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ABSTRACT Energy access is a key need for socio-economic growth. Proven to be a key enabler of
development and progress, access to electricity has been prioritized by governments using grid extension
actions and off-grid solutions, namely microgrids and home systems technologies, fed by renewable sources.
However, achieving universal access to energy remains a huge challenge given the lack of resources and the
large population currently unserved. The lack of adequate socio-economic data at granular scale and of a good
understanding of demand uptake led by economic growth is a barrier for efficient energy planning. Access
to conjoint demand and socio-economic data at local level is crucial, yet hard to obtain: often such data are
unavailable or very difficult to collect, and current data platforms often lack the ability to conjointly store
variegated socio-economic and time series data. For these reasons, in this paper, we present a comprehensive
methodology that, based on an extensive literature review, draws guidelines for developing data-sharing
platforms in energy access, develops a proposed architecture to support the data collection of conjoint
socio-economic and time-series data, and proposes a prototype of the final application. The methodology
leverages on a novel extensive literature review to identify the major determinants of demand uptake and the
corresponding consuming entities: villages, households, and appliances. The proposed architecture is able to
capture numeric, categorical, and time series information for all consuming entities, based on state-of-the-art
NoSQL databases. Finally, a prototype implementation with a web-based interface developed with Angular
and Spring is proposed and discussed.

INDEX TERMS Access to electricity, load estimation, open data, NoSQL database, software platform,
energy access.

I. INTRODUCTION
A. MOTIVATION
Ending poverty and hunger, providing access to clean water,
and ensuring universal access to affordable, reliable, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniela Cristina Momete .

sustainable energy worldwide are of crucial importance,
as stressed in the Agenda2030 in 2015 by the United
Nations [1]. Energy is a major enabler for growth [2] as it
activates the use of modern devices and supports Productive
Uses of Energy, among which commercial and industrial,
that generate income. However, the nexus among socio-
economic growth, energy, local context and appropriate
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policy-education measures is still a complex issue which
calls for further investigation [3], [4], as the energy-
development nexus is also significantly conditioned by
several socio-economic, infrastructural and cultural factors
and pre-conditions [5], [6], which are often hard to monitor
and quantify.

Data for energy applications and, in particular, electricity
are of utmost importance in the appropriate planning of
energy access plans [7]. Recognizing this challenge, many
institutions have proposed data platforms, such as the Energy
Access Explored by the World Energy Institute [8] and
the Global Electrification Platform by ESMAP [9]. The
databases of these platforms, however, rarely contain granular
data at household level including flexibility in the quantity
and type of data fields, granular appliance information, and/or
time series of energy consumption, that are highly needed
for high-resolution energy estimates. While demand for data
and willingness to release open-data are raising, we believe
that it is timely to investigate the development of guidelines
and architectures for open data platforms for energy access
applications.

B. LITERATURE ANALYSIS
Electricity access is of utmost priority, as it enables supplying
most modern devices that support growth and reduces
reliance on energy sources like biomass or kerosene, which
are often used inefficiently. However, in 2022 still about
800 million people lack access, most of them living in Sub-
Saharan Africa, often in fragile and conflict-affected situa-
tions and/or rural areas [7], where the Covid-19 pandemic has
even further reduced the affordability of such services [10].
However, when considering the expected population and
economic growth, the International Energy Agency (IEA)
forecasts that total electricity will increase four times between
2018 (200 TWh) and 2040 (800 TWh), but universal access
to electricity would require double that amount [11]. When
matching these needs with climate change mitigation needs,
which is already affecting Africa [12], and the need to reduce
the human impact on nature, emerges the need for appropriate
energy planning, alongside capillary data to feed models able
to capture local dynamics.

Traditional approaches to support electricity access by
extending the national infrastructure with new large power
plants to reach also remote areas have often led to prohibitive
costs [13]. On the other hand, decentralized and distributed
energy sources have appeared as a promising economic
solution to provide services in both urban and rural areas [14],
as they can provide stability services to the grid and even
backup service in case of outages. In rural areas, off-grid
systems, in the form of microgrids or home systems, have
been proposed as a cost-effective measure to speed up
the electrification process [15] and even beyond, in some
countries, such technologies have been explicitly accounted
for in the electrification masterplans [16].

Decentralized solutions, microgrids in particular, have
appeared as a suitable technology [17], [18]; nevertheless,

their technical design is the result of sizing procedures that
are highly dependent on the local situation and there is no
‘‘one-size fits all’’ solution, as stated by Sustainable Energy
for All (SE4ALL) [19]. In particular, the understanding and
proper estimation of the load demand that the system is
supposed to meet is of crucial relevance for the proper
sizing of the system itself [20]. However, the procedure to
estimate the future energy demand of non-electrified areas
is based on collection of data that can be expensive and
complex to carry out [21], as it requires surveys collected
by local personnel that shall visit the sites for relatively long
periods, without the certainty that the investment will turn
economically viable. Once data have been collected and used
for a specific purpose, they are usually discarded and even not
persistently stored. However, similar operations may be often
performed in parallel by different institutions, organizations,
and companies – not necessarily in mutual competition – for
different purposes, e.g. load assessment [22], population
census [23], food or water access [24], among others. This
leads to significant waste of resources, loss of efficiency and
delays that developing nations cannot afford. On the contrary,
provided that appropriate data sharing, privacy and security
issues compliance are guaranteed, such data may be shared
among different organizations so to leverage on the mutual
synergies and foster developments in the electricity access
field.

