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the Discrete Element Method is that geometric non-
linearity is captured without additional complexity; 
this is illustrated when changing the beam supports 
from rollers to hinges, which indeed generates differ-
ent optimum structures. The proposed Discrete Ele-
ment Topology Optimization method enables future 
incorporation of nonlinear interactions, as well as 
discontinuous processes such as during fracture or 
collapse.

Keywords Topology optimization · Discrete 
element method · Granular material · Geometric 
nonlinearity

1 Introduction

In structural mechanics, Topology Optimization 
(TO) refers to a family of computational methods to 
find structural solutions that optimize a set of target 
performance indicators under a set of constraints [1, 
2]. Common examples are to minimize compliance 
to certain loads using a prescribed amount of mate-
rial, or vice versa minimize mass while obtaining a 
target compliance. TO is valuable in the design of 
more sustainable structures, where target perfor-
mance may include minimal material waste or maxi-
mum robustness towards uncertainties, linked for 
example to malicious attacks or climate change. The 
scope of TO is being further extended by the fast-
paced development of additive manufacturing, which 

Abstract Structural Topology optimization is 
attracting increasing attention as a complement to 
additive manufacturing techniques. The optimization 
algorithms usually employ continuum-based Finite 
Element analyses, but some important materials and 
processes are better described by discrete models, for 
example granular materials, powder-based 3D print-
ing, or structural collapse. To address these systems, 
we adapt the established framework of SIMP Topol-
ogy optimization to address a system modelled with 
the Discrete Element Method. We consider a typi-
cal problem of stiffness maximization for which we 
define objective function and related sensitivity for 
the Discrete Element framework. The method is vali-
dated for simply supported beams discretized as inter-
acting particles, whose predicted optimum solutions 
match those from a classical continuum-based algo-
rithm. A parametric study then highlights the effects 
of mesh dependence and filtering. An advantage of 
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is streamlining the production of complex structures 
that were too difficult and expensive to fabricate in 
the past [3].

The idea of optimising the use of structural mate-
rial originates with the seminal work of Michell, 
who put forward the concept of fully stressed struc-
tures [4]. First formulations of TO were based on 
homogenization methods [5–7]. In the 1990s these 
were largely supplanted by the Solid Isotropic Mate-
rial with Penalisation (SIMP) method, which proved 
more efficient especially for complex TO problems 
requiring discretization and numerical solution [5, 
8]. In SIMP-based TO, the objective function to opti-
mize (e.g.  minimum compliance to certain loads) 
is a function of one design variable only: a density 
field assigning a value between 0 and 1 to each point 
in the design domain, or to each element in a dis-
cretized system. In the objective function, the value 
of the design variable is raised to a power p, which 
penalises intermediate values and pushes the optimal 
solution towards a 0-1, void-solid only configuration. 
SIMP-based TO problems can be solved using vari-
ous methods; a particularly efficient and very popu-
lar one is the Optimality Criteria method. [8–12]. In 
recent years TO has expanded to applications in vari-
ous areas, such as compliant mechanism design [13], 
natural convection problems [14], and fibre reinforced 
material design [15], also including new design 
objectives such as structural vibration [16] and dam-
age tolerance [17–19]. New approaches have been 
developed too, notably based on the Level Set [20, 
21] and on the Phase Field methods [22].

When solving a discretized TO problem, the 
objective function is computed multiple times, typi-
cally using the Finite Element Method (FEM)1. For 
example, when maximizing structural stiffness, FEM 
analyses are repeatedly used to compute displace-
ments. The FEM is extremely efficient for linear 
elastic analyses. Including geometric and mechani-
cal nonlinearities is more demanding, but use of non-
linear FEM analyses is common too [25–27]. FEM 
analyses become more problematic as a structure 
approaches failure, and indeed applications of topol-
ogy optimization to problems involving fracture are 

only very recent [28]. The reliance on FEM analyses 
has hindered application of TO methods to inherently 
discrete problems, such as fragmentation, structural 
collapse, and granular mechanics across length scales 
(atoms, nanoparticles, colloids, and macroscopic 
grains). These problems are typically analysed with 
discrete simulations [29, 30]. Therefore, arguably, a 
TO scheme that uses for example the Discrete Ele-
ment Method (DEM) [31] would be desirable.

The DEM is a numerical approach describing the 
mechanical behavior of assemblies of discrete, inter-
acting particles. The method was first formulated by 
Cundall [32] and used to describe granular media 
such as sands, soils, and powders [33]. The DEM 
can also be applied as an approximation of continua, 
in particular when describing processes that involve 
fracture [34, 35], fragmentation [36, 37], or structural 
collapse [38–40]. Rigid body motion, impacts, and 
geometric and mechanical nonlinearity [41] are natu-
rally captured by explicitly integrating the equations 
of motion, or by finding static equilibrium configu-
rations using energy minimization techniques. The 
incorporation of these features into a TO procedure 
would thus open up applications to a new and wide 
range of quasi-static and dynamic, discrete problems.

This paper couples DEM simulations with clas-
sical SIMP-based topology optimization, leading 
to a new Discrete Element Topology optimization 
(DETO) method. Sect. 2 provides a brief background 
on SIMP-based TO, solved using the Optimality Cri-
teria method, and on the DEM. Sect.  3 presents the 
optimization problem for a 2D system of disks inter-
acting via harmonic potentials, equivalent to linear 
elastic springs. A penalization scheme is proposed, 
whereby the interactions between neighboring parti-
cles are modulated by a particle-specific design vari-
able � . This variable ranges between 0 and 1, akin to 
the density in continuum-based problems, but we do 
not call it “density” because its only role is to penal-
ise mechanical interactions, not the inertial behav-
ior of the particles. We then formulate the objective 
function, which here is the complementary energy 
of the system, whose minimization leads to maxi-
mum stiffness. We propose an approximate updating 
scheme for � , which is exact for linear elastic systems 
under small displacements, but not when geomet-
ric or material nonlinearities are significant. How-
ever, using a perturbation method, we show that the 
approximate scheme is satisfactory for the examples 

1 An exception is the work of Gong et al. [23, 24] who have 
applied an element-free Galerkin method based on moving 
particles to solve TO problems.
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in this manuscript. This is detailed in Supplementary 
Information Section  1. A numerical implementation 
of the DETO method is provided. Sect. 4 validates the 
new method by comparing results on simple beams 
with established ones from the literature. Then a 
parametric study highlights the effects of mass frac-
tion, filter length, and number of particles per unit 
volume, which is akin to mesh fineness in FEM. The 
parametric study highlights the impact of topological 
complexity on the optimized values of the objective 
function, confirms that the solutions from DETO are 
mesh-independent, and shows that the checkerboard 
problem that may arise in FEM-based optimization is 
absent in DETO. Finally, Sect.  4 shows that DETO 
naturally accounts for geometric nonlinearity, which 
has a marked effect on the optimal topologies. Part 
2 of the present manuscript series [42], incorporates 
material nonlinearity in DETO, generalizing it to 
problems of ductility maximization under large defor-
mations, and presenting results for several case stud-
ies that provide design-relevant insights. All these 
results indicate the viability of the proposed method, 
as well as its potential for further development and 
application to more complex, discrete structural 
problems.

