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Abstract: This paper focuses on recent advancements in the development of 4D printed drug delivery
systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local
treatments with major compliance and long-lasting performance, they would represent a promising
innovation for the current treatment of bladder pathologies. Being based on a shape-memory
pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can
be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside
the target organ, following exposure to biological fluids at body temperature, while releasing their
content. The biocompatibility of prototypes made of PVAs of different molecular weight, either
uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro
toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover,
the feasibility of a novel configuration was preliminarily investigated, targeting the development of
prototypes provided with inner reservoirs to be filled with different drug-containing formulations.
Samples entailing two cavities, filled during the printing process, were successfully fabricated and
showed, in simulated urine at body temperature, potential for controlled release, while maintaining
the ability to recover about 70% of their original shape within 3 min.

Keywords: 3D printing; cytotoxicity; controlled release; fused deposition modeling; local delivery;
retentive systems; shape memory polymers

1. Introduction

Over the years, various strategies have been investigated to improve the local treat-
ment of bladder diseases, having as the ultimate target the achievement and maintenance
of effective levels of drugs at the target site [1–5]. In this respect, avoiding repeated catheter-
izations, which are responsible for a dramatic decrease in patient compliance towards
intravesical administration, and improving adherence as well as penetration of the ad-
ministered drug into the urothelium still represent the main challenges to be overcome.
Liquid formulations able to undergo an increase in their viscosity once at the target site,
through the formation of gels at body temperature, were recently proven able to ensure
long-lasting residence in the bladder coupled with controlled release [6–8]. Drug delivery
systems (DDSs) either capable of floating into the urine or of avoiding early elimination
from the target site during physiological urination thanks to a swift expansion were also
proposed [9–11] They were generally designed to be administered via catheter and, once
exhausted, to be removed in the same way or to be spontaneously eliminated following
solubilization, erosion and rupture phenomena. In more detail, the so-called expandable
systems could be retained in the desired organ either following an increase in their size
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or a controlled variation in the relevant geometry. Notably, the resulting DDSs should not
damage the bladder walls or interfere with their physiological contraction.

Expandable retentive systems can be classified based on the process driving the
relevant increase in spatial encumbrance, which may rely on the removal of an external
constraint of a mechanical nature (e.g., exit of the system from the catheter) or on the shape
memory effect (SME) provided by so-called smart materials [12,13]. The latter mechanism
consists in the recovery of an original shape obtained under manufacturing, triggered by
an external stimulus of a non-mechanical nature, such as a change in temperature, moisture
or light [14–17]. By way of example, the first category entails the LiRIS system, for the
controlled release of lidocaine, and a S-shaped device, manufactured via stereolithography
3D printing and proposed by Xu and colleagues [9,18–21].

As far as applications relying on SME are concerned, various systems have been
described over years, especially for biomedical applications (e.g., scaffolds, hemostatic
plugs and devices for cellular surgery) [22–25]. In this respect, the advent of 3D printing has
further prompted research into shape memory polymers (SMPs) [26–29]. Indeed, during
this process, the final item is manufactured, layer-by-layer, reproducing a shape previously
designed through computer-aided design software [30,31]. As a consequence, besides
offering high flexibility and geometric freedom, it would allow the modification, in real-
time, of the product in order to fulfill specific needs, all features that would be particularly
interesting for R&D and customization purposes. Among the 3D printing techniques
available, fused deposition modeling (FDM) has emerged as one of the most studied
in pharmaceutics, probably in view of the limited cost of the equipment and its ease of
use [32–34]. During FDM, polymer wires, generally known as filaments and manufactured
by hot melt extrusion (HME), are fed into the printhead. Here, the filament is heated and
extruded through a nozzle on a build plate. The reciprocating movement of the printhead
and of the build plate ensures the deposition of the molten material layer-by-layer until the
product is completed from the bottom up.

Focusing on the use of SMPs for the development of organ-retentive systems by FDM,
the programmed shape-shifting of a pharmaceutical-grade poly(vinyl alcohol) (PVA) was re-
cently leveraged to develop drug-embedded matrix-type DDSs for prolonged maintenance
and release into hollow muscular organs, including the bladder and the stomach [35,36].
Although water-induced SME of PVA was already described in the material-related lit-
erature, especially upon chemical modification of the polymer or relevant blending with
other compounds, in this case the shape changes were demonstrated to mainly depend on
contact with body temperature [37–41]. In more detail, samples having different original
shapes, endowed with such spatial encumbrance as to avoid rapid emptying through
the sphincters of the selected organs, were produced by HME and FDM. In this respect,
modifications occurring on a 3D material configuration over time, triggered by an external
stimulus of a non-mechanical nature and resulting in macroscopic shape changes, has
been associated with the concept of 4D printing, in which time represented the fourth
dimension [15,42–44]. Indeed, the resulting PVA-based prototypes turned out able to take
on, after production, a temporary collapsed shape and to quickly recover the original
one in the desired environment. As the temporary shape would ease administration, it
has been conceived according to the particular features of the route selected for reaching
the target organ. The possibility of using film-coating to improve mechanical resistance
and timescale of release provided by the matrix-like specimens, without impairing their
working mechanism, was also demonstrated [45,46].

