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Abstract—Quantum circuit synthesis translates a classical
Boolean function into an equivalent quantum circuit. The syn-
thesis is solvable by playing the reversible pebble game on the
logic network of the function. However, optimal solutions are im-
practical for large networks, affecting the number of qubits and
gates of the final quantum circuit. In this work, we improve the
solution of the reversible pebble game by leveraging dominance
relations on the directed acyclic graph of the classical function,
reducing qubits needed for syntheses. The proposed algorithm
exposes a tunable tradeoff between the available number of
qubits and the circuit size expressed as T-count and T-depth.
We experimentally validate our methodology on cryptographic
and arithmetic benchmarks, reporting reductions between 37%
and 83% in qubit number with respect to Bennet syntheses
algorithms and complete the majority of our syntheses in less
than a second, improving on the current running times of state
of the art approaches.

Index Terms—Logic and circuit design, reversible synthesis,
quantum circuits optimization, reversible pebble game

I. INTRODUCTION

Quantum computing has emerged as a key technology due
to its promise to address otherwise computationally intractable
problems [1]. Despite significant efforts to increase the number
of qubits available for computation, it remains a critical bottle-
neck for running quantum algorithms on problems of practical
size. Among the known quantum algorithms [2], many of
them, require the implementation of some combinatorial logic,
such as complex arithmetic functions, which can demand a
large amount of resources. Therefore, synthesizing quantum
algorithms using the minimum number of qubits is paramount
for enhancing the applicability of quantum computers. In this
work, we focus on the problem of automatically synthesizing a
multi-level classical logic function into a reversible quantum
circuit with a constrained number of qubits. We start from
the gate-level view of the logic network in input, which can
be easily derived from existing EDA tools, and translate it
into an equivalent XOR-AND graph (XAG) format. In his
seminal work [3], Charles H. Bennett demonstrated that any
irreversible computation can be made reversible and thus syn-
thesized in a quantum circuit, with a constant space overhead,
and that the syntheses process is as complex as solving the re-
versible pebble game. The game consists in placing “pebbles”
or “markers” on the rooted directed acyclic graph (DAG) of
the function to synthesize. In [4], the authors proved that any
n-vertex planar DAG, with maximum number k of incoming

arcs in any node, can be pebbled using O(
√
n+k log2(n))

pebbles. However, finding the optimal strategy to solve the
reversible pebble game on a DAG, i.e., pebbling the root node
with the minimum number of pebbles, it is shown to be a
challenging and computationally demanding task belonging to
the PSPACE-Complete computational class [5].
Contribution. In this work, we introduce a novel strategy to
solve the reversible pebble game with a minimal number of
pebbles, when applied to the synthesis of a quantum circuit
realizing a given classic combinatorial function (specified via a
XOR-AND DAG). Our proposal employs the notion of graph-
dominators from compiler construction theory, to effectively
improve on reversible pebble game solvers currently used in
the synthesis of quantum circuits. We test the proposed strat-
egy on a set of cryptographic and arithmetic circuits reporting
an average saving of 62.6% in qubit number compared to
Bennet strategy and comparable results with respect to state-
of-the-art pebble game solvers reducing the computational
running time.
Related Work. A survey on reversible circuit synthesis is
given in [6], [7]. In [8], a SAT solver is used to address
the reversible pebble game, it results in a qubit saving of the
52.77% compared to Bennet strategy which is lower compared
to ours. In [9], the authors design a heuristic algorithm to
tackle the pebble game, in conjunction with pre- and post-
processing strategies, which may benefit from an improved
pebble game solver. Finally, [10] employs XOR-AND-Inverter
graphs and SAT-based heuristics to reduce qubits during the
syntheses, though their results are limited to four benchmarks
due to the solver’s long execution times (up to 1.5 hours per
run).