2  Background on SIMP‑TO and DEM

This section presents some basic concepts in SIMP-
based Topology optimization and in the Discrete 
Element Method. The aim is to enable a better appre-
ciation of the innovative aspects introduced later in 
Sect.  3. Readers who are already familiar with the 
techniques can proceed directly to Sect. 3.

2.1  Basics of SIMP-based topology optimization

SIMP-based TO is a well established technique that 
nowadays encompasses sophisticated algorithms and 
applications, and can include multiple design variables, 
constraints, and objectives [43, 44]. This section will 
not cover such richness. By contrast, we will present 
SIMP-based TO only for one simple but very influen-
tial example by Sigmund [45]. Thanks to its simplicity, 
this example became the entry point into TO for many 
researchers. We hope for a fraction of a similar success 
when presenting the same example in the context of our 
new Discrete Element TO method, later in Sect.  3.

A numerical TO problem starts from defining the 
boundary conditions, external loads, supports, and spa-
tial domain within which to define the geometric detail 
of the structure. The domain is discretized into indi-
vidual elements and, in the SIMP method, each element 
is associated with one continuously distributed design 
variable �e ∈ [0;1] . The design variable represents the 
density of material at that point, between void ( �e = 0 ) 
and fully solid ( �e = 1 ). A uniform density field is usu-
ally chosen as a starting point and an objective function 
c(�) is defined, which specifies the performance indica-
tor to be optimized. � is the vector collecting the �e of 
all the individual elements.

A typical optimization problem is that of stiffness 
maximization, which can be achieved by minimiz-
ing the complementary energy of the system under 
imposed loads or displacements [2]. For a linear elas-
tic material under small displacements, complementary 
energy and strain energy coincide, so a problem of stiff-
ness maximization can also be written as:

In Eq.1 the objective function is twice the total, lin-
ear-elastic strain energy of the system. �e is the vec-
tor of nodal displacements at equilibrium under a set 
of imposed external loads. �e depends on � , but the 
notation in Eq. 1 omits it for better readability. Eqs. 2 
and 3 are constraints that the optimal solution must 
satisfy. The first constraint fixes the target volume 
of solid, as V(�) =

∑
e �e ; V0 is V when the whole 

domain is solid with � = 1 everywhere; f ∈ (0, 1) 
is a constant. The second constraint sets the bounds 
for �e between a minimum value �min and the fully 
solid �e = 1 . In principle one could use �min = 0 , but 
in this section we will show that a small but nonzero 
�min , e.g. 10−3 , is needed for two reasons: first, the 
element stiffness �e will be related to �e in such a way 
that �e = 0 would entail �e = 0 , making the structural 
stiffness matrix singular and thus the FEM problem 
unsolvable; second, 𝜒e > 0 will be required for the 

(1)min
�

∶ c(�) =

N∑

e=1

�
T
e
�e�e

(2)subject to ∶
V(�)

V0

= f

(3)∶ 0 ≤ �min ≤ �e ≤ 1
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type of filtering that will be presented and used in this 
manuscript.

In Eq.  1, �e is the element stiffness matrix. The 
distinguishing feature of SIMP is that �e depends on 
�e as a power law:

where �0 is a constant, base stiffness matrix. This 
penalisation scheme plays a central role in the solu-
tion of the optimization problem; this will be dis-
cussed later in this section. The dependence of �e on 
�e , also omitted for clarity in Eq. 1, causes the afore-
mentioned dependence of �e on �e . At a generic step 
in the optimization process, the structure features a 
certain � vector and therefore each element has a cor-
responding �e ; a Finite Element analysis provides the 
�e corresponding to the imposed external loads for 
the current distribution of �e , and all this determines 
the current value of the objective function c.

The optimization problem in Eqs.  1–3 can be 
solved using various methods. The most popular 
one is the Optimality Criteria method, which pro-
vides the updating scheme, viz. the expressions 
and algorithms to update � at the generic optimiza-
tion step while respecting the imposed constraints 
(or tending towards a solution that respects them). 
Using the Optimality Criteria method and imposing 
the constraints at each optimization step, Sigmund 
obtained the following updating scheme [45]:

dc

d�e

 is an entry of the gradient of c with respect to � , 
which is called sensitivity. � =

1

2
 is a numerical damp-

ing coefficient to improve convergence. � is a param-
eter that changes at every step of the optimization and 
rescales the sensitivity so that �new respects the con-
straint on total volume in Eq. 2. Additional care must 
be taken to also guarantee that �new falls between �min 
and 1, as per constraint in Eq. 3. This can be achieved 
by capping the values of �e predicted by Eq.  5, but 
this would affect the first constraint. Therefore, an 
iterative algorithm is usually needed to find a value of 
� that respects both the imposed constraints; for 
example, the bi-sectioning algorithm implemented by 
Sigmund [45].

The analytical expression of the sensitivity can be 
obtained by combining the definition of c in Eq.  1 

(4)�e = � p
e
�0

(5)�new
e

= �old
e

⋅

(

−
dc

d�e

�

)�

with the expression of the penalised �e in Eq. 4 and 
applying the adjoint method [2]:

The combined effect of Eqs. 5 and 6 is to push mate-
rial away from under-utilised areas and move the 
design towards a solid-void only solution. The penali-
sation scheme, combined with the presented udating 
scheme, are only effective if p > 1 ; however, a value 
of p ⩾ 3 is usually preferred for reasons linked to the 
fabrication of actual structures using only void or 
fully solid parts: see Ref.  [46] for discussion on this 
point. Higher values of p enforce stricter solid-void 
only solutions and also improve the speed of conver-
gence, but reduce the ability to escape local minima 
of c(�) and therefore increase the probability of find-
ing sub-optimal solutions.