Data needed for estimating load demand at local scale are
required to be very capillary, thus the efforts in collecting
them, processing and storing cannot be overlooked. For
this reason, models have been proposed for estimating
energy demand based on proxy data, that can require
only generic information at village level [25], while more
detailed approaches need for appliance-level details of each
household [3], [26] or their aggregates [21]. However, the
overlap of these informations with standard surveys for other
scopes [23], [24] is quite astonishing, which suggests that
there are strong synergies that can be exploited with an
appropriate data platform. Given the diversified type of data,
that platform should be flexible to accommodate different
type of information.

Recognizing such challenges, some institutions have
attempted to share data to support electricity access ini-
tiatives. The World Bank has not only provided an open
platform to share data on power networks in Africa, namely
the Africa Electricity Grids Explorer (AEGE) [27], but
has also promoted initiatives such as the Global Electri-
fication Platform (GEP) to support investment scenarios
to achieve universal electricity access [9]; scenarios are
built using credible assumptions and available data. The
World Resources Institute has promoted the Energy Access
Explorer (EAE) to visualize the state of energy access using
credible public data [8]. These tools, which are compared
in Table 1, are intended as a support for decision-making
and contain aggregated data, often based on assumptions and
models. However, they lack the ability to (i) enable users to
upload their own data and (ii) to store mixed georeferenced,
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TABLE 1. Comparison of current data platforms.

socio-economic, and load demand data at local scale, which
are important for in-depth analyses as needed for system
planning. Table 1, highlights how the existing platforms
lack in granularity of information, missing data regarding
load curves as time-series, appliances adoption and use at
household level, and present their information only at aggre-
gated level, distributed over geospatial rasters. As outlined
in [28], the collection of data at different granularity is
quite complex, and requires exploring different sources, often
not harmonized, as confirmed by the about 20 references
needed to collect 61 load profiles of rural microgrids. Data
on social behaviors and local economics are sometimes
available as results of field surveying campaigns, conducted
by International Bodies, such as the Multi-Tier framework by
ESMAP [29] or National Statics Bodies [30]. However, they
are often distributed across multiple independent databases,
with different formats and nonuniform energy consumption
data.

As a consequence, any institution, business, or organism
in need of energy demand data at local scale finds a
limited number of different data sources, that contain data
with different formatting styles, and inconsistent sets of
information. In addition to a very complex data availabil-
ity landscape, data sharing is a nonstandard practice for
organizations performing data collection themselves and
willing to share them for lack of incentive, know-how,
or excessive constraints to be respected. This suggests that
a well-conceived and well-maintained platform with the
purpose of data aggregation and sharing could be very helpful
in overcoming these barriers.

C. CONTRIBUTIONS
In this paper, we propose a comprehensive procedure that
identifies guidelines for the development of a data-sharing
platform for energy access, based on an extensive literature
analysis, develops the design of the architecture of the
platform, and proposes a prototype implementation. The
specific novelties of the paper are:

1) Definition of guidelines for the development of
data-sharing platforms for energy access

2) Extensive literature review to characterize the determi-
nants of demand and requirements of the platforms

3) Design of the architecture of a data-sharing platform,
based on a NoSQL database

4) Development of aworking prototype of the data-sharing
platform using a web-based interface developed with
Angular.JS and Spring

The comprehensive procedure to define the requirements
for data sharing platforms in microgrids and energy access,
to design the architecture and to develop the prototype is an
absolute novelty and is the major contribution of this paper.

D. ORGANIZATION OF THE PAPER
In Section II, a literature analysis of the major players and
needs in energy access is discussed in order to introduce
the detailed discussion on the key determinants for load
assessment in Section III. Section IV summarizes the
proposed guidelines that guide the functional design of the
platform in Section V and its implementation in Section VI.
Then Section VII describes the prototype developed in this
study. Finally, some conclusions are drawn in Section VIII.

II. CHALLENGES IN ENERGY ACCESS
A. NEED FOR DATA
Energy access interventions may involve several different
activities, such as improving electricity access through grid
extension or off-grid solutions [31], improving cooking
technologies [32], supporting the use of alternative fuel
sources [33], among others. Most large projects aim to
address large-scale issues with regional scope, e.g. electrifi-
cation masterplans [16], but their appropriate planning and
implementation need accurate and detailed data, also for
realistic cost estimation [34], [35]. Moreover, even in large
scale modelling where approximations are often used tomake
the problem treatable, careful analyses shall be executed to
properly tailor the approximations and minimize the errors
with respect to the complete model.

