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Abstract. We study uniqueness of solutions to degenerate parabolic problems, posed in bounded domains,
where no boundary conditions are imposed. Under suitable assumptions on the operator, uniqueness is
obtained for solutions that satisfy an appropriate integral condition; in particular, such condition holds for
possibly unbounded solutions belonging to a suitable weighted L1 space.

1. Introduction

We investigate uniqueness of solutions to degenerate parabolic problems of the
following type {

∂t u = div{a(x, t)∇u} + f on � × (0, T ] =: QT

u = u0 on � × {0} ,
(1.1)

where � ⊂ R
n is an open bounded subset and T > 0. Note that in (1.1) no boundary

conditions are prescribed. Concerning the coefficient a(x, t) and the data f and u0,
we always assume that

a ∈ C1,0
x,t (QT ), a ≥ 0, a �≡ 0 in QT ,

f ∈ C(QT ), u0 ∈ C(�). Furthermore, we assume that ∂� is a manifold of dimension
n − 1 of class C3.
A wide literature is devoted to degenerate elliptic and parabolic problems, based on

both analytical methods (see, e.g., [3], [4]- [7], [12]- [19], [22]) and stochastic calculus
(see, e.g., [11], [21]). Under appropriate assumptions on the behavior at the boundary
of the coefficients of the operator, in [3] it is shown that uniqueness of solutions can
hold without prescribing boundary conditions at some portion of the boundary. Such
solutions belong to C2(QT ) ∩ C(Q̄T ); therefore, they are bounded.

In [14], [15], by means of appropriate super- and subsolutions, similar uniqueness
results have been obtained, also for unbounded solutions. It is assumed that the solu-
tions satisfy suitable pointwise growth conditions near the boundary. Such conditions
are related to the constructed super- and subsolutions.
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In [17], uniqueness in the weighted Lebesgue space L1
dβ(x)

(QT ) (β > 0) is shown
for degenerate operators in non-divergence form, under appropriate conditions on the
coefficients, similar to those in [3]. Here and hereafter,

d(x) := dist(x, ∂�) (x ∈ �)

is the function distance from the boundary.
In [20], under suitable hypotheses on the coefficient a, uniqueness results for prob-

lem (1.1), in suitable weighted L2 spaces, are established by developing a general idea
used, for instance, in [8] and in [9, Theorem 9.2] (see also [10]) for different purposes.
Such uniqueness results are obtained as a consequence of suitable integral maximum
principles. Note that integral maximum principles in the whole R

n for solutions of
degenerate parabolic equations are also obtained in [1], [2].

In this paper, we generalize the uniqueness results in [20], since we enlarge the
uniqueness class. In fact, we now consider solutions belonging to an appropriate
weighted L1 space. The passage from L2 to L1 causes important changes in the
proofs. Let us outline the differences between our methods and results, and those in
[20]. The line of arguments in [20] is the following: multiply the differential equation
in (1.1) by suitable test functions, integrate by parts one time and obtain convenient
estimates on the solution. To do this, an important step is to find a function ξ(x, t),
depending on the distance function d(x), which is Lipschitz continuous w.r.t. to x and
C1 w.r.t. to t , and satisfies

∂tξ(x, t) + α a(x, t)|∇ξ(x, t)|2 ≤ 0 for a.e. x ∈ �, for any t ∈ (0, T̄ ), (1.2)

for appropriate α > 0, T̄ > 0.
Now, suppose that, for some γ > 1, c0 > c̃0 > 0, c1 > 0, for all (x, t) ∈ QT ,

c̃0d
γ (x) ≤ a(x, t) ≤ c0d

γ (x)

and

|∇a(x, t)| ≤ c1d
γ−1(x) . (1.3)

For every ε > 0, let

�ε := {x ∈ � : d(x) > ε}.
In the present paper to obtain uniqueness in a weighted L1 space, we argue as follows:
we multiply the differential equation in (1.1) by suitable test functions, then we inte-
grate by parts two times. Hence, to get convenient bounds on the solution, we have to
control new terms that appear after the second integration by part. A crucial point in the
proof is to exhibit a function ξ = ξ(x, t)with ξ(·, t) ∈ C2(�\∂�ε)∩C1(�), ξ(x, ·) ∈
C1(�), which satisfies

∂tξ + div
{
a(x, t)∇ξ

} + 5

2
a(x, t)|∇ξ |2 ≤ 0 in [� \ ∂�ε] × (T1, T2), (1.4)
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and

∂ξ

∂nε

= 0 in ∂�ε × (T1, T2) , (1.5)

where nε is the unit outward normal vector to�ε at ∂�ε, for appropriate 0 < T1 < T2.
Observe that ξ(x, t) is defined in terms of the distance function from the boundary and
its behavior as x → ∂� is very important, since it influences the integral conditions
for the solutions, which guarantees uniqueness. Clearly, the construction of ξ fulfilling
(1.4) and (1.5) is more delicate than that verifying only (1.2). The choice of ξ changes
according to whether γ > 2 or γ ∈ [1, 2]; consequently, in these two cases the proofs
present some important differences.
The paper is organized as follows. In Sect. 2, we state our main two uniqueness

results, concerning the two cases γ > 2 and γ ∈ [1, 2]; in addition, we compare them
with some related results in the literature. The uniqueness result for γ > 2 is proved
in Sect. 3, while the other one, for γ ∈ [1, 2], in Sect. 4.

2. Statements of the results

Consider the homogeneous problem associated with (1.1), that is{
∂t u = div{a(x, t)∇u} in QT

u = 0 on � × {0} .
(2.1)

The following two uniqueness results are our main contribute in this paper.

Theorem 2.1. Suppose that u ∈ C2,1(QT )∩C(�×[0, T ]) solves (2.1) and a satisfies
(1.3) with γ > 2.

Moreover, suppose that, for some C > 0, θ > 0, ε0 > 0,∫ T

0

∫
�ε

|u(x, t)| dx dt ≤ Ceθ ε−γ+2
for every ε ∈ (0, ε0). (2.2)

Then, u ≡ 0 in QT .

Obviously, there exist unbounded functions satisfying condition (2.2). For any φ ∈
C(�), φ > 0, p ≥ 1, let

L p
φ(QT ) :=

{
u : QT → R measurable :

∫ T

0

∫
�

|u(x, t)|pφ(x) dxdt < ∞
}

.

Remark 2.2. It is direct to see that if u ∈ L1
φ(QT ) with φ(x) = e{−θ[d(x)]2−γ }, θ >

0, γ > 2, then condition (2.2) holds.

Theorem 2.3. Suppose that u ∈ C2,1(QT )∩C(�×[0, T ]) solves (2.1) and a satisfies
(1.3) with γ ∈ [1, 2].

Moreover, suppose that, for some C > 0, ε0 > 0 and μ > −2γ + 4,
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∫ T

0

∫
�

ε
2 \� 2

3 ε
|u(x, t)| [d(x)]γ−2 dx dt ≤ Cεμ for every ε ∈ (0, ε0). (2.3)

Then, u ≡ 0 in QT .

Remark 2.4. Note that, if u ∈ L1
φ(QT ) with φ(x) = [d(x)]γ−2−μ, then (2.3) is valid.

