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Abstract This paper studies the bifurcation case for

the planar phase space long-term density propagation

problem, and presents an improved multi-segment

continuum method for accurate and efficient long-term

density propagation, by introducing the multi-segment

method to the alpha shape triangulation-based linear

interpolation method. The density evolution equation is

formulated for the continuumdensity propagation under

the influence of the solar radiation pressure and Earth’s

oblateness using semi-analytical equations. For the

overall highly deformed and elongated density distri-

bution for the bifurcation case, the multi-segment

method is introduced to the alpha shape-based linear

interpolation method to get accurate interpolated den-

sity, by dividing the overall density distribution into

multiple segments and performing the linear interpola-

tion within the actual non-convex hull of the sample

distribution for each segment. Four segments are

divided for the overall density distribution considering

the Hamiltonian dynamic constraints on the solar angle

domain. The superiority of the improvedmulti-segment

alpha shape-based continuum method is demonstrated

for accurate and efficient density propagation for the

bifurcation case in the context of the high-altitude and

high area-to-mass ratio satellite long-term propagation.

Keywords Density evolution equation � Alpha
shape � Linear interpolation � Bifurcation � Multi-

segment method

1 Introduction

The long-term density propagation problem is studied

in many applications: the dynamic evolution of the

interplanetary dust [8, 9], nanosatellite constellations

[18], the global space debris population [19, 21],

swarms of high area-to-mass ratio spacecraft [1], the

asteroid post-encounter motion [27], small-debris-

object clouds [5, 15–17], and clouds of high altitude

and high area-to-mass ratio satellites [22–24, 26]. To

achieve accurate density propagation after long-term
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propagations, an accurate and efficient characterisa-

tion for the highly nonlinear density is required.

Monte Carlo (MC) is a traditional method for density

propagation. It provides reference density via a large

number of random samples, but at the cost of a high

computational load. To reduce the computational load,

many nonlinear methods are developed for density

propagation. In [10], the authors classify the methods

into two categories: parametric (where one evolves the

statistical moments) and nonparametric (where one

approximates or directly propagates the evolution

equation of the Probability Density Function (PDF)).

Representative nonparametric methods are Gaussian

Mixture Model (GMM)-based hybrid methods, such as

Gaussian Mixture Model-Unscented Transformation

(GMM-UT) [6], Density Evolution Equation (DEE, or

continuity equation) [18, 22, 24, 25]. The former

approximates the non-Gaussian PDF at any time using

the weighted sum of the first two statistical moments of

the Gaussians. The latter directly propagates the density

as a fluid with continuous properties, and can be solved

together with the propagation of the state space via the

method of characteristics [2, 10, 22]. Since all the

statistical moments can be derived from the PDF, with

the nonparametric methods, we get all the density

information at any time via the evolved PDF.

For the density propagation problem featuring the

highly deformedand elongated density distribution after

long-term propagations, to get accurate density in an

efficient way, many practical techniques are applied

within different method frameworks [4, 13, 23, 27]. For

example, for highly nonlinear problems, as shown by

[4, 27], the introduction of the domain splitting

improves the density accuracy of the Differential

Algebra (DA) method by subdividing the initial larger

density domain into smaller subdomains.When tackling

the long-term density propagation problem featuring

highly deformed and elongated density distribution

within the GMM framework, as shown by [23], hybrid

Gaussian Mixture splitting techniques combining both

the initial multidirectional splitting and adaptive split-

ting during the propagation, are necessary for the

accurate density propagation, by allowing the smaller

density domains for Gaussians both at the initial time

and during the density propagation. Overall, the main

idea of these practical techniques is to reduce the overall

larger density domain to multiple smaller density

domains for improved density accuracy after long-term

propagations.

The DEE method has been developed over the

years. Different from the MC method (where many

simulations are conducted for an equivalent large

number of random samples), we can get the density

evolution of the entire clouds of objects through a

finite number of simulations for a finite number of

random samples, featuring a much lower computa-

tional load. The accuracy of the DEE method mainly

depends on the dynamic nonlinearity, the performance

of the interpolation method, and the binning method.

In the work of [22], the DEE method and the Gaussian

mixture model are compared for the Medium Earth

Orbit (MEO) planar phase space long-term density

propagation problem in the context of high-altitude

and high area-to-mass ratio satellite long-term prop-

agation. It demonstrates the overall good performance

of the DEE method for accurate density propagation

within different phase space domains. However, when

the phase space is highly deformed and elongated, the

density accuracy of the case with fewer samples is

low. This is because, when the density distribution is

highly deformed and elongated, the actual density

distribution is not convex. The Delaunay Triangula-

tion-based Binning method adopted in [22] (defined as

DT-B1) performs worse because it interpolates the

density within the whole convex hull. In this case, the

core value and the overall distribution characteristic of

the joint density, and the peaks of the marginal density

in two phase space directions (eccentricity and solar

angle) are underestimated. To solve this problem

within the continuum method framework, in the work

of [24], the authors present an improved alpha shape-

based linear interpolation method and an improved

binning method (defined as AT-B2) for accurate and

efficient density propagation. Different from the

Delaunay triangulation-based linear interpolation

method (DT), the improved alpha shape triangula-

tion-based linear interpolation method (AT) is used to

obtain linearly interpolated density within the actual

non-convex hull enclosing all the samples. The

improved binning method (B2) increases the density

accuracy by considering the weight for each alpha

shape triangulation per bin area, and the variant

nonlinearity of the density within each alpha shape

triangulation. However, these previous works have

been limited to the non-bifurcation cases [22, 24], i.e.,

the study for the long-term density evolution is limited

within each sub-phase space domain. They do not

consider the cases when the phase space evolution
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passes through the bifurcation point. Since the

dynamic characteristics change quickly and greatly

near the bifurcation point, as we can infer in the

previous works, the higher density nonlinearity with

higher deformation and elongation will occur for the

bifurcation case after long-term propagations. Thus, it

is of greater interest and higher difficulty to understand

how the phase space and its associated density evolve

with time for the bifurcation case.

A major contribution of the current work is that a

Multi-Segment (MS) method is introduced to the AT

method to improve the accuracy for characterising the

highly deformed and elongated density distribution for

the bifurcation case. The MS method implemented in

the current paper is to first divide the overall highly

deformed and elongated density distribution into four

segments on the solar angle domain by considering the

Hamiltonian dynamic constraints. Then apply the

alpha shape-based linear interpolation within the

actual non-convex hull of the sample distribution for

each segment. In this case, we can achieve improved

interpolated density for the less deformed and elon-

gated density space for each segment, and thus further

improve the interpolation accuracy for the alpha

shape-based linear interpolation method. The B2

binning method is used for density calculation. In this

paper, we define the combination of the MS method,

the AT method and the B2 method as the multi-

segment alpha shape-based continuum method (called

MAT-B2). The combination of theMSmethod and the

AT method is defined as the multi-segment alpha

shape triangulation-based linear interpolation method

(called MAT). Using the previous works as a bench-

mark [22, 24], the MEO planar phase space case

subject to the semi-analytical coupled effects of the

solar radiation pressure and Earth’s oblateness is

given, for demonstrating the improved performance in

the density accuracy and the computational efficiency

for the MAT-B2 method, for the bifurcation case for

the long-term density propagation problem.

The paper is organised as follows. Section 2 gives

the problem formulation and analysis, including the

semi-analytical equation, the density evolution equa-

tion, the long-term density propagation problem with

bifurcation. Section 3 presents the MAT-B2 method,

together with the computation procedure for solving

the density propagation problem with the MAT-B2

method. In Section 4, the simulation setup is given,

including the definition of the initial conditions for the

MEO planar phase space case, and the definition of the

accuracy measure. Section 5 presents the density

propagation results for the test case, and gives some

discussion on the superiority of the MAT-B2 method

for accurate and efficient density propagation for the

bifurcation case for the highly deformed and elongated

density distribution. Section 6 gives some conclusions.

2 Problem formulation and analysis

In this paper, we will focus on studying the bifurcation

case for the planar phase space long-term density

propagation problem within the continuum method

framework, and improving the density accuracy for

the bifurcation case for the highly deformed and

elongated density distribution using the improved

MAT-B2 method. To study the phase space evolution

together with its associated density for the bifurcation

case, in this section, we first present the semi-analysed

dynamic equations for the MEO planar phase space

evolution under the influence of Solar Radiation

Pressure (SRP) and Earth’s oblateness (J2), and

formulate the associated density evolution equation.