In the case of small-scale projects, these problems are
exacerbated. While good estimates of renewable energy
production are generally available worldwide [36], local-
scale demand data are rarely available in developing
countries, often not even in developed countries. However,
demand is a very critical and uncertain parameter for
most projects with uncertainties beyond ±300 − 500%
the demand of the first year [17], which leads to high
risks for investors. In fact, system sizing is intertwined
with demand assessment, which shall characterize energy
needs throughout the project lifetime, spanning several
years [18] and has traditionally been performed through
field pre-electrification interviews. This method, however,
suffers from high levels of inaccuracy [15], thus risking
to expose projects to the threats explained above. On the
other hand, improper sizing can enhance financial or social
problems: undersizing the system easily leads to overusing
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the components [35], hence compromising their lifetime or
increased fuel consumption, while oversizing puts at risk
the financial sustainability, since revenues could not cover
the costs [34]. Models can play a crucial role in obtaining
adequate designs [37], therefore appropriate load assessment
techniques are needed. Accordingly, a growing body of
literature has emerged on the topic of models for energy
planning [17], [18], [38] and load prediction [39], especially
for areas with nearly no electricity demand at all. In such
conditions, energy estimation can be very difficult because
current demand is not measured and must be estimated using
other methods, often using public datasets and surveys, yet
the corresponding data collection must be designed properly
to effectively represent the local conditions [21]. Notably,
bottom-up models, which estimate the energy demand based
on the analysis of the appliances owned by the households and
their typical usage, can guarantee high-accuracy assessments,
thanks to their data-driven approach which allows better
capturing local dynamics [21]. However, since the analyses
are case-dependent and very detailed, this can be a limiting
factor for their wide use and accuracy, as data may often be
missing [38].

These hurdles, anyway, are not electricity-specific and
extend to the whole broad context of energy access, where
the availability of electricity is a big part of. Actions for clean
cooking facilities must account for local energy sources, and
the acceptance and price of technologies, among others [40],
[41], [42]. Even in that case, the most technologies to be
used, the actions to be carried out to stimulate growth and
the geographic locations to prioritize are critical aspects that
require detailed Geographical Information Systems (GIS)
data to successfully capture the nexus between energy
demand and the characteristics of the site [43].

For all these reasons, local detailed data are needed for both
large and small-scale projects, including the GIS referencing.

In the context of sizing off-grid energy systems for
providing access to energy, proper estimation of load demand
is a key aspect for successful planning, but data for estimating
load demand of unserved areas results, at the very least,
problematic. The main challenges identified in the specific
context of data availability and data sharing are related
to (a) the presence of different stakeholders with different
expectations, access to data and policies for sharing, (b) lack
of consistent data structure of collected data across the few
existing sources and (c) poor data quality when data is
available, requiring data analysis efforts to obtain meaningful
demand data for planning purposes.

B. DIFFERENT STAKEHOLDERS INVOLVED
The field of energy access is characterized by the presence
of various types of players with different interests [39],
that can be reconnected to the quadruple helix theory [44]
and summarized in the following. Different stakeholders
are characterized by the need for different types of data,
according to their nature and interests, they have ownership

of different categories of data and are often characterized by
different levels of propensity to share them. This is why it is
relevant to have clear in mind when planning a data sharing
platform, the different stakeholders potentially involved and
their characteristics to maximize its usability.

1) PUBLIC ORGANIZATIONS
This category includes thewhole public sector, hence national
and local governments, public national agencies, and public
utilities, when state-controlled, which is quite common in
most developing countries. Their role is to provide regulation,
taxation, and funding to steer initiatives towards the citizen
prosperity.

Supranational institutions often provide funding and/or
know-how. Accordingly, several organizations, such as
WorldBank, World Resources Institute, and GiZ, among
others, have actually supported and promoted large-scale
projects [8], [45], [46].

2) CIVIL SOCIETY ORGANIZATIONS
Civil society means organizations of citizens, such as
foundations, Non-Governamental Organizations (NGOs),
among others, that provide support usually with a humani-
tarian or education scope. Their intervention logic is often
characterized by a focus on the specific local context,
using a participatory approach aimed at achieving people’s
empowerment through direct involvement [47], [48], [49].

3) ACADEMIA
Universities have historically had as core mission education
and research to advance the state-of-the-art, but recently have
increasingly participated in field projects alongside industry,
government, and NGOs to promote synergies [49]. That’s
why it is not uncommon for universities to be involved in
energy access projects [50], [51].

4) PRIVATE PLAYERS
The private sector has traditionally taken part in all practical
project deployment, including the electrification challenges,
with particular attention to those with relative high economic
return and low risks. Areas less attractive for business
activities, such as remote regions, have often been under-
served and historically most of the actions were deployed by
private players with support of donations, charity branches of
multinational companies, or public or supranational grants.
The risk of decentralized electrification has been for long
time too high to allow for profitable investments or the
creation of private players in the field without public
intervention, yet this trend is recently changing [52].

C. INCONSISTENCY OF DATA STRUCTURES
Although institutions are progressively opening their data,
several hurdles still remain. Unlike the case of weather
data which are widely available, and in harmonized form,
thanks to satellite data provided by national agencies [53]
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or, in selected locations, weather stations, for what concerns
demand data, few datasets are available, and when available,
collect information in disharmonious forms.