II. BACKGROUND

A. Quantum Circuit Synthesis

Every single-output Boolean function f :{0, 1}n→{0, 1},
defined on n≥1 binary variables x0, x1, . . . , xn, can be repre-
sented as a multiple rooted DAG, where each node is labeled
with a logic operation, and arcs denote data dependencies.
In this work, we express our function using the functionally
complete AND-XOR set, as the equivalent quantum gates for
AND and XOR are easily implementable with the universal
Clifford+T quantum gate set [11]. Using the AND-XOR rep-
resentation, each node of the DAG has at most two incoming
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Fig. 1: XOR-AND graph of a combinatorial function, with
the cone of influence Co2 highlighted in red (a). CCNOT
with minimal T-depth decomposition and CNOT circuits, w/o
and w/ a qubit ancilla (b). Bennet’s algorithm result for the
syntheses of Co2 (c).

arcs from immediate predecessors, and a bounded number of
outgoing arcs to immediate successors. Each single rooted
subDAG represents a cone of influence Coi of the inputs and
intermediate values that contribute to the output at the root
node oi. For instance, in the graph shown in Fig. 1a, the cone
of influence for o2 is Co2={o2, x3, x4, i2, i3, i4}. The output is
computed by following the operations in the DAG, respecting
the data dependencies. Quantum circuit synthesis consists in
finding a unitary operator Uf , acting on the Hilbert space
of n + 1 qubits, that realizes a reversible version of f [11].
Using quantum circuit formalism, each qubit is represented
as a horizontal wire, associated with a quantum state |xi⟩,
where xi is a binary variable storing a classical bit and
computation is performed by applying quantum gates, which
modify qubits state. To implement our circuits, we use the
universal Clifford+T set, which includes the H, S, CNOT, and
T gates. With this set the reversible AND (∧) and XOR (⊕)
gates are realized with then CCNOT and CNOT quantum gates
respectively. The circuit representations of the CNOT with
and without ancillae qubits and CCNOT with its Clifford+T
decomposition are shown in Fig.1b. Since the T-gate is the
most costly to implement on quantum hardware [12], the
number of T-gates (T-count) and the longest sequential number
of T-gates (T-depth) are common figures of merit for quantum
algorithms.

B. Pebble Game

The pebble game, is a mathematical abstraction to model
resource management for both reversible and irreversible com-
putations. The game involves placing “pebbles” on the nodes
of a rooted DAG that represent the operations that must be
executed to obtain the chosen output value, following the
dependencies represented by the arcs. Each pebble represents a
computational resource, such as a memory cell or a qubit, and
pebbling a node denotes reserving a resource to store the result
computed by that node. Conversely, unpebbling a node frees
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Fig. 2: Post-dominator tree of Co1 (left) and Co2 (right), both
in the XOR-AND graph shown in Fig.1a.

the associated resources. In the reversible version of the game,
introduced by Bennett [3], a node can be pebbled or unpebbled
if all of its immediate predecessors are pebbled, ensuring that
the computation can be reversed at any time. Given a DAG
of a classical function, several pebbling strategies can be used
to synthesize the equivalent quantum circuit. One example is
Bennett’s algorithm [3], which pebbles the nodes in a breadth-
first, bottom-up manner. Starting from the inputs, the quantum
circuit is built by placing the quantum gates corresponding to
each visited node on the assigned qubit. Once the root node
is pebbled, the uncomputation of intermediates nodes is done
using a breadth-first, top-down strategy. It results in a circuit
with the minimum number of gates and depth, however there
is no limitation on the number of qubits. In Fig.1c it is shown
the quantum circuit for computing Co2 following Bennett’s
algorithm. The maximum number of pebbles on the graph
at any time is called the pebble number, which reflects the
maximum resource consumption of the process. Finding the
minimum pebble number required to compute a target node
on a DAG has been shown to be PSPACE-Complete [5]. As a
result, no polynomial-time strategies exist to solve it optimally,
except on particular graph topology such as trees [13], and
so efficient heuristic based algorithms to minimize the pebble
number are of considerable interest.

C. Graph Dominators

The concept of graph dominators, initially used in compiler
construction, have found several applications in classical EDA,
such as in logic synthesis and verification, or in network delay
optimization [14]. In this work, we focus on the notion of post-
dominator, given a DAG G=(N,A, i, o), with i and o being
the initial and output node respectively, a vertex v is defined
as a post-dominator for a vertex w if every path from w to
o necessarily passes through v. The vertex v is said to be
immediate post-dominator, if it is the closest vertex among
all post-dominators of w. Every node, except the root, has a
unique immediate post-dominator. A set of immediate post-
dominators forms a directed tree T (G), a.k.a. post-dominator
tree, rooted at one of the output nodes of the DAG. Figure 2
shows the post-dominator trees of Co1 and Co2 . Intuitively, an
immediate post-dominator identifies the point where multiple
execution paths converge in the original graph. For example, in
Fig.2, node x5 is an immediate post-dominator for the nodes
i0, i1, x0, x1, also denoted as dom(x5)={i0, i1, x0, x1}. An



algorithm to compute the dominance relations in linear time
as a function N was first introduced in [15].