Then, we give an insight into the bifurcation case for

the long-term density propagation problem.

2.1 Semi-analytical equation

The evolution equation of the dynamic system subject

to the semi-analysed coupled effect of the Earth’s

oblateness and the solar radiation pressure is [14]

_x tð Þ ¼

de

dt
d/
dt

2
64

3
75

¼
ns C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin/

� �

ns C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

e
cos/þ W

1� e2ð Þ2
� 1

 !
2
6664

3
7775

ð1Þ

where x = [e; /] (eccentricity; solar angle) is the state
vector to describe the planar equatorial orbit, ns is the

mean motion of the sun, and C and W represent the

dimensionless radiative and oblateness parameters,

respectively. It should be noted that the solar angle

123

A multi-segment alpha shape-based continuum method for long-term density propagation with… 3483



represents the angular distance between the pericentre

and the direction towards the sun [22].

For Eq. (1), it can be rewritten in the quasi-

canonical form as follows [11, 12],

de

dt
¼ ns �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

e

oH

o/

 !

d/
dt

¼ ns

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

e

oH

oe

 !

8>>>>><
>>>>>:

ð2Þ

whereH is the phase space Hamiltonian,H = (1-e2)1/

2 ? Cecos / ? (W/3)�(1-e2)-3/2. H(e, /) = con-

stant, which means for a phase space variable pair

(e, /) defined at time t, the phase space evolution is

along a constant Hamiltonian contour line.

To study the phase space structure, we can calculate

the stationary points for the Hamiltonian H by solving

for oH/oe = o H/o/ = 0. Summarised results for

stationary points constrained to the planar problem

are shown in [14], while solutions extended to non-

planar orbits can be found in [7].

Here we assume C = 0.15, W = 0.409, and

a = 2.5 RE, corresponding to the phase portrait of

type III in Fig. 1 in [22], where a is the semimajor

axis, RE is the equatorial radius of Earth, and a is

treated as constant as no eclipses are considered in

this paper. Figure 1 shows the phase portrait of

type III (including five stationary points Pi, i

2{1,2,���,5}), and the three sub-phase space domains

SubDi, i 2{1,2,3} in Fig. 1 in [22]. The horizontal line
marks the critical eccentricity ecri = 0.6 for Earth

reentry at the Earth surface. As we can see in Fig. 1, in

this phase portrait, the bifurcation is detected at the

stationary point P4. The Hamiltonian phase space is

divided into three sub-phase space domains [22]

departed by the contour lines passing through the

stationary points P1 and P4. As shown in Fig. 1b, the

three sub-domains reside between the Hamiltonian

contour lines HP5 and HP1, HP1 and HP4, HP4 and HP3,

respectively. When the phase space initial conditions

x0 = [e0,/ 0] are chosen within the sub-domain SubD1

or SubD2, i.e., H(e0,/ 0)\HP4, it is possible to reach

the critical eccentricity ecri = 0.6 for Earth reentry

after long-term propagations, while when they are

chosen within the sub-domain SubD3, i.e., H(e0,/

0)[HP4, it is impossible to reach the critical eccen-

tricity after long-term propagations. This means

dramatic orbital changes can be made under small

variations of initial data [14], and ultimately Earth

reentry may be achieved. The dramatic orbital changes

due to the stationary point P4 is called bifurcation. In

[22], they study the non-bifurcation case for the long-

term planar phase space density propagation problem;

when the phase space is highly deformed and

elongated, the density accuracy for the case with

fewer samples is low. Since the dynamic characteris-

tics change quickly and greatly near the bifurcation

point, and different nonlinearity is shown within

different sub-domains after long-term propagations

[22], it is of greater interest and higher difficulty, to

understand how the phase space and its associated

density evolve with time for the bifurcation case

within two different sub-domains, SubD3 and SubD2.

As we can infer in [22], compared with the non-

bifurcation case in [22], greater density nonlinearity

with higher deformation and elongation will occur for

Fig. 1 a Phase portrait of type III; b Divided sub-phase space domains (a = 2.5 RE, W = 0.409, C = 0.15, critical eccentricity

ecri = 0.6 for Earth reentry) [22]
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the bifurcation case after long-term propagations

subject to nonlinear dynamics within two different

sub-domains when passing through the bifurcation

point.

To give a preliminary insight into the long-term

phase space evolution problem with bifurcation,

Fig. 2 shows the initial sample distribution at time

t = 0 within the phase space portrait for the

bifurcation case, and the phase space evolution

results at times t = {0, 0.5, 1, 1.5, 2} years, with

the initial conditions in terms of the mean

m0 = [e0;/ 0] = [0.245,0.4495], the covariance matrix

P0 = diag{6.25E-4,0.0096}, and the sample number

Nsam = 1E5 of the initial Gaussian distribution. The

two gray half-closed loop arcs in Fig. 2b denote the

minimum (the lower one) and the maximum Hamil-

tonian contour line for the phase space random

samples. Note that here the initial conditions for the

Gaussian samples are specified to make sure of the

realisation of the long-term density propagation within

two sub-phase space domains that include the bifur-

cation point P4, i.e., SubD3 and SubD2 (see Fig. 2a).

As expected, we can see in Fig. 2 that for the

bifurcation case, the deformation of the phase space

distribution increases with time within two sub-

domains. At times t = {1.5, 2} years when passing

through the bifurcation point P4, the highly deformed

and elongated phase space distribution even extends

within the whole solar angle domain, exhibiting higher

nonlinearity. In this paper, we will focus on studying

the bifurcation case for the long-term density propa-

gation problem, and improving the density accuracy

for the bifurcation case for the highly deformed and

elongated density distribution using an improved

multi-segment alpha shape-based continuum method.

2.2 Density evolution equation

To study the density evolution in the phase space

within the continuum method framework, we need to

propagate density evolution equation together with the

state space dynamics (see Eq. (1)).

Assume that n is the density to be solved for the

nonlinear dynamics. Given m generic variables xi, i

2{1,���,m}, and assuming that the density is differen-

tiable for all xi, the density evolution equation is

written as follows [5, 8, 16, 18, 22]

on

ot
þ on

ox1
v1 þ � � � þ on

oxm
vm þ ov1

ox1
þ � � � þ ovm

oxm

� �
n

¼ _nþ � _n�

ð3Þ

where _nþ � _n� is the discontinuous acceleration terms

included for the dynamic system, such as the random

maneuver correction on the topic of satellite end-of-

life disposal, vi is the ith component of the continuous

acceleration terms, vi = dxi/dt (see Eq. (1)). In this

paper, no discontinuous acceleration terms are con-

sidered, i.e., _nþ � _n� = 0. By applying the method of

characteristics [2], the following equations are

obtained [16],

Fig. 2 a Phase portrait of type III and the initial sample

distribution at time t = 0 for the bifurcation case; b Long-term

phase space dynamic evolution at times t = {0, 0.5, 1, 1.5, 2}

years (a = 2.5 RE, W = 0.409, C = 0.15, Nsam = 1E5, critical

eccentricity ecri = 0.6 for Earth reentry)
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dt

du
¼ 1

dx1
du

¼ v1 x1; � � �; xmð Þ

..

.

dxm
du

¼ vm x1; � � �; xmð Þ

dn

du
¼ � ov1

ox1
þ � � � þ ovm

oxm

� �
n x1; � � �; xm; tð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ

where u is a parametrisation of the characteristic lines.

From Eq. (4), we can see that given the specific

formulation for the dynamic system (i.e., given the

actual expressions of vi), the time evolution of the

density n(x1, ���, xm, t) can be obtained together with

the state space variables xi.

For the case in examination, to get the density

together with the state space, the density evolution

equation for the associated dynamic system (see

Eq. (1)) is calculated as,

dn

dt
¼ � o

oe

de

dt

� �
þ o

o/
d/
dt

� �� �
n ¼ C � ns � sin/

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p n

ð5Þ

2.3 Long-term density propagation problem

with bifurcation

For the case in examination, to obtain the propagated

density (i.e., the non-Gaussian PDF, pt(x)) for the DEE

method at any time t, the following three steps are

required. First, generate initial random samples with a

predefined sample number Nsam subject to the initial

PDF pt0 xð Þ, and calculate the initial density weights

n(e,/, t0) for the samples at time t0. Thus, initial

samples in the 2D state space (e,/) and their associ-

ated density weights are obtained in the 3D extended

state space (e,/, n). Note that for the DEE method the

selection of the sample number Nsam is important,

because it influences the density accuracy and the

whole computation time. Second, integrate the density

evolution equation (see Eq. (5)) together with the state

space dynamics (see Eq. (1)) to obtain the propagated

samples and the associated density weights in the 3D

extended state space. Third, calculate the density by

processing the final samples and density weights in a

statistical way. In this paper, the linear interpolation

method is combined with the binning method to

calculate the density.