Moreover, data at country scale are rarely publicly
available worldwide, and even IEA lacks some data for some
countries [54]. Final energy uses and data at local scale
are even more scarce [28]. A recent paper [28] proposed
a first classification of load demand for about 60 isolated
microgrids in developing countries and publicly released
the data. However, even in that case, load information was
often limited to few representative daily curves, and rarely
multi-year dynamics, which are critical for investments,
were found in the literature. As observed in the paper,
sources of data are often scattered and hence difficult to
use and compare in researches that shall first collect them,
activity that is very time-consuming. Some consumption
data and information are sometimes reported as secondary
output of national reports [55], organizations reports [56],
general dissemination by private companies [57], or scientific
outputs [28], [58]; however, they are often scattered and
partially incomplete. On the other hand, the availability of
socio-economic information is often limited by public census
information [30], information released by NGOs, scientific
studies [59], [60], or country-wise statistics provided by
super national institutions [61], [62], [63]. However, their
format is largely different, as they are collected from different
sources tailored each time to their scopes, information is not
stored consistently in a unique platform, and data are sparse
and not complete, never matched with consumption data,
hence limiting the possible impact. One of the most relevant
campaigns to assess the energy consumption and living
standards of rural populations, in terms of socio-economic
parameters, is represented by the ESMAP Energy Access
Diagnostic Reports based on the Multi-Tier Framework [64].
This data collection effort culminated in the production of
reports and related databases (e.g.: [61], [62], [63]). The
issue related with the produced material is that each single
national survey collects different information, and the same
categories of information are categorized differently across
them. ESMAP itself conducted a second set of surveys,
in the framework of the Living Standard Measurement Study
Plus (LSMS+) [65], that collected different information,
and when the same, in a different format. An example of
this inconsistency can be found in how the information
‘‘Education Level of Household Head’’ is reported across
all different questionnaires: 65 different observations can be
found that do not match the 11 categories of the International
Standard Classification of Education ISCED of 2011 [66].

All these issues hamper the ability to further investigate
the nexus between demand and socio-economic character-
istics that can improve efficiency in investment and speed
up the deployment of the analysis. Recent national and
supranational efforts have provided tools for simplifying
energy planning, such as the Global Energy Platform [9] or
the Web app for electrification for Nigeria [67], which are
good instruments to support decision-making, but their data

assessment is not based on granular information, and they
often base their analysis on the Multi-Tier framework [64].

For these reasons, in this study we propose a standardized
methodology that is able to consistently store both demand
and socio-economic information with GIS location, so to ease
the data analysis, planning, and policy tailoring.

D. POOR QUALITY TO FEED DEMAND ESTIMATION
MODELS
Energy demand is a critical input data for energy models.
However, in the context of rural electrification, measured
electricity demand data are rarely available. Therefore, accu-
rate assessment techniques have been developed to account
for the estimation of both the load profile, which is especially
critical for sizing off-grid systems, and its growth over
time [17], [18], [38] conditioned to the local socio-economic
conditions that have a paramount effect [21], [68]. In the
literature, various techniques have been used [22], [59],
[60], [69]. Louw et al. [59] estimated the average demand
of two rural villages using a log-linear regression model
based on survey data: demand has been found to be inelastic
with respect to price. Hence, they suggested that sizing
methodologies shall be cost-based. Regression has also been
used in [60], and compared to Artificial Neural Networks
(ANNs), for an Iranian case study; ANNs turned out to
increase estimation accuracy. Dominguez et al. [69] studied
drivers for electricity consumption in rural Kenya, accounting
for access technology (no access, home systems and grid
connection) and transition probabilities. Other studies [15],
[22] performed survey-based methodologies, yet authors
in [22] proposed a simplified approach to reduce uncertainties
in the results by survey methodologies and [15] focused on
estimating long-term dynamics in the demand. Notably, the
Remote-Areas Multi-energy systems load Profiles (RAMP)
model by Lombardi et al. [26], based on LoadProGen [70],
provides a probabilistic methodology to estimate demand by
employing a bottom-up approach: by using survey data to
tailor appliance adoption and usage, a probabilistic technique
aims to identify and aggregate the overall load profile for each
community.

Overall, most of the methodologies relied on socio-
economic information at granular level, which are not
easily available [3], [28], [71]. Furthermore, when input
parameters are lacking or of poor quality, the entire energy
modeling is compromised, regardless of the quality of the
demand assessment tool [21]. Low data quality will propagate
throughout the energy model down to the results, thus
hindering any policy or technical decision.

Therefore, data platforms for energy access shall be able
to properly store these types of information in good quality
alongside measurements of existing energy demand, when
available, to properly support energy studies, planning, and
policy analyses. Furthermore, the same information could
also support socio-econometric studies beyond energy access
itself. The platform shall be openly accessible to support
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collaboration and avoid synergies across the data collectors,
hence supporting efficiency and quality.