2.2  Basics of the discrete element method

The DEM describes a system of mechanically inter-
acting particles. The particles can be subjected to 
external forces, and exchange interaction forces that 
depend on their relative positions � and sometimes 
orientations. Velocity-dependent dissipative forces 
are often included too, but here we will not con-
sider them for simplicity, and because in this manu-
script we will only address performance at static 
equilibrium.

As a simple example of interaction, consider a har-
monic potential representing pairs of particles con-
nected by linear springs, as depicted in Fig.  1. The 
interaction potential energy Uij and the intensity of 
the repulsive interaction force Fij between the two 
particles i and j are:

kij is the stiffness of the connecting spring, rij is the 
inter-particle distance, and r0 is the equilibrium 
distance.

The displacements of the particles under exter-
nal and interaction forces can be solved either 

(6)
dc

d�e

= −p� p−1
e

�
T
e
�0 �e

(7)Uij =
1

2
kij (rij − r0)

2

(8)Fij = −
dUij

drij
= −kij (rij − r0)
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dynamically, by explicitly integrating Newton’s 
second law of motion for all particles, or by mini-
mizing the total interaction energy of the system 
Utot =

∑
i,j Uij ; the latter approach leads to a final con-

figuration at static equilibrium, similar to what one 
would obtain with a linear-elastic, static FEM solu-
tion. Various quantities can be computed during a 
dynamic solution or at final static equilibrium, includ-
ing the total strain energy that defined c in the optimi-
zation problem in Eq. 1, and that in the example here 
coincides simply with Utot.

3  Methodology

This section starts with introducing the new combina-
tion of Topology optimization with DEM-based solu-
tions of structural behavior. A simple implementation 
of the new method in MATLAB to perform stiffness 
maximization in 2D problems with circular disks hex-
agonally packed in rectangular domains, is then pre-
sented. The code is available on GitHub [47].

3.1  Discrete element topology optimization

Here we introduce some fundamental changes to the 
SIMP-TO method in Sect. 2.1 to apply it to a system 
described using the DEM. The first change is straight-
forward: the design variable �e , which previously 
was specified for each finite element, here becomes a 
per-particle quantity �i . For the task of maximizing 

the stiffness of the system, we address the problem 
of minimizing the complementary energy of the sys-
tem, U∗ . In this manuscript we consider the harmonic 
interaction potential presented in Sect.  2.2, which 
corresponds to a linear elastic material; nonlinear 
materials will be addressed in Part 2 [42], Neverthe-
less, geometric nonlinearities at least are always pos-
sible in DEM simulations, therefore one cannot sim-
ply equate U∗ with the strain energy U of the system. 
The optimization problem therefore becomes:

The term 
∑N

i=1
�i�i is the external work, viz. the prod-

uct of the external forces on each particle times their 
corresponding displacement at equilibrium. If dis-
placements are small, the sum equals 2Utot and the 
FEM-based problem in Eq. 1 is recovered, except that 
the strain energy now features a sum over all pairs 
of particles, instead of over individual elements. The 
interparticle distance rij and the interaction stiffness 
kij are now scalar quantities pertaining to pairs of par-
ticles, whereas the FEM framework featured a vector 
of nodal displacements and a stiffness matrix pertain-
ing to individual elements. The constraints in Eqs. 10 
and 11 are the same as for the FEM-based problem. 
Unlike FEM solvers, DEM algorithms are not com-
promised if �i = 0 causes some interactions to vanish 
(viz. if some kij are zero). However, here we will still 
use 𝜒min > 0 because of the type of filtering that will 
be employed: see Eq. 20.

A key change in the DEM framework concerns 
the penalisation scheme. In the FEM-based approach, 
since each finite element contributes individually to 
c, the �e of each element penalises only the stiffness 
matrix of the element itself, as shown in Eq. 4. In the 
DEM context, however, kij is associated with pairs of 
particles rather than individual ones. Therefore, we 
propose the following penalisation scheme:

(9)

min
�

∶ c(�) = U∗(�) =

N∑

i=1

�i�i − Utot

=

N∑

i=1

�i�i −
1

2

N∑

i=1

N∑

j>i

kij (rij − r0)
2

(10)subject to ∶
V(�)

V0

= f

(11)∶ 0 ≤ �min ≤ �i ≤ 1

Fig. 1  Schematic of the interaction force between two parti-
cles emerging from a harmonic interaction potential
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where k0 is a constant base stiffness and �i and �j are 
the design variables of the two interacting particles. 
The penalisation exponent p plays an analogous role 
as discussed in Sect.  2.1. If one takes p = 1 then kij 
from Eq. 12 scales as the harmonic average of �i and 
�j , which correctly ensures kij = 0 when either �i = 0 
or �j = 0 . However, p = 2 is used in this manuscript 
after numerical experiments have indicated that such 
value provides a good compromise between optimal-
ity of the solution, solid-void only result, and numeri-
cal performance. Sect. 1 in the Supplementary Infor-
mation shows simulation results on how p impacts the 
optimization for the examples considered later in this 
manuscript.

The penalisation scheme in Eq.  12 imposes that 
the interaction stiffness kij is a function of �i and �j . 
Therefore, under a given set of external forces, also 
the interparticle distance rij at equilibrium (or at a 
generic step during a simulated dynamic response) 
will depend on � . In Eq. 9 the dependence of kij and 
rij on � have been omitted for clarity of notation. The 
idea of penalizing interactions was previously pro-
posed in the truss optimization method [48], where a 
set of nodes is defined and the design variables are 
the cross sectional areas of each bar connecting any 
pair of nodes. The main difference in Eq.  12 is that 
penalisation is applied through per-particle � ’s rather 
than directly to each interaction. This may better suit 
DE simulations, where often the interactions between 
particles at or near contact are determined, in reality, 
by per-particle quantities such as chemical composi-
tion or physical and mechanical properties, e.g.  the 
indentation moduli of contacting particles in Hertz 
potentials [31] or the Young moduli of connected par-
ticles in cohesive nanoparticle models [49].