III. DOMINATOR BASED SYNTHESIS

Algorithm 1: Dominator-based Pebble Game
// Compute the Pebble Game Strategy

1 Procedure PEBBLEGAME
Input: C(N,A): single-output DAG, i.e., a cone of influence described by a set of nodes N and a

set of arcs A
maxR: maximum number of recursive steps
nq : maximum number of qubits

Output: S: ordered sequence of ⟨n′, a′⟩, where n′ is a node and a′ is an action, denoted in
turn by a Boolean value as 1=“pebble”, 0=“un-pebble”

Data: stack: last-in-first-out array, each cell stores a copy of (S, L ), where L is the set of
actions already attempted for the currently evaluated S

2 o ← outnode(C)
3 Q ← leaves(C) // currently pebbled nodes
4 S, L ← ∅, ∅
5 push(stack, (S, L )
6 while ( top(stack) ̸= ⊥ ) do
7 if ( o ∈ Q ) then return S
8 M ← GETSCOREDACTIONS(nq, Q, S, o)

9 if ( |stack| = maxR ∨ M = ∅ ∨ M = L) then
10 pop(stack)

11 S′, L′ ← pop(stack)

12 S, L ← S′, L′ ∪ {last(S)}
13 else

14 ⟨n, a, s⟩ $← {⟨n, a, s⟩ | ∀ ⟨n′, a′, s′⟩ ∈ M, s ≥ s′ }
15 if ( a = 1 ) then Q ← Q ∪ {n}
16 else Q ← Q \ {n}
17 S, L ← S.⟨n, a, s⟩, ∅
18 push(stack, (S, L ))
19 return ∅ // the algorithm fails

// Select the best move to execute
20 Procedure GETSCOREDACTIONS

Input: nq : maximum number of qubits
Q: set of nodes linked to assigned qubits
S: ordered sequence of ⟨n′, a′⟩, where n′ is a node and a′ is an action, denoted in turn
by a Boolean value as 1=“pebble”, 0=“un-pebble”.
o: output node

Output: M : list of scored actions, where each of them is denoted as ⟨n, a, s⟩, n: node; a:
action, denoted by a Boolean value as 1=“pebble”, 0=“un-pebble”; s: score

21 M ← ∅
22 foreach n ∈ Q do
23 if ( pred(n) ⊆ Q ) then
24 s ← SCOREACTION(⟨n, 0⟩, Q, S, o)
25 M ← M ∪ { ⟨n, 0, s⟩ }
26 if ( |Q| < nq ) then
27 foreach v ∈ succ(n) do
28 if ( pred(v) ⊆ Q ) then
29 s ← SCOREACTION(⟨v, 1⟩, Q, S, o)
30 M ← M ∪ { ⟨v, 1, s⟩ }
31 return M // ∅ if no possible actions

// Score the move
32 Procedure SCOREACTION

Input: ⟨n, a⟩: node and action to be scored;
Q: set of nodes linked to assigned qubits;
S: ordered sequence of ⟨n′, a′⟩, where n′ is a node and a′ is an action, denoted in turn
by a Boolean value as 1=“pebble”, 0=“un-pebble”.
o: output node

Output: s: score

33 s ← −|{⟨n′, a′⟩ ∈ S s.t. n′ = n}|
34 if (a = 1) then
35 s ← s − dist(n, o)
36 if (dom(n) ̸= ∅ ) then s ← s + |dom(n)|
37 else
38 s ← s + dist(n, o)
39 if ( ∃ v ∈ Q |n ∈ dom(v) ) then s ← s + 1
40 return s