Furthermore, if γ ∈
(
5
3 , 2

]
and

|u(x, t)| ≤ C̄[d(x)]−l for every x ∈ �, t ∈ [0, T ] , (2.4)

for some C̄ > 0 and 0 < l < 3γ −5, then (2.3) holds withμ = γ −1− l > −2γ +4.

Remark 2.5. (i) Theorem 2.1 generalizes [20, Theorem 2.1], where (2.2) is replaced
by the stronger condition∫ T

0

∫
�ε

|u(x, t)|2 dx dt ≤ Ceθ ε−γ+2
for every ε ∈ (0, ε0). (2.5)

(ii) Theorem 2.3 generalizes [20, Theorem 2.2], where (2.3) is replaced by the stronger
condition∫ T

0

∫
�

ε
2 \� 2

3 ε
|u(x, t)|2 [d(x)]γ−2 dx dt ≤ Cεμ for every ε ∈ (0, ε0). (2.6)

for some μ > 0. However, note that in Theorem 2.3 the further request μ > −2γ + 4
is made.
(iii) We should note that in [20, Theorem 2.1, 22] the hypothesis on the coefficient a
is weaker. In fact, instead of (1.3) it is only assumed that

a(x, t) ≤ c0d
γ (x) for all (x, t) ∈ QT .

Remark 2.6. Let γ ∈ (1, 2] and u be a solution of problem (2.1) satisfying (2.4), for
some C̄ > 0 and l > 0. Observe that [20, Theorem 2.2] yields that if 0 < l <

γ−1
2 ,

then u ≡ 0 in QT .

Now, let γ ∈
(
5
3 , 2

]
. From Theorem 2.3 and the subsequent comments, it follows

that u ≡ 0, provided that 0 < l < 3γ − 5. Since

3γ − 5 ∈ (0, 1),

while

γ − 1

2
∈

(
0,

1

2

]
,

the growth condition for u in Theorem 2.3 is weaker than that in [20, Theorem 2.2].

On the other hand, when γ ∈
(
0, 5

3

)
, [20, Theorem 2.2] can be applied, whereas the

hypotheses of Theorem 2.3 are not verified (under the extra condition (2.4)).
Finally, recall that in view of [20, Proposition 3.3], if γ = 1, l = 0, then uniqueness

holds in L∞(QT ).

By Theorems 2.1 and 2.3, the following uniqueness result immediately follows.
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Corollary 2.7. Let u1, u2 ∈ C2,1(QT ) ∩ C(� × [0, T ]) be two solutions of problem
(1.1). Assume that (1.3) holds with γ > 2 and both u1 and u2 satisfy condition (2.2),
or that (1.3) holds with γ ∈ [1, 2] and both u1 and u2 satisfy condition (2.3). Then,
u1 ≡ u2 in QT .

Remark 2.8. Assume that, for some ε > 0,C0 > 0 and γ ∈ R,

a(x, t) = C0[d(x)]γ for any x ∈ � \ �ε, t ∈ [0, T ] . (2.7)

If γ ≥ 2, the results in [3] give uniqueness of solutions to problem (2.1) in
C2(QT ) ∩ C(Q̄T ). So, in particular such solutions are bounded. Hence, our results
are in agreement with those in [3] in the special case of bounded solutions, if γ > 2.
Instead, when γ < 2, the results in [3] cannot be applied, since the coefficients are
not regular enough.
The results in [15] could be applied, once we construct suitable super- and subsolu-

tions; however, we would obtain uniqueness under pointwise growth conditions near
∂�. Finally, the results in [14] and in [17] cannot be applied, since our operator does
not satisfy the required hypotheses.

From the existence result in [20, Proposition 3.1] and Corollary 2.7, we get the
following existence and uniqueness result.

Corollary 2.9. Let f ≡ 0, γ > 2 and a > 0 in QT . Suppose that, for some 0 < β ≤
γ − 2, τ > 0,

0 ≤ u0 ≤ exp

{ [d(x)]β
τ

}
for all x ∈ � . (2.8)

Assume that (1.3) holds. Then, there exists a solution u ∈ C2,1(QT ) ∩C(� × [0, T ])
of problem (1.1) fulfilling

0 ≤ u(x, t) ≤ Ĉ exp

{ [d(x)]β
τ − λt

}
for all x ∈ �, t ∈ [0, T ] , (2.9)

with T = τ
2λ , for suitable λ > 0, Ĉ > 0. Furthermore, u is the unique solution of

problem (1.1) in L1
φ(QT ) with φ(x) = e{− 2

τ
[d(x)]2−γ }.

Observe that Theorems 2.1 and 2.3 imply uniqueness whenever (1.3) holds with
γ ≥ 1. Such request on γ is indeed optimal. In fact, from [20, Proposition 3.2] it
follows that when, for some ε > 0, γ < 1, c2 > 0, c3 > 0, s ∈ [0, γ ),

c2[d(x)]γ ≤ a(x) ≤ c3[d(x)]γ−s for all x ∈ � \ �ε , (2.10)

problem (1.1) admits infinitely many bounded solutions.
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Remark 2.10. We observe that there are important differences between problem (1.1)
and the companion problem

⎧⎨
⎩

∂t u = a(x, t)
u + f in QT

u = u0 in � × {0} .

(2.11)

For example, let

a(x, t) = [d(x)]γ (γ > 1) .

If γ ≥ 2, then there exists a unique bounded solutions to problem (2.11) (see [10,
Section 7], [14, Theorem 2.16]). On the other hand, if γ < 2, then nonuniqueness
of solutions of problem (2.11) prevails, in the sense that it is possible to prescribe
Dirichlet boundary data at ∂� × (0, T ] (see [10, Section 7], [14, Theorem 2.18]).
Thus, the change between uniqueness and nonuniqueness occurs for γ = 2. Instead,
such change for problem (1.1) occurs for γ = 1.

3. Proof of Theorem 2.1

Observe that

|∇d(x)| ≤ 1 for a.e. x ∈ � . (3.1)

Moreover, (see, e.g., [14]) if ∂� is of class C3, then there exists ε0 ∈ (0, 1) such that
for each ε ∈ (0, ε0) d ∈ C2(� \ �ε), and, for some k0 > 0,

|
d(x)| ≤ k0 in � \ �ε . (3.2)

In addition, there exists ν0 ∈ (0, 1) such that

|∇d(x)| ≥ ν0 for any x ∈ � \ �ε . (3.3)

For each β > 0, define the function

ζ(x, t) :=
{
0 if x ∈ �ε

[d(x)]−β − ε−β if x ∈ � \ �ε
. (3.4)

Differentiating the function above, we have

∇ζ(x, t) = −β[d(x)]−β−1∇d(x) for any x ∈ � \ �ε , (3.5)

thus

|∇ζ(x, t)|2 ≤ β2[d(x)]−2β−2 for any x ∈ � \ �ε .
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Finally, define the function

ξ(x, t) := − ζ 2(x)

2(s − α1t)
(3.6)

for any x ∈ �, t �= s
α1
, where here α1 > 0 is a parameter to be chosen later. Note that

ξ(·, t) ∈ C2(� \ ∂�ε) ∩ C1(�) and

∂ξ(x, t)

∂nε

= 0 for any x ∈ ∂�ε, t �= s

α1
, (3.7)

where nε is the outward normal to �ε.
Let γ > 2, c ∈ (

0, 1
2

)
be such that

[(1 − c)−
γ−2
2 − 1](c1 + c0k0) − βν0c̃0 < 0 , (3.8)

and define

σ := 1 − (1 − c)
γ−2
2 . (3.9)

The proof of Theorem 2.1 is based on the combination of the following results.