In the present work, a further step in the development of expandable bladder-retentive
DDSs based on the smart behavior of PVA was undertaken. This was done to enable
novel therapeutic approaches towards urothelial bladder cancer and many other disabling
pathological conditions affecting this organ (e.g., interstitial cystitis, infections), thus re-
ducing dropouts and providing patients with more personalized, effective and tolerated
treatments. In more detail, a preliminary biocompatibility study involving the evalua-
tion of cytotoxicity on bladder cancer and human monocytic cell lines was carried out on
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the materials employed so far for the manufacturing of uncoated and coated PVA-based
prototypes. Moreover, taking advantage of the rapid prototyping capabilities of FDM,
the feasibility of an improved design for an intravesical delivery system was considered,
entailing 4D printed specimens provided with internal cavities. This evolution would make
it possible to overcome the limitations related to the thermal stability of drugs embedded
in the PVA-based material, which needs to be processed at temperatures ≥180 ◦C, while
enhancing the versatility of the DDS proposed in terms of formulations to be conveyed and
achievable release performance. Indeed, the reservoir units could not only be employed for
the administration of separate doses of active molecules that are mutually incompatible,
but also filled with new formulations, for instance, graphene-based nanoparticles already
under development [47].

2. Materials and Methods
2.1. Materials

Prototype manufacturing and physio-technological characterization: PVA05 and PVA48
(Gohsenol™ EG 05P and 48P, Mitsubishi Chemical, Tokio, Japan); glycerol (Pharmagel, Milan,
Italy; GLY); methacrylic acid copolymers, Eudragit® RS 100 and RL 100 (Evonik, Essen,
Germany); ready-to-use dispersion of methacrylic acid copolymers, Eudragit® NE (Evonik,
Essen, Germany); triethyl citrate (TEC; Sigma Aldrich, Darmstadt, Germany); ethanol (Sigma
Aldrich, Darmstadt, Germany); acetaminophen for direct compression (Rhodia, Milan, Italy;
AAP); PLA filament (TreeDfilaments, Milan, Italy); simulated urine fluids (NaCl 13.75 g/L;
MgSO4 1.69 g/L; MgCl2 0.83 g/L; CaCl2 0.67 g/L, KCl 0.38 g/L and urea 17.40 g/L; pH 7.50).

In vitro studies: L-Glutamine, penicillin-streptomycin, Trypsin-EDTA, RPMI1940,
Dulbecco’s phosphate saline buffer (PBS) w/o calcium and magnesium and fetal bovine
serum (FBS) (Euroclone, Milan, Italy). Minimum Essential Medium Eagle (EMEM), 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), dimethylsulfoxide (DMSO),
Phorbol 12-myristate 13-acetate (PMA), lipopolysaccharides (LPS) from Escherichia coli,
paraformaldehyde (PFA), TritonX-100, Fluoroshield mounting medium, Epirubicin and
Mitomycin C (Sigma-Aldrich, Darmstadt, Germany). Trypan blue stain, iScript gDNA
clear cDNA synthesis kit, PureZOL RNA isolation reagent, 4′,6-diamidine-2′-phenylindole
dihydrochloride (DAPI) nuclear staining dye and Universal SYBR Green supermix (Bio-
Rad, Hercules, CA, USA). Ki67 antibody (Abcam, Cambridge, UK). Goat serum (GS), goat
anti-rabbit IgG (H + L) cross-adsorbed secondary antibody Alexa Fluor 647, MitoTracker™
Orange and Fluorescein phalloidin (ThermoFisher, Milan, Italy).

2.2. Methods
2.2.1. Preparation of PVA-Based Formulations

PVA05 and PVA48 powders were kept in an oven at 40 ◦C for 24 h prior to use.
Relevant formulations containing 15% by weight of GLY (calculated on the dry polymer)
were prepared by kneading. Either PVA05 or PVA48 was placed in a mortar, and the liquid
plasticizer was added dropwise under continuous mixing. The resulting mixtures were
oven-dried at 40 ◦C for 8 h. Afterwards, aggregates were ground by means of a blade mill,
and the <250 µm powder fraction was recovered.

2.2.2. HME

HME was carried out taking advantage of a twin-screw extruder (Haake™ MiniLab
II, Thermo Scientific, Milwaukee, WI, USA) equipped with counter-rotating screws and
a custom-made aluminum circular die (ø = 1.80 mm), as previously described [48]. The
extrusion temperature and screw speed were set at 180 ◦C and at 100 rpm, respectively,
while the maximum torque registered was approximately 150 N·cm. Extruded rods were
cut into 50 mm-long samples that were employed, as such or after coating, for in vitro
toxicity studies. PVA05-based rods were also employed to feed the FDM printer. In this
case, they were manually pulled and forced to pass through a caliper set at 1.80 mm and
connected to the extruder. This was done to counteract possible swelling phenomena and



Pharmaceutics 2023, 15, 757 4 of 21

to calibrate the rod diameter, thus enhancing the yield of filaments suitable for 3D printing
(i.e., 1.75 ± 0.05 mm). After cooling, the filament diameter was verified every 5 cm in
length, and portions out of specifications were discarded. Indeed, filaments with a diameter
greater than 1.80 mm were unsuitable for printing.