The proposed strategy takes as input a combinatorial func-
tion (expressed as a XAG) and the number of available qubits
nq. As preprocessing step, the input graph is decomposed
into smaller single-output cones of influence, Ci(Ni, Ai) (see
Sec.II), by executing a depth-first visit of the main graph
in O(nout(Ni+Ai)), where nout is the number of original
outputs nodes. We first solve the pebble game for the cone
with the maximum number of nodes, which accelerates so-
lutions for the others due to fewer constraints from non-
overlapping paths in other subDAGs [9]. Cone ordering is
done in O(nout+(max(Ni)−min(Ni))). Dominance rela-
tions are computed using the Lengauer-Tarjan algorithm [16],
with an asymptotic complexity of O(Ai α(Ni, Ai)), where
α(Ni, Ai)≈1 for all Ni, Ai values of practical interest [17].
The sets of predecessors, successors, or post-dominated nodes
for a node n, are denoted as pred(n), succ(n), and dom(n).

Algorithm 1 reports the pseudocode of our reversible pebble
game solver. We use a backtracking approach where maxR

is the maximum number of recursive steps in our pebbling
strategy S. S is an ordered sequence of pairs ⟨n, a⟩, where
n is a node identifier, and a is the action on the node (a=1
for pebbling; a=0 for unpebbling). At line 3, we initialize a
set Q to track of pebbled nodes, assuming its maximum size
to be less or equal to nq. A list L stores moves explored in
the current solver state given by S,L, saved in a lifo stack.
Before backtracking to a different strategy, we first exhaust
all possible valid moves not yet in L. In the main loop lines
6-18 we check if the output node o is pebbled. If it is, we
return the current strategy (line 7); otherwise, we compute the
list of admissible moves M (line 8). Next, we verify if M is
non-empty and not fully explored (i.e., M ̸=L). If so, and the
maximum stack depth hasn’t been reached, we select the move
with the highest score (or randomly among the top-scoring
moves) (line 14), apply its effects to Q (lines 15-16), and
append the selected action to the strategy S. If any condition
in line 17 is met, we pop the top of the stack, add the chosen
action to the list of attempted moves L′, and prepare to push
the pair composed of the strategy S′ (which is S without its
last move) and L′ back onto the stack. Finally, the pair S,L
is pushed onto the stack before the next iteration (line 18).
If the stack is emptied through a sequence of iterations, no
admissible solution is found within the given qubit number
and stack height constraints, causing the algorithm to terminate
(line 19) and return an empty strategy.

The main procedure relies on GETSCOREDACTIONS to
compute the list of admissible moves M , given the state of
the exploration (i.e., S, Q, o, nq). Each element of Q can be
pebbled or unpebbled if the results of pred(n) are currently
allocated in some qubits (lines 23–30). GETSCOREDACTIONS
has a worst-case time complexity of O(|Q| × |succ(n)|). The
SCOREACTION procedure computes a score s for a move
⟨n, a⟩. Since the main procedure selects the move with the
maximum (positive) score at each iteration, we design our
scoring mechanism to penalize excessive backtracking. To this
end, s is initialized to a negative penalty equal to the number
of times a node appears in the current strategy S (line 33).
For pebbling moves (lines 35–36), we direct the computation
towards the output node, applying an additional penalty based
on the normalized distance dist(n, o). The heuristic prioritizes
pebbling nodes with a large dominated set dom(n); such
nodes, once computed, enable the unpebbling of all nodes
they dominate. For unpebbling moves, we reverse the distance
penalty and add a positive factor if the node to unpebble has a
pebbled dominator (lines 38–39). SCOREACTION is computed
in O(1).

The overall complexity of PEBBLEGAME is dominated by
the cost of GETSCOREDACTIONS. The total complexity is
O(maxR × nq × |N |). Although finding a solution within the
maximum exploration depth is not guaranteed, the parameter
maxR can be tuned based on the characteristics of the graph.
The construction of the quantum circuit involves inserting, for
every pebbling/unpebbling move, the corresponding quantum



TABLE I: Synthesis results obtained with the minimum num-
ber of qubits. It is also reported the number of qubits required
by Bennett [3] strategy, denoted as Q B. The column −∆%
shows the percentage reduction in qubits achieved by our
strategy compared to the latter.