Proposition 3.1. Under assumption (1.3) with γ > 2, suppose u ∈ C2,1(QT ) ∩
C(� × [0, T ]) solves (2.1). Suppose that, for some C > 0 and θ > 0, (2.2) holds. Let
τ ∈ (0, T ), c ∈ (

0, 1
2

)
be such that (3.8) is satisfied, σ be defined by (3.9),

0 < δ < min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2

(γ − 2)(c1 + c0)
, τ,

[( 3
2

) γ−2
2 − 1

]2
4θα1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and

α1 ≥ max

{
6c0(γ − 2)2

σ 2 ,
5

4
c0(γ − 2)2

}
.

Then, ∫
�ε |u(x, τ )| dx ≤ ∫

�
ε
2

|u(x, τ − δ)| dx + C̃εγ−2 , (3.10)

where C̃ > 0 is a suitable constant independent of ε.

Lemma 3.2. Let u ∈ C(� × [0, T ]) with
u = 0 in � × {0} . (3.11)

Suppose that there exist c > 0, ε̄ > 0, μ > 0, Ĉ > 0 such that for any ε ∈ (0, ε̄),
τ ∈ (0, T ) and

0 < δ ≤ min{τ, c} , (3.12)
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there holds ∫
�ε

|u(x, τ )| dx ≤
∫

�
ε
2

|u(x, τ − δ)| dx + Ĉεμ . (3.13)

Then,

u ≡ 0 in � × (0, T ] .

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We obtain the thesis, combining Proposition 3.1 and Lemma
3.2 with

μ = γ − 2,

c = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2

(γ − 2)(c1 + c0)
,

[( 3
2

) γ−2
2 − 1

]2
4θα1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

and

C̃ = Ĉ .

�

3.1. Proofs of Proposition 3.1 and Lemma 3.2

Consider a family of cut-off functions {ηε} ⊂ C∞(�) such that

0 ≤ ηε ≤ 1 ,

and

ηε =
{
1 in �

2
3 ε

0 in � \ �
ε
2 .

(3.14)

Notice that

|∇ηε| ≤ A1
ε

for every x ∈ �,

|
ηε| ≤ A2
ε2

for every x ∈ �,

(3.15)

where A1 and A2 are two positive constants.
For every α > 0, consider a function ψα : R → R

+ of class C2 such that

ψ ′′
α ≥ 0 . (3.16)
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Then, by the chain rule

div{a(x, t)∇ψα(u)} = ψ ′
α(u)div{a(x, t)∇u} + ψ ′′

α(u)a(x, t)|∇u|2

and, because of (3.16) and the positivity of a, we can estimate the second term on the
right-hand side from below, obtaining

div{a(x, t)∇ψα(u)} ≥ ψ ′
α(u)div{a(x, t)∇u} = ∂tψα(u) , (3.17)

where in the last identity we used equation (2.1). Thus, the composed function ψα(u)

is a subsolution of (1.1).
The main ingredient for the proof of Proposition 3.1 is the following

Lemma 3.3. Under assumption (1.3) with γ > 2, suppose u ∈ C2,1(QT ) ∩ C(� ×
[0, T ]) solves (2.1). Let 0 < ε < ε0, τ ∈ (0, T ), c ∈ (

0, 1
2

)
be such that (3.8) is

satisfied, σ be defined by (3.9). If

0 < δ < min

{
σ 2

(γ − 2)(c1 + c0)
, τ

}
(3.18)

and

α1 ≥ max

{
6c0(γ − 2)2

σ 2 ,
5

4
c0(γ − 2)2

}
, (3.19)

then

∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx ≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+C1ε
γ−2

∫∫
�

ε
2 \� 2

3 ε×(τ−δ,τ )

ψα(u(x, t))eξ(x,t) dx dt , (3.20)

where ξ is defined in (3.6) with s = α1(τ + δ) and C1 > 0 is a suitable constant
independent of ε.

Proof of Lemma 3.3. Define the set C = �
ε
2 × (τ − δ, τ ). Testing the time derivative

of ψα(u) with η2(x)eξ(x,t), we get∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx =
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+
∫∫

C
∂t [ψα(u(x, t))]η2(x)eξ(x,t) dx dt

+
∫∫

C
ψα(u(x, t))η2(x)∂t e

ξ(x,t) dx dt .

(3.21)
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We can compute the second term of the right-hand-side of the above equation as∫∫
C

∂t [ψα(u)]η2eξ dx dt =
∫∫

C
ψ ′

α(u)∂t u η2eξ dx dt

=
∫∫

ψ ′
α(u)div{a∇u}η2eξ dx dt

(3.16)=
∫∫

C

(
div{a∇ψα(u)} − ψ ′′

αa|∇u|2
)

η2eξ dx dt

≤
∫∫

C
div{a∇ψα(u)}η2eξ dx dt , (3.22)

where, in the last inequality we used the positivity of the integrating factor, due to
(3.16) and (1.3). We need to estimate the right-hand side of the above inequality
further: Integrating by parts a second time, we have

∫∫
C
div{a ∇ψα(u)}η2eξ dx dt

= −
∫∫

C
a ∇ψα(u) · ∇(η2eξ ) dx dt

= −
∫∫

C
a ∇ψα(u) · 2η∇η eξ dx dt −

∫∫
C
a ∇ψα(u) · η2 eξ ∇ξ dx dt .

Observe that, since ξ ∈ C2(� \ ∂�ε), the last identity is justified by splitting the
integral in the set �

ε
2 \ �ε and �ε, integrating by parts and eliminating the boundary

terms thanks to (3.7) and (3.14):

−
∫∫

C
a ∇ψα(u) · 2η∇η eξ dx dt −

∫∫
C
a ∇ψα(u) · η2 eξ ∇ξ dx dt

= −
∫∫

�ε

a ∇ψα(u) · 2η∇η eξ dx dt −
∫∫

�ε×(τ−δ,τ )

a ∇ψα(u) · η2 eξ ∇ξ dx dt

−
∫∫

�
ε
2 \�ε×(τ−δ,τ )

a ∇ψα(u) · 2η∇η eξ dx dt

−
∫∫

�
ε
2 \�ε

a ∇ψα(u) · η2 eξ ∇ξ dx dt

=
∫∫

�ε×(τ−δ,τ )

ψα(u)div(a 2η∇η eξ ) dx dt −
∫

∂�ε

a ψα(u) 2η
∂η

∂nε

eξ dSx dt

+
∫∫

�ε×(τ−δ,τ )

ψα(u) div(a η2 eξ ∇ξ) dx dt −
∫

∂�ε

a ψα(u) η2eξ ∂ξ

∂nε

dSx dt

+
∫∫

�
ε
2 \�ε×(τ−δ,τ )