In Section III, a detailed review of energy assessment
studies for planning is performed to identify the main
determinants to estimate energy demand, which should be
prioritized to be included in the data platform approach.

III. DETERMINANTS OF DEMAND
In order to properly identify the types of information needed
for the proposed data platform, a deep literature analysis has
been performed to identify the main determinants of energy
consumption at household level, with the goal of drawing
guidelines for data-sharing platforms. This information is
then categorized and prioritized.

A. LITERATURE ANALYSIS PROCEDURE
Given the strong need for demand estimation in energy access
applications, a wide literature analysis was carried out with
the goal of identifying the major relevant drivers that shall be
included in the proposed data platform. Drivers will then be
prioritized and a selection of them will be considered as key
inputs for the platform, as detailed in Section V.

Papers related to drivers for household energy consump-
tion, appliance adoption, load profile classification and
modeling, energy planning, and system dynamics for rural
areas have been reviewed with the goal of understanding
the major inputs needed for energy assessments. Scopus
engine [72] has been used while focusing the research on
journals and conferences related to energy and sustainable
development.

B. THE CLASSES OF INFORMATION
Several reviews focusing on social dynamics and longitudinal
socio-econometric studies highlighted that the major classes
of information for demand assessment can be grouped into
the following major categories [3], [28], [39], [71], [73]:

1) Socio-economic data, such as population information,
job type, income, culture

2) Dwelling factors, such as the type and quality of the
dwelling

3) Appliance, such as ownership, usage pattern
4) Geographical information, such as location, proximity

to major point of interest
5) Supply data, such as type of connection, tariffs
6) Alternative energy sources
7) Past demand

Kuster et al. [39] reviewed beyond 100 forecasting models
for electricity demand, also highlighting the issue of the
many data required for bottom-up approaches devoted to
long-term prediction of electric demand. The paper also
classified papers based on socio-economic, weather, building
and occupancy, and past demand information. Similar consid-
erations have been obtained in the review by Jones et al. [74],
yet including appliance factors, which are widely adopted in
some bottom-up forecasting models [26], [70].

Accordingly, the proposed data platform for energy access,
which is the objective of this study, shall account for the
above-mentioned classes. In particular, a detailed literature
analysis will be performed to identify the specific drivers in
these classes that are more relevant for estimating demand for
energy access applications.

C. DRIVERS
A total of 34 papers have been analyzed. The main
determinants of energy demand are reported in Table 2,
and classified according to the information classes defined
in Section III-B. In particular, every driver shall describe
the characteristics of the village (V), the household or
consumer (C) or an appliance (A), as reported in the table.
This information is critical for the proper definition of the
data platform and hence reported.

The proposed literature analysis has highlighted 70 main
drivers, some of which group multiple similar questions
that have been used by scholars. The largest fraction
of drivers is indeed socio-economic and supply-related.
In fact, as discussed in the literature, the behavior of the
community, the financing options and local availability of
capital play an important role in the appliance adoption
and the productive activities, which support socio-economic
growth, but, usually, higher electrical consumption needs
shall be met. On the other hand, to properly investigate
and develop energy studies to model the energy nexus, past
historical data shall be stored aswell. In particular, to properly
foresee the energy demand, time series of the consumption
at village, household, or appliance level would be a nice-
have, so that better studies could be performed, provided that
enough data are gathered. Moreover, the platform shall be
flexible enough to accommodate various types of information
and to ease the addition of different kind of data, e.g.
different new drivers, in case of need. This confirms that data
platforms for energy access must be able to store various not-
predefined socio-economic information along with energy
demand information.

Furthermore, it turns out that a large variety of such data
are obtained by local surveys, although some entries (e.g.
urban/rural location, distance with respect to infrastructures,
among others) could be obtained by post-processing different
inputs and in particular the GPS location of the survey.
Accordingly, the GPS location is an important feature that
databases for demand assessment shall be able to store.

IV. GUIDELINES FOR DEVELOPING DATA SHARING
PLATFORMS IN ENERGY ACCESS
According to the proposed literature analysis in Section VI,
we summarize below the major recommendations that data
platform shall meet:

1) multiple stakeholders shall have access to data;
2) the data have different types, including numeric, string,

list of elements, etc.;
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TABLE 2. List of drivers for estimating electricity demand. For each driver, we report the class, the element which is related to (V: Village, C: Consumer and
A: Appliance), its inclusion status in the data platform (Y: Yes, YM: Yes using a proxy, N*: not explicitly, but the platform can handle it) and the references.
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3) the key determinants of energy demand relate to
consumers, including households, the village charac-
teristics and the appliances owned by the consumers;

4) data shall be easy to access, download, and upload
with limited barriers: a web-based interface may be
preferred;

5) data shall be accessible by multiple users at the same
time;

6) the storing platform shall be able to accommodate
custom data fields beyond those in the initial design;

7) data shall be of good quality.

These considerations emerge as guidelines for the data
platform design and implementation, described in the fol-
lowing sections. The proposed guidelines, the procedure
used to derive design requirements of the data platform,
and the proposed prototype described in the following, are
novel contributions that can drive the development of novel
platforms with respect to the state-of-the-art highlighted in
Table 1.