To give a preliminary insight into the long-term

density propagation problem with bifurcation, here we

refer to the work of [22], and test the performance of

the DT-B1 method compared with that of the MC

method. Note that the DT-B1 method is the Delaunay

triangulation-based binning method adopted in [22].

To complement the accuracy analysis for the DT-B1

method with respect to that of the MC method, a MC

simulation is performed. The number of MC samples

is set to be Nsam = 1E5 because it ensures the

convergence of the MC method and avoids the higher

computational load for a test with a larger sample

number. The same sample number Nsam = 1E5 as that

of the MC method is set for the DT-B1 method to

compare the accuracy of the DT-B1 method with the

MC method for the bifurcation case.

Figure 3 shows the joint density evolution for the

bifurcation case (corresponding to the phase space

evolution in Fig. 2b) at times t = {0, 0.5, 1, 1.5, 2}

years for the MC and DT-B1 method, where dt gives

the time interval between two consecutive snapshots,

dt = 0.5 yr. Figure 4 gives the marginal density

evolution for the bifurcation case at times t = {0,

0.5, 1, 1.5, 2} years for the MC and DT-B1 method.

From Figs. 3 and 4 for the MCmethod, we can see that

high nonlinearity is shown in the joint and marginal

density after long-term propagations when passing

through the bifurcation point P4, i.e., at times t = {1.5,

2} years. The higher nonlinearity is shown for the

marginal density of the eccentricity in two local

density peaks and the highly deformed distribution

characteristic than that for the marginal density of the

solar angle. As we can see in Fig. 3 and, for the DT-B1

method, for a large sample number case Nsam = 1E5 as

that of the MC method, it fails to capture the high

nonlinearity in the joint and marginal density for the

bifurcation case at times t = {1.5, 2} years. Note that

for the DT-B1 method, only the case result of a larger

sample number Nsam = 1E5 (i.e., DEE-1E5) is pre-

sented. We do not give the case result for a smaller

sample number, because only the worse density is got

at times t = {1.5, 2} years than that of the case Nsam

= 1E5. Similar to the non-bifurcation case in [22], the

DT-B1 method works fine in capturing the joint and

marginal density when the phase space is not highly

deformed and elongated at times t = {0, 0.5, 1} years.
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Overall, from Figs. 3 and 4, we can conclude that

for the bifurcation case when passing through the

bifurcation point P4, i.e., at times t = {1.5, 2} years,

the density accuracy for the DT-B1 method is low. It

fails to capture the high nonlinearity for the joint

density and the marginal density in two phase space

directions, including the core value for the joint

density, the overall distribution characteristics of the

joint and marginal density, and the density peaks for

the marginal density in two phase space directions.

This is because, when the density distribution is highly

deformed and elongated, the actual density distribu-

tion is not convex. The DT-B1method performs worse

because it interpolates the density within the whole

convex hull. The B1 method calculates the joint and

marginal density as the weighted mean of density

weights per bin area and per bin width, respectively. It

does not include the variant nonlinearity within each

Delaunay triangulation for density calculation. In this

paper, we will focus on improving the density

accuracy for the bifurcation case for the highly

deformed and elongated density distribution using an

improved multi-segment alpha shape-based contin-

uum method.

3 Improved multi-segment alpha shape-based

continuum method

To improve the density accuracy for the bifurcation

case for the highly deformed and elongated density

distribution, we present an improved method called

MAT-B2, which is combined by the MS method

(presented in this paper) and the AT-B2 method

(presented by [24]). In this section, we first introduce

the MAT method and the B2 binning method,

respectively. Then the whole procedure for solving

the bifurcation case for the planar phase space long-

term density propagation problem with the MAT-B2

method is presented.

3.1 The proposed MAT interpolation method

To improve the interpolation accuracy for the bifur-

cation case for the highly deformed and elongated

Fig. 3 Joint density evolution at times t = {0,0.5,1,1.5,2} years for the bifurcation case, MC versus DT-B1 (DEE-1E5)

Fig. 4 Marginal density evolution at times t = {0, 0.5, 1,1.5,2} years for the bifurcation case, MC versus DT-B1 (DEE-1E5)
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density distribution, this paper proposes the MAT

interpolation method, by introducing the MS method

to the AT interpolation method. Here we will present

the AT method, and the MS method, respectively, to

illustrate the MAT method.

3.1.1 AT interpolation method

For the AT method, the concept of alpha shape is

included to get accurate interpolated density within the

non-convex hull enclosing all the samples. Different

from the DT method, which is done within the whole

convex hull of the scattered samples, the AT method

helps adapt to the evolution of the shape of the state

space volume.

Here we present the computation procedure for

performing the linear interpolation using the alpha

shape triangulation. Assume a generic 2D problem in

two independent variables xi, i 2{1,2}, the Nsam

propagated samples and their associated density

weights at any time t in the vectors (x10, x20, n0(x10,

x20, t)), and the grid number Ngrid for each dimension

for performing the linear interpolation. To get the

alpha shape-triangulation-based interpolated density,

three steps are required. First, perform the Delaunay

triangulation-based interpolation for the specified

query points (x1, x2) [24, 25],

n x1; x2; tð Þ ¼
XV
i¼1

niBi x1; x2ð Þ ð6Þ

where n(x1, x2, t) is the Delaunay triangulation-based

linear interpolated density of the point (x1, x2), V is the

number of vertices of the simplex for the Delaunay

triangulation, ni is the value of the density for the ith

vertex, Bi(x1, x2) is the barycentric coordinates of the

ith vertex including the point (x1, x2). As we can see in

Eq. (6), if we find the barycentric coordinates of the

vertices, the linear interpolation can be done. The

main advantage of the DT method is the capability of

retaining the scattered samples at the nodes of the

triangulation [20]. Theoretically, the larger the sample

number Nsam, the better the density quality for the DT

method. Second, generate the compact alpha shape

triangulation within the actual non-convex hull

enclosing all the scattered sample data for a predefined

alpha radius ra [3, 24, 25],

As ¼ fAi x10; x20; rað Þ; i 2 f1; 2; � � � ;VAgjAi

� Dðx10; x20Þg ð7Þ

where As is the generated alpha shape triangulation, Ai

is the ith vertex of the simplex for the alpha shape

triangulation, VA is the number of vertices of the

simplex for the alpha shape triangulation,D(x10, x20) is

the Delaunay triangulation for the samples (x10, x20).

As we can see in Eq. (7), the generated alpha shape

triangulation is the subset of the Delaunay triangula-

tion. The alpha shape is introduced to remove the

surplus vertices of the simplex generated when the

shape of the density distribution is not convex. Note

that the selection of the alpha radius ra is important, as

it decides how accurate the alpha shape triangulation

characterises the actual shape of the density distribu-

tion. In this paper, we check different ra values using

the dichotomy, and determine the most appropriate for

the test cases in examination. In principle, also in this

case, the larger the sample number Nsam, the better the

returned alpha shape triangulation is at characterising

the evolved shape of the density space. Third, retain all

the Delaunay triangulation-based interpolated results

that are inside or make up the alpha shape triangula-

tion, and perform the alpha shape triangulation-based

linear interpolation [24, 25],

na x1; x2; tð Þ ¼
XVA

i¼1

naiBaiðx1; x2Þ ð8Þ

where na(x1, x2, t) is the alpha shape triangulation-

based linear interpolated density of the point (x1, x2),

nai is the value of the density for the ith vertex for the

alpha shape triangulation, Bai(x1, x2) is the barycentric

coordinates of the ith vertex including the point (x1, x2)

for the alpha shape triangulation.