2.2.3. 3D Printing

I-shaped prototypes were fabricated using a Kloner3D 240® Twin printer (Kloner3D,
Florence, Italy) using computer-aided design (CAD) files purposely developed, as described
in the Results and Discussion section. These were designed using Autodesk® Autocad®

2016 software version 14.0 (Autodesk Inc., San Francisco, CA, USA), saved in .stl format and
imported to the 3D printer software (Simplify 3D, Milan, Italy). The printing parameters
set for printing the PVA-based formulation are reported in Table 1.

Table 1. Operating parameters set for the PVA-based formulation.

Parameter Value

Nozzle diameter 0.5 mm

Printing temperature 200 ◦C

Build plate temperature 50 ◦C

Extrusion flow 100% of the maximum flow

Printing speed 23 mm/s

Retraction length 2.00 mm

Retraction speed 20 mm/s

Layer height 0.10 mm

Infill 100% or 50%,

Infill geometry Rectilinear

Number of top/bottom 2

Number of perimeters 1

The printing process was interrupted at a specific height (i.e., 25th layer) to enable
manual filling of the system cavities with a previously weighted (≈20 mg each cavity;
analytical balance, Gibertini, Milan, Italy) amount of free-flowing AAP powder, selected as
the drug tracer.

Using a commercial PLA filament as received, FDM was also employed to fabricate
(i) a trapdoor tool to improve manual filling of the system cavities during the relevant
fabrication and (ii) templates intended to make programming of samples in the desired
temporary U shape easier and more reproducible (Figure 1). The printing parameters set
for printing the PLA filament are reported in Table 2.
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Figure 1. Digital models with dimensional details of (a) the trapdoor tool and (b) the template used
for programming the temporary shape, together with photographs of the actual printed objects.

Table 2. Operating parameters set for the PLA filament.

Parameter Value

Nozzle diameter 0.5 mm

Printing temperature 200 ◦C

Build plate temperature 40 ◦C

Extrusion flow 100% of the maximum flow

Printing speed 65 mm/s

Retraction length 2.40 mm

Retraction speed 45 mm/s

Layer height 0.20 mm

Infill 75%

Infill geometry Honeycomb

Number of top/bottom 3

Number of perimeters 2
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2.2.4. Film-Coating

Extruded rods and printed I-shaped prototypes were coated with (i) an ethanolic
solution (final concentration 30% weight/volume) containing Eudragit® RS and RL (mixed
in a 3:1 ratio by weight) and TEC as the plasticizer (15% by weight on the dry polymeric
blend) and (ii) a 30% ready-to-use aqueous suspension of Eudragit® NE. While the former
samples were referred as Eudragit® RS/RL-coated, the latter were identified as Eudragit®

NE-coated. For simplicity reasons, within the Figures, they were identified as either RS/RL
or NE.

Film-coating was performed by means of an in-house assembled machinery previously
described, but adapting the procedure [45]. In this respect: (i) samples were inserted in
the mandrels of the equipment for half of their length; (ii) the orientation of the spray gun
was modified to assume an angle of 120◦ with respect to the horizontal plane, cutting the
cylindrical samples on their major axis, thus enabling coating of the lateral surface and
of the free end of the sample at the same time; (iii) the coating process was carried out
for overall 4 min, being paused after 2 min to allow extraction of the specimen from the
mandrel and its 180◦ rotation. This way, the prototypes were flipped, thus enabling coating
of the half of the sample that was previously fixed in the mandrel. At the end of the process,
coated specimens were maintained for 2 h in a ventilated oven set at 40 ◦C.

2.2.5. Physio-Technological Characterization

All the specimens were characterized for weight (n = 6; analytical balance, Gibertini,
Milan, Italy). The thickness of the coating layer was also evaluated (n = 6). For this purpose,
each sample was cut in six positions, i.e., one to four along its length and five and six on
the ends (Figure 2). Notably, the positions in which the specimens were cut were selected
to avoid the areas of the printed samples intended for drug filling. Photographs of each
cross-section were acquired using a digital microscope (Digital Microscope AM-413T, Dino-
Lite, Milan, Italy; resolution = 1.3 megapixel − 1280 × 1024) and processed by a dedicated
software (ImageJ, Milan, Italy) to measure the thickness of the coating at six different points
(L1–L6) along the circumference of each cut surface.