V. PLATFORM DESIGN
This section shows details on the design cycle of the
proposed data management platform. First, the scope and the
requirement analysis are introduced. Second, the major actors
and their level of authorization are discussed. Third, a brief
description of the data that will be managed by the platform
is provided.

A. SCOPE AND REQUIREMENT ANALYSIS
The initial stage of the platform design is the detailed analysis
of the requirements that the software must satisfy.

The main goal of the platform is to support users,
depending on their level of authorization, in sharing and
visualizing data of variegated social, economic and technical
information and usage pattern of resources for energy
access purposes, at different level of disaggregation: Village-
, Consumer- and Appliance-level. Examples of the desired
data include time series of energy consumption (for villages,
single consumers or appliances), geo-referenced information
of population, appliance preferences; more details can be
found in Section III.

The platform has to allow users to share and exploit data
stored in its database. Specifically, it has to support users in
executing the following operations, depending on their level
of authorization:

1) To download and upload data in the form of both
description of the different involved data entities and
of time series of energy consumption;

2) To enable data review and validation of new incoming
data;

3) To provide tools to support the search formajor relevant
information in the database;

4) To analyze aggregated information on the usage pattern
of villages, consumers, and appliances;

5) To manage users and different levels of authorization;

TABLE 3. Rights by user.

6) To visualize statistics on the quantity of data stored in
the database and the major contributors;

7) To provide a reward point-based mechanism to grant
access to the records of the database.

As regards the uploading features, they may be limited to
a two-fold approval by moderators: moderators enable only a
subset of users to provide data and moderators must approve
the new entries. This is aimed at increasing the data quality
of the stored information and providing an expert filtering on
the input data.

To encourage the upload of data, visibility shall be given to
contributors according to their data license. Thus, we expect
that: (a) the platform shall clearly state the contributors,
(b) the data licensing by users must be respected, (c) the
visibility and recognition to contributions must be provided
when such data are downloaded, and (d) incentive measures
to support data upload may be suggested. To adhere to (d),
in this study, a reward point-based approach is proposed: to
get access to extra data, such as more recently uploaded data,
users shall use reward points; reward points can be earned by
uploading new data that must be validated by moderators.

Moreover, the application shall be highly available, have
fast response, and be easy to use by the general audience
target of the application.

B. THE USERS OF THE PLATFORM AND THEIR NEEDS
The users of the proposed platform may be divided in five
main categories with different roles, namely: Administrators,
Moderators, Authorized Users, Basic Users andUnregistered
Users. In Table 3, we show the rights of each user. The first
column represents the user type; the other columns show
the different rights. ‘‘General’’ stands for the ability to read
general statistics of the data; ‘‘Download’’ and ‘‘Upload’’
rights aim to enable downloading or uploading of selected
data from the platform. The ‘‘Verify’’ right has the scope to
enable verification tools of new data: if a user uploads new
data, they will be actually considered available for other users
only if a moderator will check and approve them. Finally, the
‘‘Management’’ right gives the authority to change the rights
allocated to the users.

Any new subscription of a Basic User shall be authorized
by an Administrator or a Moderator. Basic Users can only
access and download the data of the platform, but they
cannot upload data, which can be done instead by Authorized
Users, Administrators and Moderators. Administrators and
Moderators have the rights to change the user status, such
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as upgrading or downgrading Authorized Users and Basic
Users, as well as banning them. Only Administrators can
modify (upgrade or downgrade) the rights of the other types
of users. Unregistered Users can only access public statistics
data in the homepage.

C. THE DATA TO STORE
The application shall manage the data presented in Table 2,
which represents the major drivers for energy demand
assessment. It is worth noticing that villages, consumers,
and appliances represent the major subjects of attention for
energy demand studies, each of them being characterized by
multiple types of information. Indeed, in this study villages,
consumers and appliances are also referred to as Energy
Consume Entities (ECEs).

Each ECE is characterized by a number of generic
attributes and time series representing usage patterns of
resources. Attributes may include numeric information (e.g.
number of people, rooms, etc.), categorical data (e.g. type
of business, quality of the dwelling, etc.), or general text.
Electrical tariffs for villages and households shall also be
characterized, as well as any existing generation devices.
Time series shall characterize measured data, such as metered
electrical consumption, or usage habits that describe usage
pattern of appliances, for example. The number of attributes
and time series can be arbitrary for each ECE. To properly
characterize the data, a consumer shall belong to a village
and, similarly, an appliance shall belong to a consumer.

Since data are shared by users, the data license for each
entry shall also be stored, so that when data are downloaded
the references are provided as well.

VI. PLATFORM ARCHITECTURE AND IMPLEMENTATION
In the following, we discuss the architecture of the proposed
platform, including the major details of its implementation as
a web application.

A. PLATFORM ARCHITECTURE
Fig. 1 shows the architecture of the proposed platform. It is
a classical Model-View-Control (MVC) architecture [92]
in which the user interact with the platform by using a
client-side web application developed.