With the above three steps, we get the improved

alpha shape-based linearly interpolated density by

retaining the Delaunay triangulation-based interpo-

lated results within the alpha shape triangulation. Note

that, the selection of the sample number Nsam and the

gird number Ngrid is important, because it affects the

accuracy of the final interpolated density na(x1, x2, t),

and the computational efficiency. In this paper, we will

select the suitable sample number Nsam and the grid

number Ngrid by trading off the density accuracy and

the computational efficiency.
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3.1.2 Multi-segment method

To improve the interpolation accuracy for the bifur-

cation case, here we introduce the MS method to

divide the overall highly deformed and elongated

density distribution into multiple segments for per-

forming the linear interpolation.

The main idea of the MS method is to divide the

highly deformed and elongated density distribution

into multiple segments for density interpolation. For

the bifurcation case for the highly deformed and

elongated density distribution when passing through

the bifurcation point P4 (see Fig. 2b), the density

distribution exhibits high deformation and elongation

within the whole domain on the solar angle direction,

and is greatly departed within two sub-domains

divided by the critical Hamiltonian contour line

passing through the bifurcation pint P4 (see Fig. 1).

Considering the higher elongation of the density

distribution on the solar angle domain than the

eccentricity domain, four segments are divided in this

paper, for the overall density distribution on the solar

angle domain considering the Hamiltonian dynamic

constraints.

Assume Sg = {Sg1, Sg2, Sg3, Sg4}, where Sg is the

ensemble of the propagated samples for the DEE

method, and Sgi, i 2{1,2,3,4}, is the ith segment after

division. The division standard for the divided four

segments considering the Hamiltonian dynamics con-

straints is given as follows,

Sg1 : H xð Þ\HP4;/[ � p
2

Sg3 : H xð Þ\HP4;/[ ¼ p
2

Sg4 : H xð Þ\HP4;/\� p
2

Sg2 = Sg - Sg1,Sg3,Sg4f g ¼ xjx 2 Sg, x 62 Sg1 [ Sg3 [ Sg4ð Þf g

8>>>>>>><
>>>>>>>:

ð9Þ

where x is the state vector for the propagated samples

to be interpolated,H(x) is the Hamiltonian value of the

state vector x for the 2D planar phase space, HP4 is the

Hamiltonian value for the Hamiltonian contour line

passing through the bifurcation point P4 (see Fig. 1 in

Sect. 2.2 in this paper).

From Eq. (9), we can see that, for the case in

examination, due to the Hamiltonian dynamic con-

straint of H(x)\HP4, the three segments {Sg1, Sg3,

Sg4} are all constrained within one sub-domain,

SubD2. The other segment Sg2 is mainly constrained

within the sub-domain SubD3. It should be noted that,

the division standard is defined in this paper for the

following considerations. First, for the bifurcation

case studied in this paper, we only consider the density

evolution problem for the highly deformed and

elongated density distribution when passing through

the bifurcation point P4 within the two sub-domains

{SubD2, SubD3}. Second, as we can see from the

results of the non-bifurcation case for the long-term

density propagation problem in the work of [22],

higher nonlinearity within the sub-domain SubD2 is

detected than that within the sub-domain SubD3. For

the non-bifurcation case within the sub-domain

SubD2, when approaching the eccentricity domain

larger than the critical eccentricity ecri = 0.6, a low

density accuracy is got for the case with fewer samples

for the DT-B1 method (see the results at t = 1.5 years

in Fig. 11 in [22]). To improve the interpolation

accuracy for the bifurcation case when passing

through the bifurcation point P4, we divide the overall

highly deformed and elongated density distribution

into three segments {Sg1, Sg3, Sg4} within the sub-

domain SubD2, and put the remaining parts into the

segment Sg2 (which is mainly within the sub-domain

SubD3) (Fig. 4).

To give an insight into the MS method, Fig. 5

shows the sample distribution (Nsam = 1.6E4) in the

2D solar angle-eccentricity (/-e) phase space for the

bifurcation case at time t = 1.5 years, and its associ-

ated divided segments according to the division

standard in Eq. (9) (for Sg1, in yellow; for Sg2, in

green; for Sg3, in blue; for Sg4, in black). Note that

here the snapshot case at time t = 1.5 years corre-

sponds to the bifurcation case shown in Fig. 2 in this

paper. As we can see in Fig. 5, compared with the

direct processing for the overall highly deformed and

elongated density distribution for the bifurcation case,

with the introduction of the MS method, the overall

deformed and elongated density distribution are

divided into multiple segments with the inclusion of

the Hamiltonian dynamic constraints. In this case, we

can achieve improved interpolated density for the less

deformed and elongated density space for each

segment (this will be shown in Fig. 6 in this paper).

Theoretically, the more divided segments, the lower

deformation and elongation for the density space for

each segment, and maybe the higher interpolated

density accuracy for the overall density distribution. In

this paper, we give the four segment division standard
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(see Eq. (9)) considering the Hamiltonian dynamic

constraints on the solar angle direction. To further

improve the density accuracy while still granting an

improved computational efficiency, the adaptive

determination of the division number and the division

direction for the multi-segment method can be given

into an insight in the future work. We have to mention

that for a specific test case to be considered, the

described four-segment division standard can only be

considered a guideline for the division of the highly

deformed and elongated density distribution for a

highly nonlinear density propagation problem (such as

the bifurcation case examined in this paper). For the

specific nonlinear dynamics considered for other

problems, a prior analysis on the choice of the

segments is required.

3.1.3 Linear interpolation with the MAT method

With the divided four segments from MS method

(presented in Sect. 3.1.2 in this paper), now we can

apply the AT method (given in Sect. 3.1.1 in this

paper) to each divided segment to obtain the alpha

shape-based interpolated density for the highly

deformed and elongated density distribution for the

bifurcation case. Note that, for each segment, we need

to predefine the appropriate value of the alpha radius

rai for the corresponding ith segment Sgi (i.e., we need

to predefine the alpha radius vector ra = {ra1, ra2, ra3,

ra4} for the corresponding four segments {Sg1, Sg2,

Sg3, Sg4}). This is important because the selection of

the alpha radius for each segment decides how

accurate the alpha shape triangulation characterises

the actual shape of the density distribution.

Fig. 5 a Sample distribution at time t = 1.5 years for the bifurcation case (Nsam = 1.6E4, corresponding to the case in Fig. 2 in this

paper); b Illustration for the technique of the multi-segment method for the MAT method for the bifurcation case at t = 1.5 years

Fig. 6 Illustration and comparison for the aMDT-based linear interpolation, b MAT-based linear interpolation, at time t = 1.5 years

for the bifurcation case (Nsam = 1.6E4, corresponding to the case in Fig. 2 in this paper)
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Here we present the computation procedure for

performing the multi-segment shape-based linear

interpolation,

nma x1; x2; tð Þ ¼
XNsg

j¼1

XVAj

i¼1

nai�jBai�jðx1�j; x2�jÞ ð10Þ

where nma(x1, x2, t) is the multi-segment alpha shape

triangulation-based linear interpolated density of the

point (x1, x2), Nsg is the number of the divided

segments for the MATmethod (in this paper,Nsg = 4),

nai-j is the value of the density for the ith vertex for the

alpha shape triangulation for the jth segment Sgj, Bai-

j(x1-j, x2-j) is the barycentric coordinates of the ith

vertex including the point (x1-j, x2-j) for the alpha

shape triangulation for the jth segment Sgj.

Similarly, we can apply the MS method to the DT

method to formulate the Multi-segment Delaunay

Triangulation-based linear interpolation method

(MDT).