The SME was evaluated as previously described [35] using a purposely developed
shape memory cycle, first involving the programming of the temporary shape and then
recovery of the original one. The programming phase was carried out by heating the
I-shaped samples up to 55 ◦C (i.e., at least 20 ◦C above their Tg) (oven, VWR, Milan, Italy).
By means of the purposely printed template (see Figure 1b), which was also stored at
55 ◦C, the specimens were programmed to take on the temporary U shape. This step was
manually performed. In more detail, the prototype was bent and positioned at the bottom
part of the template (i.e., that resembling a U-shaped cavity), which was then closed by
the relevant cover. Finally, the entire assembly maintaining the sample in the desired
temporary configuration was cooled at −20◦ C for at least 8 h (Freezer, VWR, Milan, Italy).
Recovery of the original shape was triggered upon immersion of the deformed specimens
(n = 3) into 100 mL of unstirred simulated urine fluid, prepared as reported by Sherif and
colleagues [49]. The latter was kept at 37 ± 0.5 ◦C, using a thermoregulated bath. The
recovery process was monitored using a digital camera positioned at 10 cm above the
samples (GoPro Hero Session, San Mateo, CA, USA). The photographs collected were
processed by means of a specific software (ImageJ, Milan, Italy) to measure the variation
of the angle between the two arms (α) of the samples so as to quantify the recovery of the
original shape over time. Indeed, a recovery index (RI) versus time curves were then built,
with RI calculated as follows:

RI =
α− αp

π − αp
(1)

where αp is the angle obtained in the programming phase (angles in rad).
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Figure 2. Outline of the positions in which each I-shaped sample was cut, together with photographs
of the resulting cross-sections (types a and b). By way of example, details relevant to the thickness
measurements (L1–L6) of the coating layer taken at position 3 and 6 are highlighted.

Uncoated and coated 3D printed prototypes, the inner cavities of which were filled
with AAP during relevant fabrication, were tested for release by means of a USP38 dis-
solution apparatus 2 (10 rpm, 37 ± 0.5 ◦C; Distek, North Brunswick Township, NJ, USA;
n = 3). A total of 400 mL of the abovementioned simulated urine fluids were used as the
dissolution medium. The apparatus was connected to a pump (IPC Ismatec™, Thermo
Fisher Scientific, Milan, Italy) for automatic collection of fluid samples and to a spectropho-
tometer for relevant assay (Lambda 35, Perkin Elmer, Milan, Italy; 1 mm cuvette path
length, 248 nm λmax). In this respect, AAP was selected as the drug tracer in light of its
safety of use and based on the availability of a routine spectroscopic assay already devel-
oped. The amount of drug released at each time point was determined from a dedicated
calibration curve (y = 6.43072x, R2 = 0.9999; from 0.0125 to 0.40 mg/mL). Besides selecting
the suitable range of drug concentrations to be tested during the initial set-up phase, the
presence of excipients (i.e., PVA and GLY) in the dissolution medium was demonstrated
not to affect the spectroscopic AAP determination. By linear interpolation of the release
data immediately before and after the time point of interest, times to 10% and 90% release
(i.e., t10% and t90%, respectively) were calculated. While t10% defined the lag phase, t90%
was used to calculate the pulse time (i.e., t90%–t10%).

2.2.6. In vitro Toxicity Studies
Cell Culture

In vitro studies were performed using the human bladder cancer HT1376 and the
human monocytic THP-1 cell lines. HT1376 cells were obtained by American Type Culture
Collection (ATCC), while THP-1 cells were kindly provided by Dr. Irma Saulle, Department
of Pathophysiology and Transplantation, Università degli Studi di Milano. HT1376 cells
were routinely cultured as a monolayer in Minimum Essential Medium Eagle supplemented
with 10% heat inactivated FBS, 1% penicillin/streptomycin and 1% L-Glutamine. THP-1
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cells were maintained in suspension in RPMI1640 supplemented with 1% L-glutamine,
1% streptomycin/penicillin and 20% FBS. For differentiation into macrophages, cells were
seeded in 6-well plates at a confluence of 6 × 105 cells/well and treated for 24 h incubation
with 50 ng/mL phorbol 12-myristate 13-acetate (PMA) [50,51]. For polarization toward
a proinflammatory phenotype, macrophages were incubated with 250 ng/mL of LPS for
48 h.

Cell Viability, Proliferation and Death

Viability of HT1376 cells was assessed by MTT assay [52–54]. Cells were seeded
into 6-well plates (2 × 105 cells per well) and incubated for 24 h. Then, the specimens
(4 mm in length) were placed in direct contact with the cells or onto a transwell insert
(0.4 µm pores) into the culture medium. Cells cultured in the medium without adding
the specimens were taken as the negative control, while cells cultured in the presence of a
solution (1 µM) of the chemotherapeutic drug epirubicin were used as the positive control.
After 24–48 h of incubation, a MTT dye working solution was added to each well (final
concentration 0.5 mg/mL). After 3 h of incubation, the supernatant was removed and
replaced by 100 µL/well of DMSO. The absorbance (A) values of each well were recorded
at 560 nm on an automatic plate reader (Glomax, Multi Detection System microplate
reader, Promega, Milan, Italy). The relative viability versus the untreated control cells was
calculated as follows:

Relative viability (%) =
Aexposed group

Acontrol
× 100 (2)