The web interface has been developed using the AngularJS
framework1 by implementing the appropriate Angular com-
ponents, including views and services for data handling. View
templates represent a blueprint for the web interface used by
the user, and they have been used to fast-track the application
development. Finally, appropriate services have the goal to
interface the web interface and the back-end developed using
MongoDB and Spring, as later discussed.

Interactions between the web application and the data
stored in the database are managed by a back-end software
layer implemented using the Spring and Spring Boot

1https://angular.io

FIGURE 1. The software architecture of the proposed platform.

frameworks.2 Thanks to these two frameworks, both the
JAVA classes and the web server can be easily created, thus
facilitating the development, the update, and the deployment
of the application. The communication between the web
application and the back-end layer are based on REST
services [93]. The main characteristics of this type of
communication are:

1) A REST service to provide resources but no methods
2) Data are in JSON format

2https://spring.io
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FIGURE 2. Class diagram of the entities; orange classes are related to the management of the users, blue classes refer to the ECEs and the green ones
are the sub-ECEs to populate specific informations of the ECEs.

3) REST model is developed using the HTTP protocol
using a Client-Server type architecture.

Finally, data are stored in a distributed NoSQL database,
namely MongoDB3 which supports data stored in docu-
ments, saved as Json files. Unlike relational databases [94],
MongoDB ensures flexibility of the data structures (no pre-
liminary schemesmust be defined) and provides great support
to data replication ensuring high level of scalability, service
availability, and reliability. These features are specifically
relevant for the proposed platform, in which data can be
characterized by unstructured and even missing information.
Moreover, since we aim to offer a high quality of experience
to the user when interacting with the platform, low latency
and high availability of the service have to be guaranteed.
Finally, as we expect a global distribution of the platform,
the scalability feature plays a fundamental role.

B. THE UML CLASS DIAGRAM
Fig. 2 shows the main UML class diagram developed
according to the requirement analysis described in Section V
and stakeholders identification in Section V-B. The figure
aims to represent the major relationships between the entities
involved in the developed platform, using associations in
UML format [95]. Each entity denotes a major cluster of
information with several attributes; however, for the sake of
brevity the details of the specific attributes for each class have
been omitted, but the complete list is reported in Appendix.

3https://www.mongodb.com/

A User of the platform can be specialized in Basic
User, Authorized User, Moderator and Administrator, with
increasing rights, as described in Table 3. A Moderator
can Approve upgrades of the datasets provided by an
Authorized user, and the same Moderator can Approve
multiple upgrades (this justifies the multiplicity one-to-many
(1-*) in the relation between entities Moderator and User
Fig. 2). Furthermore, a User initially starts with access to no
ECE, but he/she canGet Access to ECEs by spending Reward
Points. Multiple users can Get Access to multiple ECEs and
one ECE may be accessible by many users (the multiplicity
many-to-many (*-*) describes the relation between each ECE
and User). A Basic User cannot earn Reward Points beyond
the amount provided at registration. An Authorized User and
a more privileged user can earn additional Reward Points by
proposing new data to be added to the dataset: after validation
by one Moderator, the data are accepted and the Authorized
Users earn additional Reward Points.
Each Village can be composed by a set of Consumers, who

in their turn can possess a set of Appliances. Each Appliance
is associated with a list of time windows (TimeWindows),
which specify the typical pattern of usage of a specific
appliance. Examples of TimeWindows for a lighting device
may be during the early morning and/or during the evening.

In order to properly describe any existing power generation
asset, Villages and Consumers can be characterized by a
list of generation asset entities (GenerationAsset); each of
them, if any, describes a generation component, its type, and
any information the user may be willing to add. Examples
of GenerationAssets can be PV systems, inverters, diesel
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generators, among others. Similarly, to properly capture
and store variegated tariff structures, each Consumer can
be associated with a tariff type (TariffType entity), whereas
each Village can be characterized by a list of values,
if any. Each Consumer can have associated a specific type,
(ConsumerType entity), similarly to an Appliancewhose type
is specified in the ApplianceType field.
Given the strong focus of the proposed activity in sup-

porting the nexus between socio-economic and geographical
data with time series of power and energy uses, each ECE
may Store HistoricalProfiles. A HistoricalProfile refers to
an arbitrary time series of resources associated with the
corresponding ECE. As an example, a HistoricalProfile can
consist in a time series spanning several years of power
consumption data for a household or a village. The entity
HistoricalProfile enables storing general information on the
time series that are stored under the form of a list of Samples,
each of them being characterized by the timestamp and the
numeric value of the measurement.

C. FUNCTIONAL WEB PAGES OF THE PLATFORM
In the following, we briefly describe the main web pages that
allow the user to interact with the developed prototype of the
platform. In particular, the following web pages have been
implemented:

1) Homepage
2) General information: web page where both registered

and unregistered users can have access to get general
statistics on the stored data

3) Sign up page: page where unregistered users can get
access to the platform

4) Sign in form: page where users can get access to the
platform

5) Add/Modify tool: pages where data can be added or
modified by Authorized Users

6) Personal data: page where users can get access and
modify their own personal information

7) Settings section: page where administrators and mod-
erators can modify the user access rights

8) Contributors and users: page where statistics on the
contributions by the users to the platform are shown

9) Search tool: page where users can search information
and get access to data; selected data may be also
downloaded

10) Review page: web page where Moderators can accept
or reject new entries proposed by users

11) Activity page: visualization page in which data aggre-
gation and summaries are reported.