To give an insight into the performance of the MAT

method compared with that of the MDT method in

performing the linear interpolation for the bifurcation

case for the highly deformed and elongated density

distribution, Fig. 6 shows the illustration and compar-

ison for the MDT and MAT methods for the bifurca-

tion case at time t = 1.5 years, where the red solid

points are the Nsam = 1.6E4 propagated samples in the

(/, e) 2D phase space. As we can see in Fig. 6a, for the

overall density distribution for the bifurcation case, for

the MDT method, gray interpolated points are gener-

ated within the whole convex hull of the scattered

sample data for the divided four segments (see

Fig. 5b). Note that this is the improved result for the

MDT method than that for the DT method (i.e., as we

can infer from Fig. 6a, compared with the MDT

method, for the DT method, more gray interpolated

points that are outside the actual non-convex hull of

the scattered sample data will be generated for the

overall elongated density distribution). For the MAT

method, the compact alpha shape triangulation enclos-

ing all the samples is generated for a predefined alpha

radius vector ra = {1, 0.03, 15, 15} corresponding to

the four segments {Sg1, Sg2, Sg3, Sg4}. Figure 6b

gives the snapshot around the points (/,
e) = (- 0.7850, 0.6660) and (/, e) = (1.5620,

0.7611) for the MAT method. Note that the snapshot

around the right point (/, e) = (1.5620, 0.7611) shows

the interpolated density where the two segments {Sg2,

Sg3} connect. Compared with the results around the

left point (/, e) = (- 0.7850, 0.6660) within the

segment Sg1, lower continuity and sparser interpola-

tion are shown for the snapshot around the right point

(/, e) = (1.5620, 0.7611). This is because of the

intrinsic limitation of the multi-segment method given

in this paper, which gives the four segment division

standard considering the Hamiltonian dynamic con-

straints on the solar angle direction (i.e., it is not large

in the segment division number and is manually

divided on the solar angle direction). From Fig. 6b we

can see that, for this case with a large sample number

Nsam = 1.6E4, the MAT method works better for the

density interpolation than the MDT method, which

adapts to the actual shape of the density space volume.

3.2 B2 binning method

With the interpolated density for the four segments

from theMATmethod in the vectors (x1, x2, nma(x1, x2,

t)) at time t, the B2 binning method is used in this

paper for density calculation.

To calculate the joint and marginal density for the

B2 method, three steps are required. First, partition the

density weights nma(x1, x2, t) into the 2D uniformly

divided bins in the vectors (x1, x2). Second, with the

defined 2D bins, calculate the joint density as the

weighted sum of density weights per bin area, as

follows [24],

fDEE�pkðx1; x2; tÞ ¼
Spk=ApkPBx

p¼1

PBy

k¼1 Spk
ð11Þ

where Spk is the sum of the density weights nma(x1, x2,

t) in each bin, p 2{1,���,Bx}, k 2{1,���,By}, Bx and By

are the defined bin number for the two state space

directions, respectively, Apk is the area for each bin.

Third, calculate the marginal density for each direc-

tion by integrating the joint density throughout the

whole domain of the other direction. Here we present

the equation for the marginal density for the first

dimension [24],

fDEE�1 x1; tð Þ ¼
Apk �

PU2

x2¼L2
fDEE�pk x1; x2; tð Þ
wid1

; p

¼ 1; . . .;Bxf g
ð12Þ
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where L2 andU2 are the lower and upper bounds of the

bin edges for the second dimension, respectively, wid1
is the bin width for the first direction. As we can see in

Eq. (12), for the B2method, the marginal density for xi
represents the weighted sum of the density weights per

bin width of widi, i 2{1,2}.

3.3 Density propagation with the MAT-B2

method

In this section, we first present the whole procedure for

solving the bifurcation case for the long-term density

propagation problem with the MAT-B2 method pre-

sented in this paper. Then the integrated illustration

and comparison for the DEE methods of DT-B1,

MDT-B1 and MAT-B2 is given.

Table 1 gives the computation procedure for

solving the bifurcation case for the long-term density

propagation problem with the MAT-B2 method. To

help better understand the MAT-B2 method, Fig. 7

summarises the flowchart of the proposed MAT-B2

method for density propagation including the clear

indication of the parameters and the assumptions that

must be known in advance, and the inputs and outputs

of each step. Table 2 shows the combinations of

options for DEE methods of DT-B1, MDT-B1 and

MAT-B2, in terms of the composition of the linear

interpolation method and the binning method. Note

that the performance of the DT-B1 method for density

propagation for the bifurcation case is low in the joint

and marginal density accuracy (see in Figs. 3 and 4 in

Sect. 2.3 in this paper), and it will not be further

studied in the following paper. Compared with the DT-

B1method, theMDT-B1method is the combination of

the MDT method (i.e., multi-segment DT method,

defined in Sect. 3.1.3 in this paper) and the B1 method

for density propagation. It is given in this paper as a

baseline method to demonstrate the superiority of the

MAT method and the B2 method for the MAT-B2

method. Also note that to make sure of the density

quality with a low computational effort, in this paper,

we select the suitable sample number Nsam for

dynamic propagation and the suitable grid number

Ngrid for performing the linear interpolation via the

trade-off between the density accuracy and the com-

putational efficiency.

4 Simulation setup

4.1 Definition of the initial conditions

for the MEO planar phase space case

To improve the density accuracy for the bifurcation

case for the long-term density propagation problem

(see Figs. 2, 3, 4) within the continuum method

framework, we will focus on the bifurcation case given

in Sects. 2.1 and 2.3 in this paper, and focus on

improving the density accuracy for the case at time

t = 1.5 yrs when passing through the bifurcation point

P4 (see Fig. 2). Table 3 rewrites the initial conditions

for the bifurcation case in terms of the mean m0 and

the covariance matrix P0 of the initial Gaussian

density distribution and the propagation time t. It

should be reminded that, here the initial conditions for

the Gaussian samples are specified to make sure of the

realisation of the long-term density propagation within

Table 1 Computation procedure for solving the bifurcation case for the long-term density propagation problem with the MAT-B2

method

Step Content

1 Determine initial conditions:

1) Formulate the dynamics for the phase space and the density evolution (Eqs. (1), (5));

2) Give the mean m0 and the covariance matrix P0 for the initial Gaussian distribution, and the density propagation time t;

3) Select a predefined alpha radius rai for the ith segment Sgi (divided via the four-segment division standard (Eq. (9))), for

generating a compact alpha shape triangulation enclosing all the samples;

2 Select the sample number Nsam and the grid number Ngrid by trading off the accuracy and efficiency;

3 Conduct improved multi-segment alpha shape triangulation-based linear interpolation for propagated samples (Eq. (10));

4 Conduct the B2 binning method for the interpolated density for density calculation (Eqs. (11), (12));
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two sub-phase space domains {SubD3, SubD2} that

include the bifurcation point P4 (see Figs. 1b and 2a).

To complement the accuracy and efficiency anal-

ysis for the MAT-B2 and MDT-B1 methods, a MC

simulation is done for the test case in Table 3. The

number of the MC samples is set to be Nsam = 1E5 for

ensuring the convergence of the MC method and

Start

Formulate the dynamics for the phase space and the 
density evolution equation

Give the initial conditions x0 for the state space, the 
initial Gaussian distribution, m0 and P0PP , and the

propagation time tp p g

Give the candidate parameter sets:
NsamNN {500, 961, 1000, 2000, 4000, 8000, 16000, 

32000, 64000, 1E5}
Ngrid {500,1000,1500,2000,2500,3000}

Evaluate the density accuracy and the computational 
efficiency for all the pairs of {NsamNN , Ngrid} choice from

the candidate parameter sets in parallel

For the selected case, apply the MS method and 
divide the propagated sample distribution into four 
segments according to the four-segment division 

standard

Suitable sample number 
and grid number selected:

{NsamNN , Ngrid}

For the four segments, predefine the alpha radius 
rair  for the ith segment Sgi, for conducting the alpha

shape-based linear interpolation method

Conduct the B2 binning 
method for the

interpolated density for 
density calculation

End

Start

Formulate the dynamics for the phase space and the 
density evolution equation

Give the initial conditions x0 for the state space, the 
initial Gaussian distribution, m0 and P0, and the 

propagation time t

Give the candidate parameter sets:
Nsam {500, 961, 1000, 2000, 4000, 8000, 16000, 

32000, 64000, 1E5}
Ngrid {500,1000,1500,2000,2500,3000}

Evaluate the density accuracy and the computational 
efficiency for all the pairs of {Nsam, Ngrid} choice from 

the candidate parameter sets in parallel

Suitable values for the sample and the grid number 
selected by trading off the density accuracy and the 

computational efficiency?

No

For the selected case, apply the MS method and 
divide the propagated sample distribution into four 
segments according to the four-segment division 

standard

Suitable sample number 
and grid number selected: 

{Nsam, Ngrid}

Yes

For the four segments, predefine the alpha radius 
rai for the ith segment Sgi, for conducting the alpha 

shape-based linear interpolation method

Conduct the B2 binning 
method for the 

interpolated density for 
density calculation

End

Fig. 7 Flowchart of the proposed MAT-B2 method for density propagation
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avoiding a higher computational load for a test case

with a larger sample number.