ψα(u) div(a 2η∇η eξ ) dx dt

−
∫

∂�
ε
2 ∪∂�ε×(τ−δ,τ )

a ψα(u) 2η
∂η

∂nε

eξ dSx dt



J. Evol. Equ. Uniqueness for degenerate parabolic equations Page 11 of 30 50

+
∫∫

�
ε
2 \�ε×(τ−δ,τ )

ψα(u)div(a η2 eξ ∇ξ) dx dt

−
∫

∂�
ε
2 ∪∂�ε×(τ−δ,τ )

a ψα(u) η2eξ ∂ξ

∂nε

dSx dt

(3.7)&(3.14)=
∫∫

�ε×(τ−δ,τ )

ψα(u) div(a 2η∇η eξ ) dx dt

+
∫∫

�ε×(τ−δ,τ )

ψα(u) div(a η2 eξ ∇ξ) dx dt

+
∫∫

�
ε
2 \�ε×(τ−δ,τ )

ψα(u) div(a 2η∇η eξ ) dx dt

+
∫∫

�
ε
2 \�ε×(τ−δ,τ )

ψα(u)div(a η2 eξ ∇ξ)dx dt .

We therefore obtained

∫∫
C
div{a ∇ψα(u)}η2eξ dx dt

= 2
∫∫

C
ψα(u)

{
ηdiv(a ∇η) eξ + a |∇η|2 eξ + a η ∇η · eξ ∇ξ

}
dx dt

+
∫∫

C
ψα(u)

{
2a η∇η · eξ∇ξ + a η2eξ |∇ξ |2 + η2div(a ∇ξ) eξ

}
dx dt .

and, inserting this new expression in (3.22) and this last one back into inequality (3.21),
we get∫

�
ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx

≤ ∫
�

ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+2
∫∫

C ψα(u(x, t))
{
η(x)div(a(x, t)∇η(x))eξ(x,t) + a(x, t)|∇η(x)|2 eξ(x,t)

+ a(x, t) η(x)∇η(x) · eξ(x,t)∇ξ(x, t) + a(x, t) η(x)∇η(x) · eξ(x,t)∇ξ(x, t)

+ 1
2 a(x, t) η2(x)|∇ξ(x, t)|2eξ(x,t) + 1

2η
2(x)div(a(x, t)∇ξ(x, t)) eξ(x,t)

}

+ ∫∫
C ψα(u(x, t))η2(x)∂t eξ(x,t) dx dt.

Using Young’s inequality in the form

2
∫∫

C
ψαa η ∇η · eξ ∇ξ ≤

∫∫
C

ψα a η2 eξ |∇ξ |2 dx dt +
∫∫

C
ψαa |∇η|2 eξ dx dt

in the second integral of the right-hand side, we get

2
∫∫

C
ψα(u)

{
ηdiv(a ∇η)eξ + a |∇η|2 eξ + 2 a η∇η · eξ ∇ξ
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1

2
a η2eξ |∇ξ |2 + 1

2
η2div(a ∇ξ)eξ

}
dx dt

≤
∫∫

C
ψα(u)[ηdiv(a ∇η) + a|∇η|2] eξ dx dt

+1

2

∫∫
C

ψα(u)[a η2|∇ξ |2 + η2div(a ∇ξ)]eξ dx dt

+
∫∫

C
ψα(u) a η2 eξ |∇ξ |2 dx dt +

∫∫
C

ψα(u) a |∇η|2 eξ dx dt.

Putting all the previous estimates together, we have

∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx

≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+
∫∫

C
ψα(u(x, t))[ηdiv(a(x, t)∇η(x)) + a(x, t)|∇η(x)|2]eξ(x,t) dx dt

+1

2

∫∫
C

ψα(u(x, t))[a(x, t)η2(x)|∇ξ(x, t)|2

+η2div(a(x, t)∇ξ(x, t))]eξ(x,t) dx dt

+
∫∫

C
ψα(u(x, t))a(x, t)η2(x)eξ(x,t)|∇ξ(x, t)|2 dx dt

+
∫∫

C
ψα(u(x, t))a(x, t)|∇η(x)|2eξ(x,t) dx dt

+
∫∫

C
ψα(u(x, t))η2(x)eξ(x,t)∂tξ(x, t) dx dt.

Finally, summing up and rearranging the terms we have

∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx

≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+
∫∫

C
ψα(u(x, t))[η(x)div(a(x, t)∇η(x)) + 2a(x, t)|∇η(x)|2]eξ(x,t) dx dt
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+
∫∫

C
ψα(u)η2(x)[∂tξ(x, t) + 3

2
|∇ξ(x, t)|2a(x, t)

+ div(a(x, t)∇ξ(x, t))]eξ(x,t) dx dt . (3.23)

Our next goal is to show that

∂tξ + 3

2
a |∇ξ |2 + div(a ∇ξ) ≤ 0 in [� \ ∂�ε] × (τ − δ, τ ) ; (E1)

η div(a ∇η) + 2|∇η|2a ≤ C1ε
γ−2 in � × (τ − δ, τ ) , (E2)

for some C1 > 0 independent of ε.

Claim 1: Condition (E1) holds.

Proof of Claim 1. We start recalling that, by definition of ζ , the function ξ (and all its
derivatives in time and space) is supported in � \ �ε = {x ∈ � | d(x) ≤ ε} so (E1)
is trivially verified in �ε. Now, consider any x ∈ � \ �ε and any t ∈ (τ − δ, τ ).

In view of the definition of ξ (3.6), we compute

∂tξ = − α1ζ
2

2(s − α1t)2
, |∇ξ |2 = ζ 2|∇ζ |2

(s − α1t)2
(3.24)

and

div(a(x, t)∇ξ) = −∇a · ζ∇ζ

s − α1t
− a(x, t)

|∇ζ |2
s − α1t

− a(x, t)
ζ
ζ

s − α1t
. (3.25)

Rewriting the right-hand side of (3.25) by inserting the definition of ∇ζ and 
ζ ,
we have

∇a · ζ∇ζ = −β ζ ∇a · ∇d d−β−1

aζ
ζ = β(β + 1) a ζ d−β−2 |∇d|2 − β a ζ d−β−1 
d

a|∇ζ |2 = β2 a d−2β−2 |∇d|2 . (3.26)

Putting all previous terms together, we obtain the expression

∂tξ + 5

2
a(x, t)|∇ξ |2 + div(a∇ξ)

= 1

2(s − α1t)2

{
−α1ζ

2 + 3aζ 2β2 d−2(β+1) |∇d|2

+ 2(s − α1t)β
[
ζ ∇a · ∇d d−β−1 + a ζ 
d d−β−1

−β a d−2β−2 |∇d|2 − (β + 1) a ζ d−β−2 |∇d|2
]}

. (3.27)

�
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Figure 1. Illustration of the decomposition of the set �

In order to estimate the right-hand side of the expression above, we decompose the
set � \ �ε as

� \ �ε = (� \ �ε−ε1) ∪ (�ε−ε1 \ �ε) .

Consider first the region

� \ �ε−ε1 = {x ∈ � | d(x) ≤ ε − ε1} with ε1 ∈ (0, ε/2) .