The solution of the optimization problem in 
Eqs.  9–11 can be obtained with the same updating 
scheme as in Eq.5. However, computing sensitivity dc

d�i

 
now is more difficult than in Eq. 6, which benefited 
from simplifications that arise when the adjoint 
method is applied in the linear regime [2]. In the non-
linear regime, the adjoint method requires the tangent 
stiffness matrix of the system [2]; we prefer to avoid it 
because one of the strengths of DEM simulations is to 
not rely on stiffness matrices. The alternative is to 
compute directly the change in U∗ due to a small 

(12)kij = �
p

i
�
p

j
k0 perturbation of �i , which entails two terms. The first 

term is the change in Utot when particles stay fixed at 
their equilibrium position �eq : this is due to the 
change of interaction stiffness, viz. �U

∗

�kij

�kij

��i

|
|
|
|�=�eq

 . This 

is easy to compute, because it does not require any 
new equilibration of the system. The second term is 
the change in external work and Utot due to the small 
change in particle positions, away from �eq , when �i is 
perturbed. Computing this term is computationally 
expensive, as one must find a new equilibrium con-
figuration for each perturbation of �i . Sect.  1 in the 
Supplementary Information shows optimization 
results obtained using a perturbation method, which 
computes both the terms in the gradients. The same 
section also shows optimization results where the 
sensitivity is approximated by its first term only:

It turns out that, for case studies similar to those in 
this manuscript (Sect. 4), the approximation in Eq. 13 
yields almost identical optimization results as simula-
tions using the full gradient. Also, the values of dc

d�i

 
obtained with the two methods are not very different, 
meaning that, for the examples in this manuscript, 
Eq. 13 captures indeed the main part of the gradient 
of U∗ . Based on this, we decided to use the more effi-
cient Eq.  13 for the simulations in the body of this 
manuscript. The applicability of Eq. 13 to other sys-
tems should be checked on a case-by-case basis, as 
the approximation may in principle generate local 
minima, solutions that differ from those in the origi-
nal problem, and influence mesh effects too. Instead, 
the perturbation approach described in the Supple-
mentary Information is general.

Equations  9 to 13 complete the formulation of 
DEM-based TO for the specific case of stiffness 
maximization using a harmonic pairwise interac-
tion potential. A full generalisation of the method is 
beyond the scope of this manuscript, but one immedi-
ate and important extension concerns more complex 
interaction potentials. The harmonic potential con-
sidered here represents linear springs connecting the 
particles; this is analogous to a linear elastic constitu-
tive law in the FEM. However, one can replace the 
potential in Eq. 7 with a more complex form such as:

(13)

dc

d�i

≈
�U∗

�kij

�kij

��i

|||
||�=�eq

= −
1

2

∑

j≠i

p�
p−1

i
�
p

j
k0 (rij − r0)

2
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where k is now a generic function of the design varia-
bles of the interacting particles, and g is a function of 
the position vectors r of the interacting particles. The 
ellipsis indicate that the interactions can involve more 
than pairs of particle, including three-body terms, 
four-body, etc. The objective function then simply 
becomes

having omitted multi-body terms and ellipsis only for 
clarity of notation. When the approximation in Eq. 13 
holds, the resulting sensitivity would then be:

Mechanical nonlinearities embedded into g(�i, �j, ...) 
can be seamlessly considered in this DEM frame-
work. For example, a potential that is widely used in 
nanoscale materials modeling is the Lennard-Jones 
potential, which is akin to a nonlinear spring with a 
softening regime after a peak force in tension. For the 
Lennard Jones potential, k can be expressed simply as 

in Eq.  12 and g = 4

[(
�

rij

)12

−
(

�

rij

)6
]

 , where � is a 

constant. Writing Eqs.  15 and 16 for the Lennard-
Jones potential would thus be straightforward. The 
details on how to incoporate material nonlinearity in 
DETO are given in the companion Part 2 manuscript 
[42].

The numerical efficiency of solving a TO problem 
is typically governed by the solver to compute the �
-dependent c and sensitivities at each step of the opti-
mization. For the energy minimization problem in 
this manuscript, efficiency is thus controlled by the 
FEM or DEM solvers that provide the configuration 
of the system under load: � for FEM, � for DEM. The 
efficiency of the DEM solver depends on the type of 
analysis that is performed. For the specific case of 
harmonic potentials and for sufficiently small exter-
nal loads, the DEM analysis could also be expressed 
as a linear algebra inverse problem, as for the FEM 

(14)Uij... = k(�i,�j, ...)g(�i, �j, ...)

(15)c = U∗ =

N∑

i=1

�i�i −
∑

i,j

Uij

(16)
dc

d�i

≈
∑

j,...≠i

−
�k

��i

g(�i, �j, ...)

in linear elasticity; in such a case, the performance of 
DEM and FEM would be similar. However, a strength 
of the DEM is the simplicity to consider geometric 
and mechanical nonlinearities, also including fracture 
and rigid motion, both in quasi-static and dynamic 
regimes. To address this complexity, DEM problems 
are typically solved using energy minimization or 
explicit integration, which are more time-consuming 
than linear-elastic Finite Element analyses. However, 
the numerical efficiency of the DEM is again compa-
rable with that of the FEM when the latter includes 
geometric and material nonlinearities, or even frac-
ture [50].

3.2  Numerical implementation of DETO

This section describes a simple implementation of the 
proposed DETO method, to solve the optimization 
problem in Eqs.  9–11 for a simple 2D system of 
monodisperse circular disks interacting via a har-
monic potential. The initial configuration features 
nelx × nely disks2 arranged in a close-packed hexago-
nal lattice that fills a rectangular domain of size 
(D ⋅ nelx) ×

�√
3

2
D ⋅ nely

�
 , where D is the disk diame-

ter: see Fig. 2. Initially all disks have �i = f ∈ (0, 1) . 
The parameters nelx, nely, D, and f, are chosen and 
provided by the user. Various external forces and 

Fig. 2  Hexagonal close packing of DE disks with linear elas-
tic interaction potentials between immediate neighbors

2 Actually, the number of elements per row alternate between 
nelx and nelx − 1 to respect horizontal symmetry, so the exact 
number of disks is 

(
nelx −

1

2

)
nely when nely is even, and (

nelx −
1

2

)
× (nely − 1) + nelx when nely is odd.
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constraints can be applied to each particle: these will 
be specified in the next section for each of the exam-
ples studied there.