To give a better choice of the sample number Nsam

and the grid number Ngrid for the DEE methods, the

sample number Nsam is chosen within the parameter

set, Nsam 2{500, 961, 1000, 2000, 4000, 8000, 16,000,
32,000, 64,000, 1E5}, and the grid number is chosen

within the parameter set, Ngrid 2{500, 1000, 1500,
2000, 2500, 3000}. Table 4 summarises the predefined

parameter sets of Nsam and Ngrid. The two parameter

sets are defined in this paper for the following

considerations. For the parameter set of the sample

number Nsam, it is set to be exponentially distributed

except the two elements {961, 1E5}, which are the

reference sample number for the cases of DEE-961

and DEE-1E5 in the work of [22]. In [22], we can see

that, for the case with more samples (i.e., DEE-1E5),

the high density accuracy level comparable with that

of the MC method can be achieved, but at the cost of a

high computational effort. For the case with fewer

samples (i.e., DEE-961), when the phase space is

highly deformed and elongated, the density accuracy

level is low. Thus, within the parameter domain [500,

1E5], the evolution characteristic for the density

accuracy and the computational efficiency with

respect to the Nsam can be preliminarily exploited,

for the bifurcation case for the highly deformed and

elongated density distribution. For the parameter set of

the grid number Ngrid, it is set to be linearly

distributed. As we can infer in [22], only when the

number of the propagated samples Nsam is large

enough for capturing the deformed and elongated

density distribution, accurate density can be calculated

via the linear interpolation and the binning methods.

Thus, for the contribution of the density accuracy and

the computational efficiency, the value of the sample

number Nsam may weigh much more than the grid

number Ngrid in affecting the accuracy and the

efficiency for the DEE method. Within the domain

[500, 3000], the evolution characteristic for the

density accuracy and the computational efficiency

with respect to the Ngrid can be preliminarily

exploited.

4.2 Definition of the accuracy measure

To determine the density accuracy for DEE methods

with respect to that of MC, in this paper, the

Likelihood Deviation (LD) is used as the accuracy

measure as follows [23]

LD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
j¼1 fDEEðxjÞ � qðxjÞ
	 
2q

N
ð13Þ

where N is the number of MC samples, xj is the jth MC

sample, fDEE(xj) is the density of the jth MC sample for

the DEE methods, q(xj) is the density of the jth MC

sample for the MC method. The LD measure quan-

tifies the density accuracy for the DEE methods

compared with that of theMCmethod. The smaller the

LD measure, the higher density accuracy for the DEE

methods compared with that of the MC method.

Table 2 Illustration and comparison for the composition of

DEE methods

DEE method DT-B1 MDT-B1 MAT-B2

Linear interpolation method DT MDT MAT

Binning method B1 B1 B2

Table 3 Initial conditions (the initial Gaussian distribution and the propagation time) for the bifurcation case

Variable mean, m0 [rad; -] Covariance matrix, P0 t, [yr]

Value [ e0,/ 0] = [ 0.245,0.4495] diag{6.25E-4,0.0096} 1.5

Table 4 Predefined parameter sets of the sample number Nsam and the grid number Ngrid for DEE methods

Variable Nsam Ngrid

Predefined parameter set {500,961,1000,2000,4000,8000,16,000,32,000,64,000,1E5} {500,1000,1500,2000,2500,3000}
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For the case in examination, to evaluate the overall

accuracy level for DEEmethods with respect to that of

the MCmethod, the following performance index Jp is

predefined as the weighted sum of the LD measure for

the joint and marginal density,

Jp ¼ wd �
X

LD ð14Þ

where wd is the density weight,
P

LD is the sum of the

LD measure for the joint and marginal density. In this

paper, we assume the same weight wd = 1/3 for the

joint and marginal density for the 2D problem. The

smaller the performance index Jp, the higher overall

accuracy level for the DEEmethod compared with that

of the MC method.

5 Results and discussion

It should be noted that the novelty of this paper is to

study the bifurcation case for the long-term density

propagation problem, and to improve the density

accuracy for the bifurcation case for the highly

deformed and elongated density distribution using

the improved MAT-B2 method. In this paper, the

MEO planar phase space case is chosen (see Sects. 2.1

and 4) to give an insight into the bifurcation case for

the long-term density propagation problem in the

context of high-altitude and high area-to-mass ratio

satellite long-term propagation [14, 22, 23, 26].

In this section, the results are given for the

bifurcation case at time t = 1.5 yrs (presented in

Table 3) in the three sections as follows. Section 5.1

gives the selected sample number Nsam and the grid

number Ngrid by trading off the density accuracy and

the computational efficiency. Section 5.2 presents the

results for the MAT-B2, MDT-B1 methods. In Sect.

5.3, some discussion is given on the superiority of the

MAT-B2 method for solving the bifurcation case for

the long-term density propagation problem in terms of

the density accuracy and the computational efficiency.

5.1 Selection of the sample number Nsam and grid

number Ngrid (for the bifurcation case,

at t = 1.5 years)

To select the better value of the sample number and the

grid number for the MAT-B2 method, we perform the

accuracy and the efficiency analysis for the predefined

parameter sets of the sample number Nsam and the grid

number Ngrid (see Table 4). The density accuracy is

evaluated via the LD measure and the performance

index Jp (see Eqs. (13), (14)). The computational

efficiency is evaluated via the normalised computa-

tional effort with respect to that of the MC method.

For the bifurcation case at time t = 1.5 yrs, the

values of the sample number and the grid number are

selected as Nsam = 1.6E4, Ngrid = 1000 for the MAT-

B2 method. Figure 8 presents the evolution of the

normalised LD measure for the joint and marginal

density withNsam, and withNgrid, respectively, for the

MAT-B2 and MDT-B1 methods with respect to the

case MAT-B2 (Nsam = 1.6E4, Ngrid = 1000). Note

that the smaller the normalised LD measure for a

specific Nsam/Ngrid case, the higher accuracy level for

the specific case with respect to the selected case

MAT-B2 (Nsam = 1.6E4, Ngrid = 1000). For the case

in examination, to perform the accuracy analysis for

the DEE methods (via the LD measure and the

predefined performance index), Bx and By are given as

the bin numbers for the solar angle and the eccentricity

directions, respectively, for the joint density calcula-

tion, for the MAT-B2 and MDT-B1 methods. The grid

number Ngrid gives the bin number for two phase

space directions for performing the linear interpola-

tion for all the DEE methods and represents the bin

number for the two phase space directions for the

marginal density calculation. Figure 9 shows the

evolution of the normalised performance index with

Nsam and with Ngrid, respectively, with respect to the

case MAT-B2 (Nsam = 1.6E4, Ngrid = 1000). Also in

this case, the smaller the normalised performance

index, the higher overall accuracy level for the specific

case with respect to the selected case MAT-B2 (Nsam

= 1.6E4, Ngrid = 1000). Figure 10 presents the evo-

lution of the normalised computational effort with

Nsam, and with Ngrid, respectively, with respect to that

of the MC method.

Here we present the procedures for determining the

sample number Nsam = 1.6E4 for the MAT-B2 method

by trading off the density accuracy and the computa-

tional efficiency. First, as we can see in Fig. 8a, for the

sample number Nsam B 1.6E4, the smallest LD

measure (i.e., the highest density accuracy) for the

joint density and the marginal density in both phase

space directions is obtained for the MAT-B2 method.

For the sample number Nsam [ 1.6E4, the slightly

larger LD measure for the marginal density in both
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phase space directions is got for the MAT-B2 method,

but little discrepancy is shown for the MAT-B2 and

MDT-B1 methods (indicating the comparable high

accuracy level for the two methods). Overall, for the

MAT-B2 and MDT-B1 methods, the LD measure for

the joint and marginal density drops consistently with

Fig. 8 Normalised LD

evolution a with Nsam, and

b with Ngrid, for DEE
methods, with respect to the

case MAT-B2

(Nsam = 16,000,

Ngrid = 1000), for the

bifurcation case, at time

t = 1.5 years

Fig. 9 Normalised performance index Jp evolution awith Nsam, and bwith Ngrid, for DEE methods, with respect to the case MAT-B2

(Nsam = 16,000, Ngrid = 1000), for the bifurcation case, at time t = 1.5 years
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the increase of the sample number Nsam, indicating the

high density accuracy stability with respect to the

sample number. Second, as we can see in Fig. 9a, the

smaller performance index Jp is obtained for the

MAT-B2 method than that for the MDT-B1 method.