In the following section, with the aim of showing examples
of usage of the developed prototype of the platform, we show
the snapshots of some web pages discussed above.

VII. PROTOTYPE PRESENTATION AND RESULTS
The proposed prototype has been implemented and tested
on a case study populated with open data for energy access,
based on the literature review described in Section III.

TABLE 4. Data by ECE contained in the dataset.

FIGURE 3. Home page.

FIGURE 4. Login and sign-up page.

The dataset has been populated with open data of villages
and consumers to map diversified but complete information
including electric profiles for the communities. In summary,
the data reported in Table 4 have been used for testing the
prototype.

Figures 4-7 depict selected relevant web pages of the
developed prototype. Specifically, in the figures we show,
respectively, the homepage, the login and sign-up page, the
general statistics page, the interface to add new data and an
example of data visualization.

In the homepage in Fig. 3, any user can access the login
and sign-up page, as shown in Fig. 4, as well as the general
statistics page of the platform, shown in Fig. 5. It is worth
noticing that in the latter form, users can be given credit for
their contributions: the amount of contributions provided by
the most contributing users are highlighted. Once a user is
registered and has been promoted to Authorized User, it can
access the add form shown in Fig. 6, where additional entries
can be added to the dataset. New entries to the database refer
to the ECE mentioned in the previous subsections, populated
with arbitrary attributes. Time series profiles can be also
added, as shown in the web page titled ‘‘Add Historical
Profile’’; uploading data from files is also supported. Such
information can be then validated by a Moderator using the
Review tool, in the specific page.

The performances of the prototype have been tested on
a normal desktop computer and the responsiveness has
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FIGURE 5. General statistics of the application.

FIGURE 6. Web page to add new data to the tool.

successfully met the desired quality. The back-end and the
database have been deployed on a small cluster composed
by three workstations. To ease the visualization of the data
contained in the database, in the prototype of the web
application we have implemented a collection of analytics
and statistics such as:

1) To show the Average load profiles by ECE at different
aggregation level (country, time, etc.);

2) To highlight the distribution of the most used tariffs by
village;

3) To highlight the most frequent time windows where
appliances are used.

Fig. 7 highlights an example of visualization for the analytics
to show the usage pattern of the data for the Village ‘‘El
Sena’’. For example, the image highlights that the usage
pattern of the fridge (in red) is constant across the day, as it
is always connected; conversely outdoor lights are generally
used only during the night. These type of visualization tools
are useful for users of the platform to preliminarily investigate
the data and easily extract information.

TABLE 5. List of fields for User.

VIII. CONCLUSION
The paper proposes guidelines, a comprehensive design
procedure, and a prototype implementation of a software data
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FIGURE 7. Example of data visualization for appliances: the plot highlights the usage pattern of different appliances for a microgrid.

TABLE 6. List of fields for village entity.

platform to jointly capture the link between socio-economic,
geographical and energy perspectives for energy access

TABLE 7. List of fields for generation asset.

TABLE 8. List of fields for tariff type.

purposes. After a detailed review of the major stakeholders
and determinants for demand growth, the paper identifies
the consuming entities Village, Households and Appliances
as the major classes of data for energy and socio-economic
studies, each of them characterized by specific numeric,
categorical and time-series information. Correspondingly,
a novel data architecture, based on the state-of-the-art NoSQL
structure, is proposed to flexibly capture numeric, categorical
and time-series data for any of the major consuming entities
here identified. The prototype web-based implementation,
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TABLE 9. List of fields for consumer.

TABLE 10. List of fields for consumer type.

TABLE 11. List of fields for appliance entity.

developed using Angular and Spring, has successfully
implemented the proposed architecture, thus confirming the

TABLE 12. List of fields for time window.

TABLE 13. List of fields for historical profile.

TABLE 14. List of fields for sample.

usability and flexibility of the proposed platform, as also
shown with the views of the application. Performances are
in accordance with the state-of-the-art and they prove the
possible use of the proposed architecture for energy access.

This activity lays the foundation for the development of
data platforms for energy sector that can be easily employed
in other energy applications, e.g. degradation dynamics of
batteries, social behavior in the use of electric vehicles,
but also beyond the energy sector, including – but not
limited to – health, poverty statistics, water access, consumers
behavior among others. Further studies shall finalize the
model, potentially including artificial intelligence features
to leverage on the stored data, and may investigate the
intertwining of the prototype with tools to generate synthetic
demand profiles.

APPENDIX
COMPLETE LIST OF FIELDS
In Tables 5-14 the detailed list of fields of the entities
described in Fig. 2 is detailed. However, given the proposed
NoSQL database structure, it is worth noticing that additional
entries can be easily added.
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