Each particle interacts only with its immediately 
adjacent neighbors in the hexagonal lattice. The har-
monic potential is the same as in Eq.  7, with equi-
librium distance r0 = D , stiffness kij penalised as per 
Eq.  12, and base constant stiffness k0 chosen by the 
user. The harmonic bonds are modelled as unbreak-
able and the particles are not allowed to create new 
bonds with other particles that initially were not 
among their first neighbors. This restricts the scope 
of the DEM, which usually deals with particles that 
move widely across the system, creating new bonds 
or colliding with particles that initially might have 
been far away. In this manuscript, however, we will 
validate and test the new DETO method for the clas-
sical example of a simple beam under point load, for 
which we expect relatively small deformations. In 
such applications, the particles will indeed interact 
only with their initial first neighbors.

Fig. 3 shows the flow chart for the program. First 
the system geometry is generated from the inputs as 
explained above, adding also the required external 
forces and constraints (e.g. pinned or roller supports). 
The initial neighbor list is recorded and stays the 
same during the whole simulation, for the reason dis-
cussed above. This is much faster than a general case 
in which the neighbor list must be updated dynami-
cally during the DEM simulation.

The optimization loop begins by computing the 
interaction stiffness kij for each pair of neighboring 
particles, following Eq.  12. The DEM minimization 
module computes the particle positions at static equi-
librium using a damped dynamics algorithm by Shep-
pard et  al.  [51]. The DEM solution is considered as 
converged when the change in total strain energy 
between two successive steps is sufficiently small: 
(Ucurrent

tot
−U

previous
tot )

U
previous
tot

≤ etol . The values of etol used in this 
manuscript will be in the 10−10 − 10−8 range. The 
energy minimization algorithm requires two parame-
ters: a time step dt and a maximum particle displace-
ment allowed at the generic step dmax . These should 
be fine tuned depending on the system that the user 
wants to analyse. The algorithm also uses the masses 
of the particles, here all set to the same value m.

After the DEM module converges, the DETO pro-
gram computes the objective function c (i.e. the total 

interaction energy Utot ) and the sensitivity to update 
� as per Eq.  13. The stress tensor for each particle 
is also computed; this is not strictly needed for the 
optimization process, but knowing the stress field 
inside the system will support the interpretation of 
the results. The per-particles stress tensor is based on 
the virial stress expression [52]:

�ab,i is the ab (xx, xy, or yy) stress component at par-
ticle i, ra,i and ra,j are the a-component (x or y) of 
the positions of particles i and j, Fij,b,i and Fij,b,j are 
the b-component of the force on particle i due to the 
interaction with particle j and vice versa. Vi is the 
averaging volume, here taken equal to the tributary 

(17)�ab,i =
1

2Vi

∑

j≠i

(
ra,iFij,b,i + ra,jFij,b,j

)

Fig. 3  Flow chart of the DETO algorithm implementation
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volume of particle i, viz.  Vtot

N
 , where Vtot is the total 

volume of the rectangular domain (assuming unit 
thickness in the third dimension) and N is the number 
of particles in the system. In particular, in this manu-
script we will compute and plot the hydrostatic and 
Von Mises deviatoric components of the per-particle 
stress tensors:

When the sensitivity is computed, the program can 
proceed with updating � . However, TO algorithms 
often add an intermediate step of filtering. The idea is 
that the updating scheme in Eq.5 does not use directly 
the sensitivity from Eqs.  6 or 13. Instead, it uses a 
new coarse-grained sensitivity �̂c

��
 that, for the generic 

element e or particle i, depends also on the sensitivi-
ties of neighboring elements or particles:

In Eq.  20 we used the notation for the DEM-based 
algorithm, thus referring to particle i; however, the 
exact same expression also applies to FEM-based 
algorithms, just replacing subscript i with e. In the 
equation, the sums are over the nf  particles (or ele-
ments) at a distance rik < rmin from particle i, includ-
ing particle i too3. The filtering length rmin is chosen 
and provided by the user. Wk = max

(
1 −

rik

rmin
, 0

)
 is a 

factor that linearly reduces the weight of neighboring 
particle k with its distance from the centre of particle 
i: its value is 1 for particle i and becomes zero for par-
ticles with rik > rmin . The presence of �i at the denom-
inator in Eq. 20 is the reason why one should enforce 
𝜒min > 0 . In this manuscript we will always set 
�min = 10−3 , as is customary in the literature [45].

(18)�hyd =
�xx + �yy

3

(19)�dev =
√

�2
xx
− �xx�yy + �2

yy
+ 3�2

xy

(20)�̂c

��i

=

∑nf

k=1

�c

��k

Wk�k

�i

∑nf

k=1
Wk

The reasons to include filtering are both practi-
cal and numerical. The practical reason is that rmin 
imposes a minimum size of solid and void regions in 
the final structure; this provides some control over the 
complexity of the optimal structure, which may help 
with fabricability. The numerical reason is that opti-
mization processes not including filtering often con-
verge too rapidly to solid-void solutions getting effec-
tively stuck into sub-optimum local minima. Some 
filtering (viz. a small rmin ≈ D ) usually removes these 
local minima and leads to a better solution, although 
one must be careful as a larger rmin may also smoothen 
the global minimum and thus affect the optimality of 
the solution. These effects will be shown and dis-
cussed later in Sect. 4. When FEM analyses are used, 
another benefit of filtering is to remove the checker-
boarding problem [53, 54]: when a fine FE mesh is 
used, individual neighboring elements in the optimal 
solution typically create an alternating pattern of void 
and solid. The problem arises from a locking effect in 
certain types of finite elements [53, 54]. We will see 
that DETO does not suffer from checkerboarding.

The last step in the optimization loop is to update 
� following Eq. 5, but using the filtered sensitivities 
instead of the original ones. The optimization loop is 
repeated until �new

i
− �old

i
≤ 4 ⋅ 10−3 for every parti-

cle. In the final solution, some particles will feature 
�i = �min and others, especially at solid-void inter-
faces, might be “gray”, viz. feature a �i that is inter-
mediate between 0 and 1. The MATLAB implen-
tation of DETO that accompanies this manscript 
includes an optional post-processsing module to 
reduce the solution to a solid-void only system, where 
all particles have either �i = 0 or 1, while respecting 
the constraint on the total solid volume fraction f. In 
the simulations for this manuscript, however, we did 
not perform any post-processing to present straight 
optimization results without further manipulations. 
All the outputs from the simulation are recorded in an 
XYZ configuration file following the evolution of the 
structural topology, and in a text file collecting values 
such as c and V(�) after each optimization step.