Benchmark I O ∧ ⊕ Q T-c T-d Q B −∆% t(s)

Figure 1a 5 2 6 5 10 36 13 16 37.5 0.00
mx6x31 12 6 27 30 20 208 50 69 71.0 0.04
mx7x41 14 7 40 44 23 300 61 98 76.5 0.06
mx7x31 14 7 40 45 23 364 75 99 76.8 0.09
x8x4x31 16 8 48 69 37 864 134 133 72.1 0.22
bm-10 20 19 52 102 51 928 132 174 70.7 0.52
bm-30 60 59 351 687 211 9872 780 1098 80.7 29.50
bm-40 80 79 624 1079 287 16572 751 1783 83.9 85.91
32-lt 64 1 150 0 139 900 77 214 35.0 0.47
32-lteq 64 1 150 0 137 908 86 214 36.0 0.47
32-add 64 33 127 61 127 10656 939 252 49.6 6.06
64-add 128 65 265 115 255 40608 2384 508 49.8 57.72
FP-eq 128 64 315 65 258 2000 220 508 49.2 3.93

gate for the node: CCNOT for ∧ and CNOT for ⊕, correctly
applied to the reserved qubit. Once the output is pebbled,
intermediate results are uncomputed by reversing the strategy.
If each cone admits a valid strategy, we merge them into a
unique quantum circuit.

IV. EXPERIMENTAL EVALUATION

We synthesize circuits for multiplication in GF (26),
GF (27), and GF (28), using the irreducible polynomials
x6+x3+1 (mx6x31), x7+x4+1 (mx7x41), and x7+x3+1
(mx7x31) for GF (26) and GF (27), and the AES polynomial
x8+x4+x3+x+1 (x8x4x31) for GF (28). Additional bench-
marks include binary polynomial multiplications (bm-n), 32
and 64-bit integer adders (32-add, 64-add), 32-bit integer
comparators (32-lt, 32-lteq), and IEEE floating-point
comparisons (FP-eq). Quantum circuits are synthesized using
the CCNOT gate, with the decomposition shown in Fig.1b
which has a T-count and T-depth of 4 and 2 respectively,
for CNOT we use the implementation with one ancilla. The
CCNOT gate uncomputation is realized with the measurement-
based approach shown in [18]. We implemented our code
in Python 3.12 and tested it on a laptop with 8 GiB of
RAM and an Intel Core i5-8259U CPU clocked at 2.3 GHz
running macOS 14.4. For our benchmarking, we set the initial
number of qubits equal to the number of nodes in the largest
cone of the circuit, setting the maximum exploration depth to
maxR=105. We report in Tab.I the synthesis results achieved
with the lowest number of qubits, additionally, we report the
qubits utilized by Bennett’s strategy Qubit B, along with the
savings in percentage difference of our approach −∆%. On
average, we observe a 62.6% qubit saving for the circuits under
consideration. In comparison to other works, the authors of [9]
solve the pebble game on a DAG with multi-input quantum
gates, which are decomposed in a second pass. This makes
the impact on qubit usage unclear. In [8], the authors report
an average qubit reduction of 52.77% compared to Bennett,
which is lower than our result. While their approach uses a

SAT solver with a complexity O(|N |2), we achieve similar
complexity by tuning the parameters maxR and nq. The work
in [10] addresses the pebble game on XAG by reducing the
multiplicative complexity (AND gates) to minimize T-gate
usage. Although their qubit usage is similar to ours, their
method requires approximately 1.5 hours per circuit, while
our approach processes most benchmarks in sub-seconds and
completes all within two minutes (see Tab.I). Our higher
T-count arises from processing each cone separately, which
optimizes execution speed but increases T-count and T-depth
due to redundant computation and uncomputation of shared
nodes across cones.

V. CONCLUDING REMARKS

In this work we address the problem of automatically
synthesizing combinatorial Boolean functions as reversible
quantum circuits, under the constraint of a limited number
of available qubits. We introduce a novel dominator-based
heuristic for efficiently solving the reversible pebble game.
Our algorithm achieves an average reduction of 62.6% in qubit
usage compared to Bennett’s strategy, while obtaining com-
parable results with existing methods and improving running
time by over two orders of magnitude.
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