Thanks to (3.3), the last two terms of the right-hand side can be bounded from above
by zero, i.e.,

−β a d−2β−2 |∇d|2 ≤ 0

and

−(β + 1)a d−β−2 |∇d|2ζ ≤ 0 .

Using (3.2) and (1.3)
and ζ(x) = d−β − ε−β ≤ d−β , we can estimate

a
d d−β−1 ζ ≤ c0k0d
−2β−1+γ ,
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while using (3.1) and (1.3),
we have

∇a · ∇d d−β−1 ζ ≤ c1d
−2β−2+γ .

Finally,

3a ζ 2 β2 d−2(β+1) |∇d|2 ≤ 6β2c0 d
−4β−2+γ ,

where we used

ζ 2 = d−2β + ε−2β − 2d−βε−β ≤ 2d−2β . (3.28)

We claim that there exists a σ ∈ (0, 1) such that

− ζ 2(x) ≤ −σ 2d−2β(x) , (3.29)

and this will follow if we can show

d−β(x) − ε−β(x) ≥ σd−β(x) .

The letter is equivalent to

σ ≤ 1 −
(
d

ε

)β

,

which is clearly fulfilled by choosing

σ = 1 −
(

ε − ε1

ε

)β

.

Let ε1 = cε with c ∈ (
0, 1

2

)
. Hence,

σ = 1 − (1 − c)β .

Now, we can use (3.29) and (3.28) to estimate the right-hand side of (3.27) further:

∂tξ + 3

2
a |∇ξ |2 + div(a ∇ξ)

≤ 1

2(s − α1t)2

{
− α1σ

2d−2β + 6β2 c0 d
−4β−2+γ



50 Page 16 of 30 C. Nobili and F. Punzo J. Evol. Equ.

+(s − α1t)β
[
c1d

−2β−2+γ + c0d
−2β−1+γ

] }

≤ d−4β−2+γ

2(s − α1t)2

{
− α1σ

2d2β+2−γ + 6β2c0 + (s − α1t)β
[
c1d

2β + c0d
2β+1

] }
.

Choose

β = γ − 2

2
, (3.30)

s = α1(τ + δ) . (3.31)

So, for all t ∈ (τ − δ, τ ),

α1δ < s − α1t < 2α1δ . (3.32)

This together with the fact that

d(x) ≤ ε in � \ �ε

yields

∂tξ + 3

2
a |∇ξ |2 + div(a ∇ξ)

≤ d−4β+γ−2

2(s − α1t)2

{
−α1σ

2 + 6β2c0 + 2α1δβ
[
c1ε

2β + c0ε
2β+1

]}
. (3.33)

If we impose that

0 < δ ≤ σ 2

2β
[
c1ε2β + c0ε2β+1

] , (3.34)

then from (3.33) we get

∂tξ + 3

2
a|∇ξ |2 + div(a∇ξ) ≤ d−4β−2+γ

2(s − α1t)2

{
−α1

2
σ 2 + 6c0β

2
}

.

Now, observe that in view of assumption (3.18), condition (3.34) is true. Finally, if

α1 ≥ 24c0β2

σ 2 , (3.35)

then

∂tξ + 3

2
a |∇ξ |2 + div(a ∇ξ) ≤ d−4β−2+γ

2(s − α1t)2

{
−α1

4
σ 2

}
< 0 .

Now, consider the region

�ε−ε1 \ �ε = {x ∈ � | ε − ε1 < d(x) ≤ ε}
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For any x ∈ �ε−ε1 \ �ε, t ∈ (τ − δ, τ ), thanks to (3.27), (3.2), (3.3), (3.30), (3.32),
we have:

∂tξ + 3

2
a |∇ξ |2 + div(a ∇ξ)

≤ 1

2(s − α1t)2

{
ζ 2(−α1 + 5c0β

2)

+2(s − α1t)β
(
ζ [c1dγ−β−2 + c0k0d

γ−β−1] − β c̃0ν0
)}

.

Observe that for any x ∈ �ε−ε1 \ �ε,

ζ(x) ≤ (ε − ε1)
−β − ε−β = ε−β [(1 − c)−β − 1], (3.36)

while

d(x) < ε . (3.37)

In view of (3.18), (3.19), (3.36), (3.37), we obtain

∂tξ + 3

2
a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

≤ β

s − α1t

{[(1 − c)−β − 1](c1 + c0k0) − β c̃0ν0
}

< 0,

thanks to (3.8). �
Claim 2: Condition (E2) holds.

Proof for Claim 2. Using (3.14) and (3.15) we have

η div(a(x, t)∇η) + 2|∇η|2a(x, t) = η∇a(x, t) · ∇η + ηa(x, t)
η + 2|∇η|2a(x, t)

≤ |∇a(x, t)||∇η|+|a(x, t)||
η|+2|∇η|2|a(x, t)|
≤ c0γ d

γ−1 A1

ε
+ c0d

γ 1

ε2
+ 2

A2
1

ε2
c0d

γ

= 1

ε2
dγ

(
d−1A1c1ε + c0 + 2A2

1c0
)

.

Because of the support conditions of ∇η and 
η (contained in the set �
ε
2 \ �

2
3 ε =

{x ∈ � : ε
2 < d ≤ 2

3ε}), the term d−1A1c1ε + c0 + 2A2
1c0 is bounded by a constant

independent of ε, and the claim follows.
Finally, inserting (E1) and (E2) in (3.23) we obtain∫

�
ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx ≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+C1ε
γ−2

∫∫ τ

τ−δ

∫
�

ε
2 \� 2

3 ε
ψα(u(x, t))eξ(x,t) dx dt ,

with C1 > 0, independent of ε, as in (E2). This completes the proof. �
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Proof of Proposition 3.1. For every α > 0 define

ψα(z) = (z2 + α)
1
2 , z ∈ R ,

with α > 0. Since ψ ′′
α ≥ 0, in view of (3.17) we can infer that ψα is a subsolution of

(1.1). The application of Lemma 3.3 yields∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx ≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+C1ε
γ−2

∫∫
�

ε
2 \� 2

3 ε×(τ−δ,τ )

ψα(u(x, t))eξ(x,t) dx dt ; (3.38)

here, ξ is defined as in (3.6), and conditions (3.30) and (3.31) hold.
Using that �ε ⊂ �

ε
2 , η = 1 on �

2
3 ε and the positivity of the integrand we have

∫
�ε

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx =
∫

�ε

ψα(u(x, τ ))eξ(x,τ ) dx

≤
∫

�
ε
2

ψα(u(x, τ ))eξ(x,τ ) dx .

Lettingα → 0+ in (3.38), applying theLebesgue’s dominated convergence theorem
and observing that 0 ≤ η ≤ 1, we obtain∫

�ε

|u(x, τ )|eξ(x,τ ) dx ≤
∫

�
ε
2

|u(x, τ − δ)|eξ(x,τ−δ) dx

+C1ε
γ−2

∫∫
�

ε
2 \� 2

3 ε×(τ−δ,τ )

|u(x, t)|eξ(x,t) dx dt .