4  Results

This section starts by comparing results from DETO 
with others from established optimization meth-
ods. The comparison is done using a base system 

3 We use counter k instead of j for the neighboring particles to 
clarify that the neighbor list for filtering is not in general the 
same as for the interactions; for example, if rmin > 2D , also 
second nearest neighbors in the lattice will be included in the 
filtering even if they do not contribute to the interaction energy.
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representing a simple beam under point load. We then 
present a parametric study where the base system is 
altered one feature at the time. The simulations reveal 
how the optimal solutions from DETO are impacted 
by the target solid volume fraction f, the filtering 
length rmin , and the number of particles per unit vol-
ume (akin to mesh resolution in the FEM). Finally, 
the supports of two simple beams are arranged in 
such a way to show how DETO captures the effect of 
geometric nonlinearity on the optimal solutions. All 
of the simulations snapshots in this section have been 
obtained using the open source software OVITO [55].

4.1  Validation

New topology optimization methods are typically 
tested on simple structures with known optimal 
geometries. Two such structures are the simply-sup-
ported and pin-supported beam systems shown in 
Fig. 4. The figure shows results from DETO side by 
side with optimal geometries from established meth-
ods. The input parameters for the DETO simulations 
are shown in Table  1. The intensity of the external 
force is 1 kN in both cases.

To improve the physical interpretation of the 
results, consider that k0 ∼

EA

r0
 , where E is the Young 

modulus of the material, and A and r0 = D are the 
cross-sectional area and the length at rest of the 
cohesive bridge, viz.  the spring connecting neigh-
boring disks. Assuming that the width of the cohe-
sive bridge is proportional to the disk diameter, 
A ∼ Dtz [49], and rearranging the expression of k0 
we can estimate an equivalent Young modulus:

The values in Table 1 return E = 100 GPa, thus one 
can consider the simulated structures as made of sin-
tered metallic powder.

(21)E =
k0r0

A
=

k0

tz

Fig. 4  Optimal structures for the beam problem under point 
load. a Simply supported system with  b result from the FEM-
based TO code in Ref. [45], with inputs: nelx = 67 , nely = 39 , 
volfrac = 0.6 , penal = 3 and rmin = 2 (see Ref. [45] for details 

on the meaning of those inputs), and c result from DETO. d 
Pin-supported system with results from e Michell’s analysis in 
Ref. [4] and f DETO

Table 1  Input parameters for the DETO simulations on the 
base system in Fig.4

nelx 135 k
0

100 kN/mm
nely 45 dt 0.01 �s
f 0.6 dmax 0.01 mm
D 1 mm m 1 mg
rmin 1.5 mm tz 1 mm
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For the simply supported beam in Fig.  4a the 
optimal geometry from DETO is qualitatively sim-
ilar to that from the FEM code in Ref.[45], when 
similar inputs are provided. For the pinned structure 
in Fig.  4d, the optimal layout predicted by DETO 
is analogous to the theoretical solution of fully 
stressed structures by Michell [4]. In this case the 
similarity is less striking because Michell’s solution 
features one-dimensional members with the addi-
tional constraint that all members must have equal 
cross section. Overall, Fig. 4 shows that the optimal 
solutions obtained using DETO are comparable to 
those coming from other more established methods 
in the literature.

Fig. 5 shows the evolution of the objective func-
tion c (viz. Utot ) and of the corresponding geometry 
during the optimization process. Significant changes 
in both c and geometry take place during the first 50 
optimization steps. Between steps 50 and 500, the 
geometry has practically converged and c remains 
nearly constant.

Figure  6 shows the distribution of hydrostatic 
and deviatoric stress in the optimized structure from 
Fig.  4a. The hydrostatic stress distribution is clearly 
bimodal, with the lower deck of the structure and the 
lateral diagonal elements carrying the tensile stresses, 
and with the upper arch and central diagonal struts 
being under compression. The distribution of devia-
toric von Mises stress is instead centered around a 
value of 75 MPa quite uniformly distributed over the 
structure, with stress concentrations at midspan (top 

and bottom points) where the axial stresses due to the 
bending moment are highest, and near the supports, 
where the shear stress gets concentrated before trans-
ferring to the pointwise supports.

4.2  Parametric study: volume fraction

The base system in Fig.  4.c featured a final vol-
ume fraction of solid f = 0.6 , as per Table 1. Here 
the system is kept the same except f, for which 4 
additional values are explored between 0.5 and 0.7. 
Fig.  7 shows the impact of f on the final 0-1 opti-
mized structure. As expected, small f values force 
the system to create fewer elements and lead to less 
optimal solutions, with higher c compared to more 
topologically rich solutions at high f as can be seen 
in Fig. 8. However, these results are not sufficient to 
determine how much the lower c values at higher f 
come from topological complexity rather than just 
having used more material. The next section will 
add insight to this point.

Fig. 5  Simply supported beam case in Fig.4a: evolution of 
geometry and objective function c during the first 500 optimi-
zation steps

Fig. 6  Hydrostatic and Von Mises deviatoric stress distribu-
tions in the optimized structure from Fig. 4c
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4.3  Parametric study: filtering length

Figure 9 shows how the filtering length rmin impacts 
the optimized geometries. The figure also shows a 
result for the unfiltered case.

Predictably, the optimized topologies become 
simpler at higher rmin values, which force the solid to 
concentrate into fewer, thicker structural elements. 

Reducing topological complexity by filtering, how-
ever, constrains the optimization problem; as a result, 
c is expected to increase as the solutions become less 
optimal at larger rmin values. This is confirmed in 
Fig. 10, which shows c growing from 0.111 J to 0.117 
J as rmin is increased from 1.1D to 3D. This comple-
ments the discussion of Fig. 7 in the previous section, 
showing indeed that more optimal solutions can be 

Fig. 7  Effect of target solid volume fraction f on optimized 
solutions to the simply supported beam problem in Fig.4a

Fig. 8  Effect of volume fraction on objective function

Fig. 9  Effect of filtering length on optimized geometries. For 
generality, the values of rmin are given in units of particle diam-
eters D. The label off indicates the unfiltered case.

Fig. 10  Effect of filter length on objective function
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obtained by increasing topological complexity while 
keeping f fixed.

