2014**, *16*, 3983.

<sup>4</sup> Delley, B. From molecules to solids with the DMol<sup>3</sup> approach. *J. Chem. Phys.*, **2000**, *113*, 7756.

<sup>&</sup>lt;sup>1</sup> a) Perdew, J. P.; Burke, K. Ernzerhof, M. E. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, **1996**, 77, 3865–3868; b) Perdew, J. P.; Burke, K.; Ernzerhof, M. E. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, **1997**, *78*, 1396–1396.

<sup>&</sup>lt;sup>2</sup> Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. *J. Chem. Phys.*, **2006**, *124*, 34108.