Cell proliferation and death were assessed by immunofluorescence [55–57]. Cells treated
as previously described were incubated with staining solution containing MitoTracker®

fluorescent probe for 45 min in the dark, to analyze cell death. Then, cells were fixed in 4% PFA
in 0.1 M PBS (pH 7.4) for 15 min, permeabilized with 0.1% TritonX-100 in PBS for 5 min and
incubated in blocking buffer containing 5% normal goat serum and 0.1% TritonX-100 in PBS
for 1 h. The primary antibody against Ki67, a proliferation marker, and Alexa Fluor conjugated
secondary antibody were diluted in blocking buffer and incubated at 4 ◦C overnight and for
2 h at room temperature, respectively. Fluorescein phalloidin was used for cytoskeleton (actin)
detection and incubated together with the secondary antibody. Nuclei were counterstained
with DAPI Nuclear Staining Dye for 10 min at room temperature. Confocal imaging was
performed with a Leica TCS SP8 AOBS microscope system with oil immersion objective
40X/1.30 (Leica, Heerbrugg, Switzerland). Image acquisitions were controlled by the Leica
LAS AF software (Leica, Heerbrugg, Switzerland). Image analysis was performed with the
ImageJ software (ImageJ, Milan, Italy).

Cytokine Analysis by Real-Time PCR

The analysis of the mRNA expression of cytokines was performed as previously
described [54,57]. Total RNA from THP-1 derived macrophages was extracted with the
PureZol RNA Isolation Reagent (Bio-Rad, Hercules, CA, USA), according to the man-
ufacturer’s protocol. First-strand cDNA was generated from 1 µg of total RNA using
iScript Reverse Transcription Supermix (Bio-Rad, Hercules, CA, USA). A set of primer pairs
(Eurofins Genomics, Milan, Italy) was designed to hybridize to unique regions of the appro-
priate gene sequence (Table 3). PCR was performed using SsoAdvanced Universal SYBR
Green Supermix and the CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA). The fold change was determined relative to the control after normalizing to
GAPDH and Rpl32 (internal standard) through the use of the formula 2−∆∆CT.
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Table 3. List of primers designed for PCR.

Gene Primer Sequences

IL-6 F: 5′-GGCACTGGCAGAAAACAACC-3′

R: 5′-GCAAGTCTCCTCATTGAATCC-3′

IL-1β
F: 5′-TTCGACACATGGGATAACGAGG-3′

R: 5′-TTTTTGCTGTGAGTCCCGGAG-3′

TNF F: 5′-CCCAGGGACCTCTCTCTAATCA-3′

R: 5′-GCTACAGGCTTGTCACTCGG-3′

GAPDH F: 5′-TGAGGTCAATGAAGGGGTC-3′

R: 5′-GTGAAGGTCGGAGTCAACG 3′

RPL32 R: 5′-TTAAGCGTAACTGGCGGAAAC-3′

F: 5′-AAACATTGTGAGCGATCTCGG-3′

Statistical Analysis

Statistical significance of raw data between the groups was evaluated using one-way
ANOVA followed by Tukey post-tests (multiple comparisons). The analysis was carried
out by using GraphPad Prism software package (GraphPad Software, San Diego, CA, USA).
The results are expressed as means ± SEM of the indicated n values. p values ≤ 0.05 were
considered statistically significant.

3. Results and Discussion
3.1. Cytotoxic Evaluation of PVA-Based Samples

In order to preliminarily evaluate the safety impact of the expandable bladder-retentive
DDS under development, which involves pharmacopeial-grade materials of established
safety by oral intake but processed through new hot melt technologies, a cytotoxicity
study was carried out according to a predefined protocol. HME prototypes, based on two
different PVA grades, uncoated and coated with Eudragit® RS/RL and NE formulations,
were considered. The analyses were carried out in a cancer cell line of bladder origin (i.e.,
HT1376). The reason for the choice of this type of cells was twofold: (i) they are a good
model of bladder carcinoma, widely used to evaluate efficacy of anticancer treatments [58];
(ii) they still maintain epithelial features (Figure 3a) and therefore may be considered a
valuable model for any epithelium [59]. According to ISO 10993-Biological evaluation
of medical devices Part 5: Tests for in vitro cytotoxicity, the prototypes were incubated
either in direct physical contact with cultured cells or placed onto a transwell insert into the
culture medium to allow an indirect contact with the cells. Cytotoxicity was determined by
quantifying cell viability (i.e., the measure of the proportion of live, healthy cells within
a population), cell proliferation (i.e., the assessment of dividing cells) and cell death (i.e.,
the evaluation of cells committed to death or already dead) [53]. First, cell viability upon
contact with uncoated PVA prototypes was investigated by the MTT assay, using the
chemotherapeutic drug epirubicin (1 µM) as positive control of toxicity [53,60]. After 24 h
of incubation, none of the PVA-based specimens in either culturing condition (i.e., direct
and indirect contact) caused a significant reduction of cell viability when compared with
untreated control cells (Figure 3b). As expected, epirubicin showed a high toxicity by
decreasing cell viability by nearly 50%. Then, cell proliferation was assessed by staining
the cells for the proliferation marker Ki67, a nuclear nonhistone protein that is expressed in
proliferating cells and absent in quiescent cells [61]. The percentage of Ki67+ cells in the
specimen treated samples was similar to that of the control, therefore confirming no effect
on cell proliferation (Figure 3c,d).
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Figure 3. Cytotoxicity evaluation of uncoated PVA05- and PV48-based specimens. (a) Brightfield
microscopy image of HT1376 cells (100 µm scale bar); (b) cell viability of HT1376 cells exposed to
different samples for 24 h (n = 6). Untreated cells (CTRL) and epiribicin-treated cells were used as
negative and positive controls, respectively (*** p < 0.0001 versus CTRL); (c) confocal microscope
images of HT1376 cells stained with phalloidin to detect actin (green), Ki67 (white), Mitotracker
Orange (red) and DAPI (blue) (20 µm scale bar); (d) upper panel: graph of the % of Ki67+ cells
over total cells counted by DAPI staining; bottom panel: graph of the mean fluorescent intensity of
Mitotracker Orange (n = 3).