As the optimal topologies get simpler with fil-
tering, the structural geometries with f = 0.6 for 
rmin ≥ 2D in Fig. 9 end up resembling those in Fig. 7 
for smaller f = 0.5 . Comparing these two exam-
ples confirms the expected trend that similar geom-
etries with smaller f lead to higher values of c : 
cf. c = 0.132 J for the structure with f = 0.5 in Fig. 7 
with c = 0.114 J for the structure with rmin = 2D in 
Fig. 9.

The top image in Fig. 9 shows a case without fil-
tering. Expectedly, the resulting topology is most 
complex compared to the other cases with filtering 
on. However, less intuitively, the resulting c is higher 
than in most filtered cases: see Fig.  10. This con-
firms the effect that we already mentioned in Sect. 3, 
whereby lack of filtering causes fast convergence to a 
local minimum of c. Filtering tends to smoothen out 
and remove local minima, thus leading to more opti-
mal solutions. The top structure in Fig.  9, obtained 
without filtering, shows a few very thin elements but 
no checkerboard effect, viz. an alternating pattern of 
individual particles with �i = 0 and 1. This is because 
the locking problem leading to the checkerboard 
effect is specific to FEM-based analyses [53].

4.4  Parametric study: mesh resolution

In FE analyses, the size of the elements discretizing 
the continuum is in principle arbitrary. Therefore, 
when performing FEM-based TO one must monitor 
the impact of mesh resolution on the results, as in 
some cases the problem might display nonunique-
ness and even nonexistence of the solution [54]. By 
contrast the DEM, in its basic formulation, does not 
feature a mesh at all, as particles represent physically 
distinct units. However, in practice, the particles in 
DE analyses are often coarse grained representations 
of richer underlying microstructures; for example 
one particle might summarise a collection of smaller 
grains. In other cases, like the simple beams in this 
manuscript, the particles actually discretize a con-
tinuum to explore its behavior under scenarios that 
the FEM might struggle with, e.g.  collisions, frac-
ture, fragmentation, or collapse. Therefore, also in 
the DEM there can be some arbitrariness in deciding 
the number and size of particles, which thus becomes 

analogous to deciding the mesh resolution in FE 
analyses.

To mimic the role of mesh resolution in FE anal-
yses, here we consider a rectangular design domain 
with fixed dimensions and we use different num-
bers of particles nelx and nely initially filling the 
domain. When solving problems with greater nelx 
and nely than our base case, we reduced accord-
ingly the particle diameters D to always fill the 
same domain. When changing particle sizes in DE 
analyses, one should be careful that the intensity of 
the interaction may depends on D, as opposed to FE 
analyses where the constitutive parameters describ-
ing the material are intrinsically mesh-independent, 
e.g. the Young modulus E. Specifically for our sys-
tem, however, Eq. 21 shows that k0 and E are simply 
linked by the thickness of the simulation domain in 
the z direction, tz ; since we keep the latter always 
constant and equal to 1 mm, we do not need to 
change k0 when changing D. This is not always the 
case; for example, in a 3D simulation with spherical 
discrete elements, k0 ∼ ED and therefore k0 would 
be proportional to D.

Figure  11 presents optimization results for struc-
tures with a range of mesh resolutions around our 
base case. In all cases, a filtering length rmin = 1.5 
mm is applied, as in our base case. The resulting 

Fig. 11  Effect of mesh resolution on optimum geometries: fil-
tering included with length rmin = 1.5 mm in all cases
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geometries are generally insensitive to the mesh reso-
lution, except for small differences such as an addi-
tional horizontal element appearing at low resolution. 
Fig. 12 shows that the quality of the solution is very 
similar for all the structures in Fig.  11, viz.  they all 
feature a similar value of c at the end of the optimiza-
tion process. This result also proves that, for the 2D 
examples in this manuscript, it is indeed correct to 
consider k0 as independent of D.

Mesh-independent filtering, with fixed rmin irre-
spective of the mesh resolution, is known to enforce 
mesh independence also in mesh-sensitive FEM-
based TO [53]. Results obtained without filtering are 
reported in Sect. 1 of the Supplementary Information 
section, where DEM results are also compared with 
results from FEM-based optimization. For the range 
of meshes analysed in this manuscript, the results in 
the Supplementary Information section do not indi-
cate a significant impact of mesh fineness on resulting 
topologies nor values of the objective function; this 
applies to both the FEM and DEM results. By con-
trast, the results in the Supplementary Information 
section clearly show how FEM optimization leads to 
the checkerboard problem, which is never an issue for 
our DEM-based method.

4.5  Geometric nonlinearity

When structures are subjected to high loads and 
undergo large displacements, geometric nonlinearity 
should impact the optimal topologies [56]. In FEM-
based TO, accounting for geometric nonlinearity 

requires additional complexity in the formulation of 
the problem [25, 27]. Furthermore, finite elements 
with low density can experience large distortions that 
may affect convergence [57]. By contrast, geomet-
ric nonlinearities are captured in DETO without any 
change to the theoretical framework, because interac-
tions are always computed with reference to the sys-
tem in its deformed configuration. This also removes 
the issues that may be caused by elements with van-
ishing �i.

Fig. 13 highlights the potential impact of geomet-
ric nonlinearity by considering two beam systems 
that are identical to our base case study in Fig. 4a,c, 
except that: (i) the supports are applied to the central 
axis instead of the bottom corners, and (ii) a larger 
point load of 10 kN is applied to the center of the 
beams instead of above or below them; this larger 
load has been chosen to induce larger displacements 
and thus better appreciate the effect of geometric non-
linearity (midspan deflection are now approximately 
1.3% of the beam length and Fig. 14 shows that bond 
strains are as high as 1%). Under these new condi-
tions, simulations assuming small displacements 
should return identical solutions for both the simply-
supported and the pinned systems, because the length 
of the central axis remains unchanged after small 
displacements. Indeed the results from linear elastic 
FEM-based TO in Fig. 13b, f are identical. By con-
trast, considering large displacements should lead 
to different optimum geometries, because the length 
of the central axis would remain unchanged in the 
simply-supported case, where the rollers can move 
inward, but would increase in the pinned scenario due 
to the finite deflection. The impact of geometric non-
linearity is indeed captured by our DETO solutions in 
Fig. 13c,g, which feature very different geometries for 
the two systems.