(3.39)

Recalling (3.4), we first notice that ξ = 0 in �ε for any t ∈ [τ − δ, τ ]. Choose s as in
(3.31). Therefore, ξ(x, t) < 0 for all x ∈ � \ �ε and t ∈ (τ − δ, τ ). Since

�
ε
2 \ �

2
3 ε = {x ∈ � : ε

2
< d(x) ≤ 2

3
ε} ⊂ � \ �ε,

then

ζ(x) = d−β − ε−β = ε−β

(( ε

d

)β − 1

)
in �

ε
2 \ �

2
3 ε .

The bound

( ε

d

)β ≥
(
3

2

)β

for β > 0 ,

yields

ζ(x) ≥ C̃ε−β with C̃ =
(
3

2

)β

− 1 .
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Moreover, we have

ξ(x, t) = − ζ 2(x)

2(s − α1t)
≤ − C̃2ε−2β

4α1δ
in �

ε
2 \ �

2
3 ε .

Finally, inserting this bound in (3.39), we obtain∫
�ε |u(x, τ )| dx ≤ ∫

�
ε
2

|u(x, τ − δ)| dx

+C1ε
γ−2e

− C̃2ε−2β
4α1δ

∫∫
�

ε
2 \� 2

3 ε×(τ−δ,τ )
|u(x, t)| dx dt .

Due to condition (2.2), it follows that∫
�ε |u(x, τ )| dx ≤ ∫

�
ε
2

|u(x, τ − δ)| dx

+C1 meas(�)T εγ−2e
− C̃2ε−2β

4α1δ eθε(2−γ )
.

In view of (3.30), since 0 < δ ≤ C̃2

4θα1
, we obtain

∫
�ε |u(x, τ )| dx ≤ ∫

�
ε
2

|u(x, τ − δ)| dx + C1 meas(�)T εγ−2 .

This completes the proof. �

Proof Lemma 3.2. The thesis follows by minor variations of the proof of [20, Propo-
sition 4.1]. However, we give the proof for the reader’s convenience.
Take any ε > 0, τ ∈ (0, T ). Define

εk := 2−kε for all k ∈ N ,

Furthermore, let {δk}k∈N ⊂ (0,∞) be a sequence fulfilling (3.12), that is

0 < δk ≤ min{τ,C} for all k ∈ N . (3.40)

Also, let {τk}k∈N be a sequence defined inductively as follows

τ0 := τ,

τk+1 := τk − δk for every k ∈ N \ {0} .

Observe that

τ − τk+1 = δ0 + δ1 + . . . + δk for every k ∈ N . (3.41)

From (3.13), it follows that for every k ∈ N∫
�εk

|u(x, τk)| dx ≤
∫

�εk+1

|u(x, τk+1)|dx + Cε
μ
k . (3.42)
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Claim: there exists k0 ∈ N such that τk0+1 = 0.
In fact, in view of (3.41), τk0+1 = 0 if and only if

τ = δ0 + δ1 + . . . + δk0 . (3.43)

Clearly, we can select the sequence {δk} so that (3.40) and (3.43) hold, for some
k0 ∈ N. So, the Claim has been shown.
The Claim combined with (3.11) yields∫

�
εk0+1

|u(x, τk0+1)| dx =
∫

�
εk0+1

|u(x, 0)| dx = 0 . (3.44)

By iterating (3.42) up to k = k0, in view of (4.28), we get

∫
�ε

|u(x, τ )|dx ≤
∫

�
εk0+1

|u(x, τk0+1)| + C
k0∑
k=0

ε
μ
k ≤ C

k0∑
k=0

ε
μ
k . (3.45)

Observe that
k0∑
k=0

ε
μ
k ≤

k0∑
k=0

2−kμεμ ≤ εμ
+∞∑
k=0

2−μk ≤ 1

1 − 2−μ
εμ −→

ε→0
0 .

Hence, by letting ε → 0+ in (3.45), we obtain∫
�

|u(x, τ )|dx = 0 .

Since τ ∈ (0, T ) was arbitrary, the conclusion follows.
�

4. Proof of Theorem 2.3

Let β = −γ + 2 whenever γ ∈ (1, 2); let β = b > 0 whenever γ = 2, with b > 0
arbitrary. Consider � ∈ (

0, 1
2

)
such that

[1 − (1 − �)β ](c1 + c0k0) − βν0c̃0 < 0 , (4.1)

and define

σ̄ := 1 − (1 − �)β . (4.2)

Define the functions

ζ(x) =
{
0 for x ∈ �ε

εβ − dβ(x) for x ∈ � \ �ε ,
(4.3)

and

ξ(x) = − ζ 2(x)

2(s − α1t)
for all x ∈ �, t �= s

α1
. (4.4)

The proof of Theorem 2.3 is based on the combination of the following results.
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Proposition 4.1. Under assumption (1.3) with γ ∈ [1, 2], suppose u ∈ C2,1(QT ) ∩
C(� × [0, T ]) solves (2.1). Let τ > 0, b > 0, � ∈ (

0, 1
2

)
be such that (4.1) is true, σ̄

be defined by (4.2). Suppose that

0 < δ <

⎧⎨
⎩
min

{
σ̄ 2

16(−γ+2)(c1+c0)
ε−2γ+4, τ

}
for γ ∈ [1, 2)

min
{

σ̄ 2

16b[c1+(b−1)++c0] , τ
}

for γ = 2,

α1 ≥
⎧⎨
⎩
max

{
24 c0(−γ+2)2

σ̄ 2 , 5c0(2 − γ )2
}

for γ ∈ [1, 2)
max

{
24 c0b2

σ̄ 2 , 5c0b2
}

for γ = 2 ,

and that, for some C > 0, μ > 0,

∫ T

0

∫
�

ε
2 \� 2

3 ε
|u(x, t)|d(x)γ−2 dx dt ≤ Cεμ for every ε ∈ (0, ε0) . (4.5)

Then,

∫
�ε |u(x, τ )| dx ≤ ∫

�
ε
2

|u(x, τ − δ)| dx + C̃εμ , (4.6)

for some constant C̃ > 0 independent of ε.

Lemma 4.2. Let u ∈ C(� × [0, T ]) with

u = 0 in � × {0} . (4.7)

Suppose that there exist c > 0, Ĉ > 0, ε0 > 0, μ2 > μ1 > 0 such that for any
ε ∈ (0, ε0), τ ∈ (0, T ),

0 < δ < min{τ, cεμ1} , (4.8)

there holds ∫
�ε

u(x, τ ) dx ≤
∫

�
ε
2
u(x, τ − δ)dx + Ĉεμ2 . (4.9)

Then,

u ≡ 0 in � × (0, T ] .

Lemma 4.2 is an extension of Lemma 3.2. Differently from Lemma 3.2, in Lemma
4.2 the bound on δ goes to zero as ε → 0+. To manage this situation, the condition
μ2 > μ1 will be expedient.
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Proof of Theorem 2.3. The thesis follows, combining Proposition 4.1 and Lemma 4.2,
with

μ1 = −2γ + 4, μ2 = μ > μ1,

c =
{

σ̄ 2

16(−γ+2)(c1+c0)
for γ ∈ [1, 2)

σ̄ 2

16b[c1+(b−1)++c0] for γ = 2 ,

and

C̃ = Ĉ .