The overall method accuracy ranking MAT-

B2[MDT-B1 is obtained. This is as expected, because

for the MAT-B2 method, the linear interpolation is

done within the compact non-convex hull enclosing all

the samples for the four divided segments (see

Fig. 6b). This neglects many Delaunay triangulation-

based interpolated points outside the alpha shape

triangulation. In this case, the weights for the inter-

polated points within the alpha shape triangulation for

the multiple segments for the MAT method are

increased compared with that for the MDT method.

The higher accuracy is achieved in capturing the core

values, and the distribution characteristics of the joint

and marginal density. Also note that, for the MAT-B2

method, the joint density is calculated as the weighted

sum of the density weights per bin area, which allows

for the variant nonlinearity of the density within each

alpha shape triangulation. For the sample number

Nsam[1.6E4, little changing amplitude is shown for

the evolution of the performance index for the MAT-

B2 method, indicating the high stability for the overall

density accuracy level ranking. Third, from Fig. 10a,

we can see that the normalised computational effort

evolves exponentially with the sample number Nsam

for MAT-B2 and MDT-B1 methods. Note that here in

Fig. 10, the coordinates for the two phase space

directions are plotted using a log scale. The method

efficiency ranking MAT-B2[MDT-B1 is obtained.

Overall, little discrepancy is shown for the normalised

computational effort for MAT-B2 and MDT-B1

methods. This is because the main difference between

the MAT-B2 and MDT-B1 methods is the post-

processing for the propagated samples using the

different linear interpolation and binning methods

(see Table 2). For the MAT-B2 method, less interpo-

lated points (within the compact alpha shape triangu-

lation for the four segments) are processed than that

for the MDT-B1 method (within the whole convex

hull for the four segments) for density calculation (see

Fig. 6). With the increase of the sample number, i.e.,

for Nsam C 4000, the computational effort part of the

dynamic propagation of the samples makes up the

main part of the total computational effort, compared

with the computational effort part of the density

calculation using the linear interpolation and the

binning methods. This leads to the overall little

difference for the normalised computational effort

for the MAT-B2 and MDT-B1 methods. For the

bifurcation case at time t = 1.5 yrs, the computation

time for the MC method is 384.65 s. For the MAT-B2

method, for the case Nsam = 1.6E4, the computational

effort accounts for 27.16% of that of the MC method.

From Fig. 10a, we can infer that, for the MAT-B2

method, for a case with the sample number Nsam

B 3.38E4, the computational effort can be ensured to

be under 50% of that of the MCmethod. Basing on the

above three-aspect analysis, we select the sample

number Nsam = 1.6E4 for the MAT-B2 method for the

bifurcation case, with the highly accurate density and

the high computational efficiency.

Fig. 10 Normalised computational effort evolution a with Nsam, and b with Ngrid, for DEE methods, with respect to the MC method,

for the bifurcation case, at time t = 1.5 yrs
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Through a similar procedure, as we can see in

Figs. 8b, 9b and 10b, the better value of the grid

number Ngrid = 1000 is selected for the MAT-B2

method.

For the MAT-B2 method, as we can see in Figs. 8, 9

and 10, for the normalised LD measure for the joint

and marginal density, the normalised performance

index, and the normalised computational effort, larger

changing amplitudes are shown with respect to the

sample number than the grid number. This indicates

the higher influence of the sample number than the

grid number in affecting the density accuracy and the

computational efficiency. This is not unexpected,

because only when the sample number is large enough

for characterising the highly nonlinear density distri-

bution, accurate density can be calculated using the

linear interpolation and the binning methods for a

selected grid number. For MAT-B2 and MDT-B1

methods, no apparent change is shown for the

evolution of the LD measure for the joint density with

the grid number, while the LD measure for the

marginal density drops consistently with the increase

of the grid number (see Fig. 8b). This indicates that the

selection of the grid number mainly affects the

accuracy of the marginal density, not the joint density.

This is because, in this paper, the marginal density is

calculated and presented based on the bins used for

linear interpolation. Overall, we can conclude that the

MAT-B2 method outperforms the MDT-B1 method

for the long-term density propagation problem for the

bifurcation case in terms of the density accuracy and

the computational efficiency.

To give an insight into other candidate choices of

the sample number and the grid number, for solving

the bifurcation case for the long-term density propa-

gation problem, Fig. 11 shows the normalised perfor-

mance index Jp (Fig. 11a), the normalised LDmeasure

for the joint density (Fig. 11b), the normalised LD

measure for the marginal density of the solar angle

(Fig. 11c), the normalised LD measure for the

marginal density of the eccentricity (Fig. 11d), for

the MAT-B2 method, in the Ngrid-Nsam 2D space.

Note that results in Fig. 11 are normalised with respect

to the case MAT-B2 (Nsam = 1.6E4, Ngrid = 1000).

Figure 12 shows the normalised computational effort

in the Ngrid-Nsam 2D space for the MAT-B2 method,

normalised with respect to that of the MC method. As

we can see in Fig. 11, overall, the sample number Nsam

plays a more important role than the grid number

Ngrid in affecting the density accuracy, which is

especially the case for the joint density (see Fig. 11b).

This is consistent with what we have concluded from

Figs. 8, 9 and 10. Also, from Fig. 12, we can see that

the sample number plays a more important role than

the grid number in affecting the computational load.

For the DEEmethods, the main computational effort is

the dynamic propagation part for propagating the Nsam

samples.

5.2 Density results (for the bifurcation case,

at t = 1.5 years)

With the selected sample number and grid number

{Nsam = 1.6E4,Ngrid = 1000} for the bifurcation case

at time t = 1.5 yrs, now we present the joint and

marginal density in Figs. 13 and 14, for the MAT-B2

method compared with the MDT-B1 method with

respect to that of the MC method. To highlight the

higher density accuracy stability for the MAT-B2

method than the MDT-B1 method with the increase of

the sample number Nsam (see Figs. 8a, 9a), in Figs. 13

and 14, we present also the density for a larger sample

number case with {Nsam = 1E5,Ngrid = 1000}, which

has the same sample number Nsam = 1E5 as that of the

MC method.

From Figs. 13a and 14 for the MCmethod (in gray),

we can see that, for the bifurcation case at time t = 1.5

yrs for the highly deformed and elongated density

distribution, high nonlinearity is shown in the joint

density and the marginal density in two phase space

directions. This is especially the case for the marginal

density. For the marginal density for the solar angle

(see Fig. 14a for the MC method), a peak value is

detected at / = - 0.2962 (marginal density value:

4.952; unit of the marginal density of the solar angle

for the MC method: frequency of samples per bin

width in the solar angle direction). High nonlinearity

(or steepness) is shown within the solar angle domains

[- 0.3777, - 0.2962] and [- 0.2962, 1.152]. For the

marginal density for the eccentricity, two local

marginal density peaks are detected at e = 0.3725

and e = 0.8118. The marginal density values for the

two density peaks are 4.422 and 3.308 (unit of the

marginal density of the eccentricity for the MC

method: frequency of samples per bin width in the

eccentricity direction). Note that, due to the highly

nonlinear distribution characteristic for the marginal

density of the eccentricity, a local minimum density
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value is detected at e = 0.7654 (marginal density

value: 0.266). High nonlinearity is shown within the

eccentricity domain [0.3725, 0.8118] between the two

local density peaks (see Fig. 14c for the MC method)

(i.e., when decreasing from the larger local density

peak at e = 0.3725, till the local density trough at

e = 0.7654, and then increasing to the smaller local

density peak at e = 0.8118). Overall, high nonlinearity

is shown for the marginal density in two phase space

directions in terms of the multiple local density peaks

(for the marginal density of the eccentricity), and the

local density trough between the two local density

peaks (for the marginal density of the eccentricity),

and the high nonlinearity (or steepness) shown in the

overall density evolution characteristics. This is

consistent with the high dynamic nonlinearity for the

bifurcation case for the planar phase space after long-

term propagations (see Fig. 5a) when approaching the

eccentricity domain larger than the critical eccentric-

ity (ecri = 0.6) or approaching the zero eccentricity,

(or approaching the solar angle / = 0 or / = 1/2p).
As shown in Figs. 13a and 14, for the selected cases

with {Nsam = 1.6E4, Ngrid = 1000}, the higher accu-

racy in the joint density with respect to that of the MC

method (see Fig. 13a) is obtained for the MAT-B2

method (see Fig. 13d) than the MDT-B1 method (see

Fig. 13b). With the increase of the sample number

Nsam, little discrepancy is shown in the joint density

accuracy for the MAT-B2 method than the MDT-B1

method (for the MAT-B2 method, see Figs. 13d, e; for

the MDT-B1 method, see Fig. 13b, c). This indicates

the higher accuracy stability for the joint density with

respect to the sample number Nsam for the MAT-B2

method. This is consistent with the aforementioned

results in Figs. 8a and 9a.