A reliable and sensitive indicator of cell stress and apoptosis (e.g., programmed cell
death) is the dissipation of the mitochondrial membrane potential. For this purpose,
MitoTracker® Orange fluorescent and potentiometric dye, which accumulates in mitochon-
dria within living cells but not in dying cells, was employed. No differences in the mean
fluorescence intensity were observed among the samples analyzed. Moreover, no signs of
apoptosis, e.g., cell and nucleus shrinkage, or condensed chromatin were highlighted [62]
(Figure 3c). Taken together, these results indicated that the specimens were non-toxic to
the cells, which is consistent with previous data on the good biocompatibility of PVA
composites that enforced its use for different biomedical applications [63].

The same experimental protocol was then applied to prototypes coated with both
Eudragit® RS/RL and Eudragit® NE formulations, which were maintained in both direct
and indirect contact with the cells for 24 and 48 h (Figures 4 and 5). Because no differences
between PVA05 and PVA48 coated specimens were highlighted, only data relevant to the
lower molecular grade polymer are reported in the following Figures. As for the uncoated
specimens, no signs of toxicity, potentially caused by the presence of the prototypes,
was found either after 24 or 48 h of incubation. Cells were metabolically active and
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healthy (Figures 4a and 5a) and maintained their ability to proliferate, and no evidence of
apoptosis was observed (Figures 4b,c and 5b,c). This was almost expected, as Eudragits®

polymers are generally regarded as inactive, nontoxic and nonirritant materials [64]. Of
note, this is the first report of the safety of the combination of PVA/Eudragit® in a model
of bladder epithelial cells. Recently, PVA-based hydrogel beads coated with Eudragit® and
orally administered have been tested in vivo, demonstrating the biocompatibility of the
combination of such materials [65].
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Figure 4. Cytotoxicity evaluation of Eudragit® RS/RL- and Eudragit® NE-coated specimens at 24 h
of incubation. (a) Cell viability of HT1376 cells exposed to different samples for 24 h (n = 6). Untreated
cells (CTRL) were used as negative control; (b) confocal microscope images of HT1376 cells stained
with phalloidin to detect actin (green), Ki67 (white), Mitotracker Orange (red) and DAPI (blue) (20 µm
scale bar); (c) upper panel: graph of the % of Ki67+ cells over total cells counted by DAPI staining;
bottom panel: graph of the mean fluorescent intensity of Mitotracker Orange (n = 3).
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Figure 5. Cytotoxicity evaluation of Eudragit® RS/RL- and Eudragit® NE-coated specimens at 48 h
of incubation. (a) Cell viability of HT1376 cells exposed to different samples for 48 h (n = 6). Untreated
cells (CTRL) were used as negative; (b) confocal microscope images of HT1376 cells stained with
phalloidin to detect actin (green), Ki67 (white), Mitotracker Orange (red) and DAPI (blue) (20 µm
scale bar); (c) upper panel: graph of the % of Ki67+ cells over total cells counted by DAPI staining;
bottom panel: graph of the mean fluorescent intensity of Mitotracker Orange (n = 3).

Finally, the inflammatory potential of uncoated and coated PVA-based specimens was
investigated analyzing the expression of proinflammatory cytokines (IL1beta, IL6 and TNF
alpha) by monocyte-derived THP-1 macrophages [66]. Macrophages treated with LPS,
capable of inducing polarization toward an inflammatory phenotype and stimulating the
expression of proinflammatory cytokines, were used as positive control (Figure 6). None
of the devices tested was able to modify cytokine expression compared to the untreated
control, suggesting that PVA-based specimens with or without coating did not affect the
macrophage inflammatory response.
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Figure 6. Proinflammatory cytokine expression in THP-1-derived macrophages exposed to uncoated
PVA05- and PV48-based specimens and to Eudragit® RS/RL- and Eudragit® NE-coated ones. THP-1
cells differentiated into macrophage by the incubation with PMA for 24 h were exposed to the
different samples for 48 h. Untreated macrophages (CTRL) and LPS treated macrophages were used
as negative and positive controls, respectively. IL1 beta, IL6 and TNF alpha expression was analyzed
by RT-PCR. Values are expressed as mean ± SEM (n ≥ 3) normalized versus CTRL (*** p < 0.001
versus CTRL).