The optimum solution for the simply-supported 
beam in Fig.13c is similar to the linear-elastic solu-
tion in Fig. 13b. The reason is that the inward motion 
of the rollers allows the structure to behave in pure 
bending also when geometric nonlinearities are 
included. The distribution of hydrostatic stresses in 
Fig.  13.d shows indeed a symmetric distribution of 
elements working in tension and in compression. The 
qualitative difference in Fig. 13g stems from the cate-
nary action induced by the pinned supports. During 
the deflection, the central axis of the pinned system 
is stretched and this generates a tensile stress along 

Fig. 12  Effect of mesh resolution on the evolution of c during 
the optimization process, for the systems whose final geome-
tries are shown in Fig. 11
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the beam. During the optimization process, this addi-
tional tensile stress drives material away from the 
compressed regions and towards the parts under ten-
sion. As a result, Fig. 13h displays a thickening of the 
lower deck, which carries most of the catenary force, 
whereas the upper arch in compression becomes 
smaller and migrates towards the centre of the beam.

5  Conclusion

We have formulated SIMP-based TO for a problem 
of complementary energy minimization in a 2D sys-
tem of circular disks, modelled and analysed using 
the Discrete Element Method. Key features of the 
new DETO method are:

• The expression of the cost function c, viz.  the 
complementary energy of the system, features 

Fig. 13  Solutions of topology optimization problems high-
lighting the impact of geometric nonlinearity. a Simply-sup-
ported and e pinned systems, with supports and forces applied 
to the central axis of the beam; b, f solutions from linear elas-
tic FEM-based TO using the code in Ref. [45], with inputs: 
nelx = 67 , nely = 39 , volfrac = 0.6 , penal = 3 and rmin = 2 

(see Ref. [45] for details on the meaning of those inputs); (c,g) 
solutions from the DEM-based TO method presented in this 
manuscript, which naturally accounts for geometric nonlin-
earity; (d,h) spatial distribution of hydrostatic stresses for the 
DETO solutions, identifying the elements working in tension 
(blue) and in compression (red)

Fig. 14  Distribution of bond strain in the optimized structures 
with pinned and roller supports.
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the total strain energy of the system Utot as a 
function of the harmonic interactions between 
pairs of neighboring particles;

• A new penalisation scheme for the intensity of 
the interactions, featuring the per-particle design 
variable �i ∈ [0, 1] of both interacting particles 
in each pair;

• Derivation of sensitivity based on the new cost 
function and penalisation scheme. Through the 
text we adopt an approximate expression of 
sensitivity which is computationally efficient 
but may result in incorrect solutions. For the 
examples in the manuscript, the validity of the 
approximation has been checked using a numeri-
cal perturbation approach, presented in the Sup-
plementary Information, which computes the 
full sensitivity;

• Possibility to compute local stresses using the 
virial expression;

• Automatic consideration of geometric nonlinear-
ity.

The new method has been tested for the optimiza-
tion of a simply supported and a pinned beams under 
point load. For these, DETO produced similar opti-
mum geometries as from other more established 
methods in the literature: linear-elastic FEM-based 
TO and Michell analysis. A subsequent parametric 
study looked into the effects of solid volume fraction, 
filtering length, and mesh resolution, leading to the 
following observations:

• Structures with higher volume fractions of solid 
f reach better solutions, i.e.  lower c, and feature 
more topological complexity;

• The impact of the filtering length rmin on the 
results showed c can be reduced both by adding 
more material (i.e. increasing f) while keeping the 
topology fixed, and by increasing the topological 
complexity while keeping f fixed;

• Similar to FEM-based TO, filtering is effective in 
imposing a minimum element size in DETO; this 
can be used to satisfy practical constraints on fab-
rication. Additionally, filtering allows the system 
to escape local minima that would otherwise trap 
unfiltered systems in sub-optimum configuration;

A last application addressed the effect of geomet-
ric nonlinearity, by considering a simply-supported 

and pinned beam problems with supports and loads 
applied to the central axis. We showed how linear-
elastic FEM-based analyses, not including geometric 
nonlinearity, predict the same optimum structure for 
both problems. By contrast, the solution from DETO 
was significantly different for the pinned system. 
Stress analyses clarified how the difference emerged 
from an additional field of tensile stress due to cate-
nary action.

The method presented in this paper is a proof of 
concept for the application of TO to discrete systems. 
In this first work we have considered only the quasi-
static behavior of a linear-elastic material. However, 
we have briefly shown how more complex materials 
could be investigated without changing the presented 
framework, just by using more complex interac-
tion potentials that may also include multi-body and 
orientation-dependent terms. The inclusion of such 
mechanical nonlinearies in the method will be further 
developed in Part 2 of this manuscript [42]. Extend-
ing the method to dynamic analyses would also be 
straightforward, as well as including processes that 
would challenge continuum-based analyses, such 
as collisions, fracture, fragmentation, collapse, and 
rigid motion. Complications may arise depending on 
the objective function to be minimized, but this is an 
intrinsic feature of gradient-based solution methods 
rather than being determined by the DEM or FEM 
solver.

Further developments of DETO should now focus 
on discontinuous problems, for which gradient-based 
methods might not be the most convenient approach. 
An example might be the optimization of the blades 
of a planetary mixer operating on a granular mate-
rial, whose mass and size distribution of the grains 
might be optimized too, with an overall aim of mini-
mizing, for instance, the energy to perform a certain 
number or rotations. In this manuscript we did not 
address problems of such complexity and, as a matter 
of fact, the problem of stiffness maximization consid-
ered here does not require a discrete description at all. 
However, this problem gave us the opportunity to val-
idate the new method, and our implementation of it, 
against results and numerical behaviors that are well 
understood. We also hope that, by choosing this sim-
ple problem, we have managed to highlight the most 
fundamental changes that are required when moving 
from FEM-based to DEM-based optimization, with 
particular emphasis on penalizing the interactions and 
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on the beneficial implications of computing forces in 
the deformed configuration (e.g.  avoiding singular 
stiffness matrices and seamless account of geometric 
nonlinearity).

All in all, the presented method is a first step to 
engage with scientific communities whose focus on 
discrete behaviors has traditionally impeded adoption 
of topology optimization. The communities that we 
envision could be positively impacted from this work 
include those of granular mechanics, structural design 
against progressive collapse, and nanoscale materi-
als science, also including atomistic modeling and 
simulation.
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