�

4.1. Proofs of Proposition 4.1 and Lemma 4.2

The proof of Proposition 4.1 is based on the following crucial lemma.

Lemma 4.3. Under assumption (1.3)with γ ∈ [1, 2], suppose u ∈ C2,1(QT )∩C(�×
[0, T ]) solves (2.1). Let ε ∈ (0, ε0), τ > 0, b > 0, � ∈ (

0, 1
2

)
be such that (4.1) is

true, σ̄ be defined by (4.2). If

0 < δ <

⎧⎪⎨
⎪⎩
min

{
σ̄ 2

16(−γ+2)(c1+c0)
ε−2γ+4, τ

}
for γ ∈ [1, 2)

min
{

σ̄ 2

16b[c1+(b−1)++c0] , τ
}

for γ = 2,
(4.10)

α1 ≥

⎧⎪⎨
⎪⎩
max

{
24 c0(−γ+2)2

σ 2 , 5c0(2 − γ )2
}

for γ ∈ [1, 2)
max

{
24 c0b2

σ̄ 2 , 5c0b2
}

for γ = 2 ,
(4.11)

then

∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx ≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+C1

∫ τ

τ−δ

∫
�

ε
2 \� 2

3 ε
ψα(u(x, t))eξ(x,t)dγ−2(x) dx dt , (4.12)

where ξ is defined as in (4.4) with s = α1(τ + δ), for a suitable C1 > 0 independent
of ε.

Proof of Lemma 4.3. Let ζ be defined by (4.3). Then,

∇ζ = −βdβ−1∇d and 
ζ = −β(β − 1)dβ−2(∇d)2 − βdβ−1
d . (4.13)
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Let ξ be defined as in (4.4). Imitating the arguments in Proposition 3.3, we derive∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx

≤
∫

�
ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+
∫∫

C
ψα(u(x, t))eξ(x,t)[η(x)div(a(x, t)∇η(x)) + 2|∇η(x)|2a(x, t)] dx dt

+
∫∫

C
ψα(u(x, t))eξ(x,t)η2(x)[∂tξ + 3

2
|∇ξ(x, t)|2a(x, t)

+ div(a(x, t)∇ξ(x, t))] dx dt , (4.14)

which is exactly (3.23). Our next goal is to ensure that the following two conditions

∂tξ + 3

2
a |∇ξ |2 + div(a ∇ξ) ≤ 0 in [� \ ∂�ε] × (τ − δ, τ ) ; (D1)

η div(a ∇η) + 2|∇η|2a ≤ C1d
γ−2 in � × (τ − δ, τ ) (D2)

are simultaneously satisfied. �

Claim 3: Condition (D1) holds.

Proof of for Claim 3. By the same arguments used to obtain (3.27), we deduce that

∂tξ + 3
2a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

= 1
2(s−α1t)2

{−α1ζ
2(x) + 3β2a(x, t) ζ 2(x) d2β−2(x) |∇d(x)|2

+ 2(s − α1t)β
[
ζ(x)∇a(x, t) · ∇d(x)dβ−1(x) − βa(x, t)d2β−2(x)|∇d(x)|2

+ (β − 1)a(x, t)ζ(x)dβ−2(x)|∇d(x)|2 + a(x, t)ζ(x)dβ−1(x)
d(x)
]}

.

(4.15)

Also here, because of (3.3) and the non-negativity of a(x, t), we have

−βa(x, t)d2β−2(x)|∇d(x)|2 ≤ 0 .

We now analyze all the other terms on the right-hand-side singularly, using the fact
that in � \ �ε we have d(x) ≤ ε. We start with the second term:

3β2a(x, t)ζ 2(x) d2β−2(x) |∇d(x)|2 ≤ 6β2c0ε
2βd2β−2+γ (x) ≤ 6β2c0ε

4β+γ−2 ,

where we used (1.3), (3.1) and that ζ 2 ≤ 2ε2β , together with the hypothesis that
γ + 2β − 2 ≥ 0 for the last inequality.
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For the third term, we use again (1.3) and (3.1) to obtain

ζ(x)∇a(x, t) · ∇d(x)dβ−1(x) ≤ εβc1d
γ−1(x)|∇d(x)|dβ−1(x) ≤ c1ε

β+γ−2 ,

where the last inequality holds if γ + β − 2 ≥ 0.
Again, if γ + β − 2 ≥ 0, the fourth term is estimated easily as

(β − 1)a(x, t)ζ(x)dβ−2(x)|∇d(x)|2 ≤ c0(β − 1)εβdβ+γ−2(x) ≤ (β − 1)c0ε
2β+γ−2 .

Finally, we estimate the last term as

a(x, t)ζ(x)dβ−1(x)
d(x) ≤ c0ε
βdβ+γ−1(x)k0 ≤ c0ε

2β+γ−1

if γ + β − 1 ≥ 0. Collecting these estimates in the range 1 ≤ γ ≤ 2 we choose
β ≥ −γ + 2, so that all the previous conditions are satisfied. In particular, we set

β =
{

−γ + 2 for 1 ≤ γ < 2

b for γ = 2

where b is any positive number.
Finally, choose

s = α1(τ + δ) . (4.16)

so, for all t ∈ (τ − δ, τ ),

α1δ < s − α1t < 2α1δ . (4.17)

We now write the set � \ �ε as a union of two disjoint sets

� \ �ε = (� \ �ε−ε2) ∪ (�ε−ε2 \ �ε) ,

and analyze the validity of condition (D1) separately in the two domains. First, let us
consider the set � \ �ε−ε2 = {x ∈ � : d(x) ≤ ε − ε2} and look at the case γ ∈ [1, 2)
and γ = 2 separately.

• For the case γ ∈ [1, 2) and β = −γ + 2, we have

∂tξ + 3
2a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

≤ 1
2(s−α1t)2

{−α1ζ
2(x) + 6c0β2ε−3γ+6

+ 2(s − α1t)(−γ + 2)
[
c1 + c0(−γ + 1)ε−γ+2 + c0ε−γ+3

]}
.
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For the first term on the right-hand-side, we claim the existence of a σ̄ ∈ (0, 1]
such that

−ζ 2 ≤ −σ̄ 2ε2β

and this is equivalent to the condition

σ̄ ≤ 1 −
(
d

ε

)β

. (4.18)

We set ε2 = �ε with � ∈ (0, 1
2 ) and choose σ̄ = 1 − (1 − �)β so that (4.18) is

trivially satisfied. Thus,

∂tξ + 3
2a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

≤ 1
2(s−α1t)2

{−α1σ̄
2ε−2γ+4 + 6c0(−γ + 2)2ε−3γ+6

+2(s − α1t)(−γ + 2)
[
c1 + c0(−γ + 1)ε−γ+2 + c0ε−γ+3

]}
,

and, using that 0 < s − α1t < 2α1δ, we obtain

∂tξ + 3
2a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

≤ 1
2(s−α1t)2

{−α1σ̄
2ε−2γ+4 + 6c0(−γ + 2)2ε−3γ+6

+4α1δ(−γ + 2)
[
c1 + c0(−γ + 1)ε−γ+2 + c0ε−γ+3

]}
≤ ε−2γ+4

2(s−α1t)2
{−α1σ̄

2 + 6c0(−γ + 2)2ε−γ+2

+4α1δ(−γ + 2)ε2γ−4[c1 + c0ε−γ+3]} ,

where in the last inequality we used (−γ + 1)ε−γ+2 ≤ 0 since γ ≥ 1.
Comparing the three terms (the first with the third and then the first with the

second), we obtain

∂tξ + 3

2
a(x, t)|∇ξ |2 + div(a(x, t)∇ξ) ≤ ε−3γ+6

2(s − α1t)2

{
−α1

4
σ̄ 2

}
< 0

if the following two conditions are satisfied:

0 < δ ≤ σ̄ 2ε−2γ+4

16(−γ + 2)[c1 + c0ε−γ+3] and α1 ≥ 24c0(−γ + 2)2ε−γ+2

σ̄ 2 .