Similar findings were obtained by Omata and collaborators demonstrating that PVA-
based coated particles were biocompatible and nontoxic and did not induce cytokine
production by macrophages [67]. On the contrary, Strehl and co-investigators noticed
an increase in the production of several cytokines, comparable to an acute inflammatory
process, in human macrophages stimulated with PVA-coated nanoparticles [68]. This
discrepancy might be explained by the differences in phagocytosis observed for the two
types of particles, the former not being internalized as opposed to the latter. Phagocytosis
is indeed a critical factor in macrophage activation [69,70].

3.2. New Configuration of the PVA-Based DDS

A second objective of the work was to demonstrate the feasibility of a different configu-
ration for the PVA-based DDS under development, entailing internal cavities for drug filling
and still exhibiting the SME ensuring bladder retention. To this end, samples characterized
by a rather simple I shape were selected on account of the expected ease of fabrication
and programming. Indeed, they were already demonstrated to be suitable screening tools
for evaluating geometric and formulation changes (e.g., application of coatings) during
development of PVA-based matrix-like prototypes. Moreover, the effectiveness of their
shape recovery performance turned out independent of the original/temporary shapes
considered [35,36,46].

As a first attempt, an I-shaped item characterized by the presence of a single inter-
nal cavity that would occupy most of its length was conceived for FDM manufacturing
(Figure 7a). While the printing of samples starting from PVA05-based filaments was suc-
cessful, during the programming of the temporary U shape and recovery of the original
I shape, they showed a tendency to collapse and break at the curvature. Such a behavior
was independent of the wall thickness (up to 1.5 mm) considered for the samples and was
associated with the limited amount of polymeric material over which mechanical stresses
could be released during U bending and subsequent opening of the arms of the specimens.
For this reason, a new design was proposed, entailing a solid central polymeric portion sep-
arating two independent cavities, also named as compartments (Figure 7b). The presence
of two separated cavities could also improve the versatility of the delivery system, offering
more filling options. Inner compartments were designed with inward-facing ends conical in
shape to increase the volume of the full central portion. The pseudo-circular section (5 mm
in diameter) and the rounded external edges the system was provided with were intended
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to allow easy positioning of the latter in a catheter considered of medium size in clinical
practice (i.e., external diameter greater than 16 Ch). The cross-section of the prototypes was
flattened in correspondence with the portion resting on the printing plate, thus leading to a
contact surface of approximately 3 mm in width. This detail improved the adherence of
the first layers during the FDM process, limiting the chances of relevant detachment and
reducing the number of printing failures. Moreover, to ensure loading of drug-containing
formulations into the system cavities within a single process, printing was interrupted at
the 25th layer. In this respect, the first trials were carried out having the operator fill each
compartment by volume and then restarting the FDM process. However, with the aim of
improving the consistency obtained with the volume-dependent filling, a trapdoor tool
was designed and printed (see Figure 1a). It allowed for the accurate weighting of the
powder and the easy transfer of the latter into the system cavities. Indeed, the trapdoor
consisted in a chamber equipped with a removable base: in the closed configuration, the
trapdoor could be placed on an analytical balance and filled at will from its top opening.
When positioned on top of the prototype under fabrication, the base of the chamber could
be manually removed, enabling the previously weighted powder to freely flow into the
cavities, still maintaining an overall process time below 15 min.
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compartment I-shaped prototypes, together with photographs of the actual printed and filled samples.

Based on the two-compartment design, prototypes with 100% and 50% infill, i.e.,
in principle characterized by different porosity, were printed. These proved to be quite
reproducible in terms of the final weight of the device, and the variability of such parameters
was reduced through the use of the semi-manual loading procedure (i.e., relying on the
trapdoor tool). Based on these considerations, the weight variability observed was mainly
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attributed to the layer deposition mechanism typical of the 3D printing process (Table 4).
Moreover, in view of the experience already gained with drug-embedded matrix-like
DDSs, both 100 and 50% infill samples were coated with a low-permeable film based on
Eudragit® NE, which could foster changes in the release performance. Considering the
new configuration devised, the coating should have been layered over the entire external
surface of the I-shaped specimens, in order to avoid undesired differences in the system
surface exposed to aqueous fluids and thus of rate of dissolution/erosion of the polymeric
walls (i.e., reducing the risk of uncontrolled penetration of water and early opening of the
cavities). In this respect, a semi-automated coating procedure was preliminarily employed
using the lab-scale equipment already developed for I-shaped specimens. As expected,
based on the similar external dimensions and because the mass of the specimen would not
affect its ability to rotate during the coating process, weight gain and coating thickness
of all the samples turned out to be reproducible and independent of the infill percentage
(Table 5).