Fig. 11 a Normalised performance index Jp, b normalised LD

measure for the joint density, c normalised LD measure for the

marginal density of the solar angle, d normalised LD measure

for the marginal density of the eccentricity, in the Ngrid-Nsam

2D space (normalised with respect to the case MAT-B2

(Nsam = 16,000, Ngrid = 1000)), for the MAT-B2 method for

the bifurcation case, at time t = 1.5 yrs

Fig. 12 Normalised computational effort, in theNgrid-Nsam 2D

space, for the MAT-B2 method (normalised with respect to that

of the MC method, for the bifurcation case, at time t = 1.5 yrs
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Similarly, for the marginal density of the solar

angle (see Fig. 14a, b), for the selected cases with

{Nsam = 1.6E4, Ngrid = 1000}, the higher accuracy is

obtained for the MAT-B2 method (in blue) than the

MDT-B1method (in yellow) with respect to that of the

MC method (in gray). For the MDT-B1 method, the

marginal density of the solar angle is overestimated

within the solar angle domain [0.4561, 1.516]. This is

because for the MDT-B1 method, the overinterpolated

density is got within the whole convex hull for the

segment Sg2 (see Fig. 6a). For the MAT-B2 method,

the inclusion of the alpha shape helps capture the

actual non-convex shape of the density distribution

(see Fig. 6b). For the marginal density of the

eccentricity (see Fig. 14c, d), for the selected cases

with {Nsam = 1.6E4, Ngrid = 1000}, the MAT-B2

method outperforms theMDT-B1method in capturing

the overall density distribution characteristics, includ-

ing the two local density peaks at e = 0.3725 and

e = 0.8118, and the overall highly nonlinear density

evolution characteristics from the eccentricity

e = 0.3725 (the larger local density peak), to

e = 0.7654 (the local density trough), and to

e = 0.8119 (the smaller local density peak), highly

consistent with that of the MC method. For the MDT-

B1 method, it underestimates the density peak values

at e = 0.3725 and e = 0.8118, and works badly in

capturing the highly nonlinear density evolution

Fig. 13 The joint density a for the MC method; for the MDT-

B1 method, with b {Nsam = 1.6E4, Ngrid = 1000}, c {Nsam-

= 1E5, Ngrid = 1000}; for the MAT-B2 method, with

d {Nsam = 1.6E4, Ngrid = 1000}, e {Nsam = 1E5, Ngrid =

1000}; for the bifurcation case, at time t = 1.5 years
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characteristics between the two local density peaks;

also, within the eccentricity domain [0.7599, 0.8107],

the marginal density of the eccentricity is overesti-

mated due to the overinterpolation within the whole

convex hull of the two segments Sg3 and Sg4 (see

Fig. 6a). With the increase of the sample number with

Nsam, less discrepancy is shown in the marginal

density of the solar angle and the eccentricity for the

MAT-B2 method than the MDT-B1 method. This

indicates the higher accuracy stability for the marginal

density with respect to the sample number Nsam for the

MAT-B2 method. It should be noted that, for the

MAT-B2 method, within the eccentricity domain [0,

0.3725], the marginal density of the eccentricity is

slighted overestimated, and within the eccentricity

domain [0.4964, 0.8118], it is slighted underestimated.

This is due to the intrinsic numerical nature for the

MAT-B2 method within the continuum method

framework, which calculates the joint and marginal

density as the weighted sum of the density weights per

bin area and per bin width, respectively (i.e., in a

statistical way similar to that of the MC method).

Meanwhile, for the multi-segment method introduced

in this paper, the determination of the alpha radius

vector ra affects the interpolation accuracy for the four

divided segments, which further affects the accuracy

for the B2 method for density calculation. Overall,

from Figs. 10, 13 and 14, we can conclude that for the

bifurcation case for the highly deformed and elongated

density distribution, for the selected case {Nsam

= 1.6E4, Ngrid = 1000}, the improved accuracy in

the joint and marginal density is got for the MAT-B2

method compared with that of the MDT-B1 method

with respect to that of the MC method, together with

the high computational efficiency compared with that

of the MC method. Also note that, in this paper, the

alpha radius value for each segment is manually

predetermined using the dichotomy, and the four-

segment division standard (see Eq. (9)) is predeter-

mined for the multi-segment method considering the

Hamiltonian constraints on the solar angle domain. To

further improve the density accuracy while still

granting an improved computational efficiency within

the continuum method framework, the adaptive

Fig. 14 The marginal density of the solar angle with a {Nsam-

= 1.6E4, Ngrid = 1000}, b {Nsam = 1E5, Ngrid = 1000}, and

the marginal density of the eccentricity with c {Nsam = 1.6E4,

Ngrid = 1000}, d {Nsam = 1E5, Ngrid = 1000}, for MDT-B1,

MAT-B2 methods with respect to the MC method, for the

bifurcation case, at time t = 1.5 years
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determination of the suitable value of the alpha radius

for each segment, and the adaptive determination of

the division number and the division direction for the

multi-segment method need to be given into an insight

in the future work.

5.3 Discussion

For the bifurcation case for the highly deformed and

elongated density distribution (at time t = 1.5 yrs, see

Fig. 5), for the selected case with {Nsam = 1.6E4,

Ngrid = 1000}, the improved accuracy in terms of the

joint and marginal density is obtained for the MAT-B2

method compared with the MDT-B1 method with

respect to that of the MCmethod (see Figs. 13 and 14).

Overall, the MAT-B2 method outperforms the MDT-

B1 method in capturing the core value of the joint

density, the high nonlinearity for the marginal density

in two phase space directions, including the multiple

local density peaks and the local density trough

between the two local density peaks for the marginal

density of the eccentricity, and the high nonlinearity

(or steepness) shown in the overall density evolution

characteristics.

The advantages of the MAT-B2 method are shown

in the higher density accuracy (see Figs. 13 and 14),

the higher density accuracy stability with respect to the

sample number Nsam and the grid number Ngrid (see

Fig. 9a and b), and the higher computational efficiency

compared with that of the MC method (i.e., for the

case with {Nsam = 1.6E4, Ngrid = 1000}, the compu-

tational effort accounts for 27.16% of that of the MC

method; see Fig. 10). The sample number weighs more

than the grid number in affecting the density accuracy

and the computational efficiency for the DEE methods

(see Figs. 8, 9 and 10). For the bifurcation case for the

highly deformed and elongated density distribution,

the inclusion of MS method (see Sect. 3.1.2 in this

paper) for the ATmethod (see Sect. 3.1.1) is necessary

for the accurate and efficient density propagation for

the planar phase space long-term density propagation

problem.

6 Conclusion

This paper studies the bifurcation case for the planar

phase space long-term density propagation problem,

and improves the density accuracy for the bifurcation

case for the highly deformed and elongated density

distribution using an improved multi-segment alpha

shape-based linear interpolation method. The

improved multi-segment alpha shape-based linear

interpolation method is the combination of the multi-

segment method and the alpha shape triangulation-

based linear interpolation method. To improve the

interpolation accuracy for the bifurcation case for the

overall density distribution with high deformation and

elongation that extends within the whole state space

domain, the multi-segment method is introduced to the

alpha shape-based linear interpolation method by

dividing the overall density distribution into multiple

segments. A four-segment division standard consid-

ering the Hamiltonian dynamic constraints on the solar

angle domain is presented to divide the overall density

distribution into four segments. The suitable values of

the sample number for dynamic propagation, and the

grid number for performing the linear interpolation,

are selected by trading off the density accuracy and the

computational efficiency. For the bifurcation case for

the planar phase space long-term density propagation

problem in the context of high altitude and high area-

to-mass ratio satellite long-term density propagation,

the superiority of the MAT-B2 method in terms of the

density accuracy and the computational efficiency is

demonstrated compared with the MDT-B1 method

with respect to that of the MC method.
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