• For the case γ = 2 and β = b > 0, we have
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∂tξ + 3
2a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

≤ 1
2(s−α1t)2

{−α1ζ
2(x) + 6c0b2ε

+ 2(s − α1t)β
[
c1 + (b − 1)+ + c0ε

]}
.

Proceeding as above, we deduce easily

∂tξ + 3

2
a(x, t)|∇ξ |2 + div(a(x, t)∇ξ) ≤ 1

2(s − α1t)2

{
−α1

4
σ̄ 2

}
< 0

if the following two conditions are satisfied:

0 < δ ≤ σ̄ 2

16b[c1 + (b − 1)+ + c0ε] and α1 ≥ 24c0b2

σ̄ 2 .

Now, consider the region

�ε−ε1 \ �ε = {x ∈ � | ε − ε1 < d(x) ≤ ε}
For any x ∈ �ε−ε1 \ �ε, t ∈ (τ − δ, τ ), thanks to (4.15), (3.2), (3.3), (4.17) we have:

∂tξ + 3

2
a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

= 1

2(s − α1t)2

{
ζ 2(−α1 + 3c0β

2)

+ 2(s − α1t)β
[
ζ

(
c1d

γ+β−2(x) + c0k0d
γ+β−1(x)

)
− d2β−2+γ (x)β c̃0ν0

]}
.

Observe that for any x ∈ �ε−ε1 \ �ε,

ζ(x) ≤ ε−β − (ε − ε1)
−β = ε−β [1 − (1 − �)β ], (4.19)

while

d(x) < ε . (4.20)

In view of (3.18), (3.27), (4.19), (4.20), we obtain

∂tξ + 3

2
a(x, t)|∇ξ |2 + div(a(x, t)∇ξ)

≤ βε2β−2+γ

s − α1t

{[(1 − �)β − 1](c1 + c0k0) − βν0c̃0
}

< 0,

thanks to (4.1). �
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Claim 4: Condition (D2) holds.

Proof of Claim 4. Using the properties of η in (3.14) and (3.15) and the assumption
on a(x, t) in (1.3), we have

ηdiv(a(x, t)∇η) + 2|∇η|2a(x, t) ≤ c1d
γ−1 A1

ε
+ c0d

γ A2

ε2
+ 2

A2
1

ε2
c0d

γ

≤ C1d
γ−2

in �
ε
2 \ �

2
3 ε.

Finally, inserting the estimates in (D1) and (D2) in (4.14) we obtain

∫
�

ε
2

ψα(u(x, τ ))η2(x)eξ(x,τ ) dx = ∫
�

ε
2

ψα(u(x, τ − δ))η2(x)eξ(x,τ−δ) dx

+C1
∫ τ

τ−δ

∫
�

ε
2 \� 2

3 ε
ψα(u(x, t))eξ(x,t)dγ−2(x) dx dt ,

which coincides with (4.12). �

Proof of Proposition 4.1. Using the same arguments as in Proposition 3.1 and the
Lebesgue’s dominated convergence theorem, from (4.12), we have

∫
�ε |u(x, τ )|eξ(x,τ ) dx ≤ ∫

�
ε
2

|u(x, τ − δ)|eξ(x,τ−δ) dx

+C1
∫ τ

τ−δ

∫
�

ε
2 \� 2

3 ε
|u(x, t)|eξ(x,t)dγ−2(x) dx dt .

(4.21)

By the definition of (4.3), ξ = 0 in �ε for any t ∈ [τ − δ, τ ]. Choose s as in (4.16).
So, ξ(x, t) < 0 for all x ∈ � \ �ε and t ∈ [τ − δ, τ ], so eξ(x,t) ≤ 1.

Therefore, from (4.21) we obtain

∫
�ε |u(x, τ )| dx ≤ ∫

�
ε
2

|u(x, τ − δ)| dx

+C1
∫∫

�
ε
2 \� 2

3 ε×(τ−δ,τ )
|u(x, t)|dγ−2(x) dx dt .

Finally, we use the assumption (4.5) to get (4.6).
�

Proof of Lemma 4.2. Take any ε > 0, τ ∈ (0, T ). Define

εk := ε

k
1

μ1

for all k ∈ N .

Note that

+∞∑
k=1

ε
μ1
k = +∞ , (4.22)
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while, since μ2 > μ1,

+∞∑
k=1

1

k
μ2
μ1

=: S < +∞ . (4.23)

Furthermore, let {δk}k∈N ⊂ [0,∞) and {τk}k∈N ⊂ [0, τ ] be two sequences with
{τk} defined inductively as follows

τ1 := τ,

τk+1 := τk − δk for every k ∈ N, k ≥ 2 ,

and

0 ≤ δk ≤ min{τk,C1ε
μ1
k } for all k ∈ N . (4.24)

Observe that

τ − τk+1 = δ1 + δ2 + . . . + δk for every k ∈ N . (4.25)

We can choose {τk} so that there exists k0 ∈ N with τk0+1 = 0. In fact, in view of
(4.25), τk0+1 = 0 if and only if

τ = δ0 + δ1 + . . . + δk0 . (4.26)

Due to (4.22), we can select the sequence {δk}, and thus {τk}, so that (4.24) and (4.26)
hold, for some k0 ∈ N.
From (4.9), it follows that for every k = 1 . . . k0∫

�εk
u(x, τk) dx ≤

∫
�εk+1

u(x, τk+1)dx + C2ε
μ2
k . (4.27)

Since τk0+1 = 0, thanks to (3.11) we get∫
�

εk0+1
u(x, τk0+1) dx =

∫
�

εk0+1
u(x, 0) dx = 0 . (4.28)

By iterating (4.27) up to k = k0, in view of (4.28), we get

∫
�ε

u(x, τ )dx ≤
∫

�
εk0+1

u(x, τk0+1) + C2

k0∑
k=1

ε
μ2
k = C2

k0∑
k=1

ε
μ2
k . (4.29)

Thanks to (4.23),

k0∑
k=1

ε
μ2
k =

k0∑
k=1

εμ2

k
μ2
μ1

≤ εμ2

+∞∑
k=1

1

k
μ2
μ1

= Sεμ2 −→
ε→0

0 .

Hence, by letting ε → 0+ in (4.29), we obtain∫
�

u(x, τ )dx = 0 .

Since τ ∈ (0, T ) was arbitrary, the conclusion follows. �
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