Table 4. Weight data relevant to uncoated I-shaped samples printed by setting different infill.

Weight, mg (CV)

Manually Filled Trapdoor-Filled

100% Infill 841.85 (9.52) 838.63 (5.02)

50% Infill 723.44 (10.11) 736.11 (5.61)

Table 5. Thickness and weight gain data relevant to coated I-shaped samples printed by setting
different infill.

Thickness, µm (CV) Overall Thickness,
µm (CV)

Weight Gain,
% (CV)1 2 3 4 5 6

100% Infill 56.43 (6.36) 55.37 (7.78) 55.75 (6.61) 51.70 (8.72) 53.27 (9.25) 55.98 (6.37) 54.75 (7.64) 6.73 (6.84)

50% Infill 54.71 (7.35) 58.03 (9.06) 52.30 (6.23) 57.05 (7.59) 54.85 (9.63) 54.54 (9.93) 55.24 (8.53) 6.22 (7.01)

When tested for shape recovery, both empty samples and those filled with the pow-
der tracer exhibited the desired behavior regardless of their design features (i.e., infill
percentage and presence of the coating) (Figure 8). In particular, neither alteration nor
collapse of the compartments occurred when programming the temporary shape or during
the recovery process (by way of example, see photographs in Figure 9). Moreover, when
dealing with coated samples, no visible damage to the external film was highlighted. After
only 3 min of contact with simulated urine at 37 ◦C, all prototypes were able to recover
≥70% of their original shape (Figure 8). The presence of the Eudragit® NE-based coating
seemed to slightly promote shape recovery by reducing the time required for its completion
and increasing the relevant efficiency (i.e., higher RIs achieved sooner). The latter result
was consistent with the data previously collected with matrix-like PVA-based prototypes
and was associated with the flexibility of such a film, acting as a sort of rubbery envelope
during shape recovery [46].
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Figure 9. Photographs of an I sample, printed with 100% infill and filled with the drug tracer, after
programming of the temporary U shape and during the recovery experiments.

As expected, based on the new configuration and composition of the system, uncoated
PVA-based prototypes pointed out a pulsatile release performance, characterized by a lag
phase prior to release (i.e., t10%) (Figure 10) [71–73]. The duration of the lag phase was
determined by the hydration, erosion and dissolution of the swellable/soluble PVA-based
walls surrounding the drug-filled compartments, at the end of which opening of the systems
occurred. Accordingly, the erosion/dissolution of the PVA walls was completed faster
when these were lighter (i.e., printed setting 50% infill), resulting in lower values for both
lag time and pulse time of the relevant prototypes with respect to the 100% infill samples.
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Dealing with coated samples for which interaction with aqueous fluids was mediated
by the presence of a poorly-permeable film, the lag time increased four- to six-fold. Indeed,
the hydration and swelling of PVA occurred more slowly with respect to the uncoated
samples. However, when a threshold value was reached, the volume expansion of the
hydrated polymer resulted in the formation of small openings in the coating layer along the
entire length of all samples. In this respect, the systems printed with 100% infill, i.e., denser
and with enhanced swelling capacity, were characterized by the shortest lag phase. On the
other hand, 50% infill prototypes exhibited a reduced breaking ability associated with PVA
expansion, which was responsible for a reduction in the number of openings in the coating
layer. The expansion was also shown to occur later, as highlighted by the greater t10%
value. As a consequence of the reduction in the rate of swelling and of erosion/dissolution
of the PVA walls, the aqueous fluid penetrating through the openings and the swollen
polymeric matrix inside the cavities might also dissolve the conveyed drug, thus promoting
its diffusion outward, even before the effective opening of the reservoir cavities. This
phenomenon might explain why the overall duration of release from the coated samples
turned out longer with respect to the uncoated ones.

4. Conclusions

The availability of organ-retentive DDSs conceived to remain and release their content
for a prolonged period of time into the bladder would be highly advantageous from the
patient perspective, as it might reduce the number of instillations and thus of catheteri-
zations the patient would undergo over time. While improving compliance, life-quality
and relevant expectancy, this approach might also limit healthcare and social expenses
by acting on administration-related costs, entailing, for instance, hospitalizations, con-
sumables, disposal operations, commitment of hospital personnel and management of
inflammations/secondary infections. In addition, retentive systems could widen the num-
ber of available treatments for bladder pathologies by implementing new therapeutic
approaches combining active ingredients and involving modified time and rate of release.
In this respect, the expandable intravesical DDS already proposed as a matrix-like struc-
ture for prolonged release of active molecules was here further improved to be equipped
with internal cavities for extemporaneous, independent and personalized filling. The
new configuration would also enable programmed release of specific drug quantities at
different times.
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By taking advantage of the PVA SME, this work confirmed the application potential of
4D printing in the development of DDSs intended for retention in hollow muscular organs,
especially towards more complex structures (e.g., multi-layer and hollow systems). Finally,
preliminary biocompatibility studies highlighted the safety of the materials used, which
was particularly promising in view of the next development steps.
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