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ABSTRACT
Modern commodity and High-Performance Computing (HPC) sys-
tems are evolving with complex CPU architectures. These archi-
tectures now feature higher core and NUMA domain counts and
implement features such as hyperthreading. When considering
significant differences in hardware configurations, library avail-
ability, and hardware-tailored system/software stacks, which could
substantially vary from one system to another, performance porta-
bility is hard to achieve. Throughout the years, this trend resulted
in an increasingly high burden on application developers to fine-
tune their workloads for each architecture. This work explores
how hardware-dependent aspects such as locality/process/thread
affinity affect performance in modern CPU architectures. We focus
our study on the Global Memory and Threading (GMT) distributed
runtime system as a representative of Partitioned Global Address
Space (PGAS) software stacks commonly adopted for productivity.
In particular, to appreciate performance implications, we evalu-
ate GMT’s thread affinity policies, and, introduce two new ones
which exploit architectural awareness. Finally, we explore alter-
native NUMA configurations via different process bindings and
perform a scalability study on three HPC clusters with varying CPU
architectures and NUMA layouts. Our analysis indicates that more
complex architectures are more affected by affinity and binding
policies and highlights the importance of setting proper runtime
configurations to achieve superior performance.
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1 INTRODUCTION AND BACKGROUND
In the never-ending pursuit of achieving higher and higher per-
formance, major manufacturers such as AMD, Intel, and ARM are
developing novel, increasingly complex architectures for their CPUs
[10, 12–14]. They offer various processor designs on consumer and
server-grade products, which can substantially differ in characteris-
tics, even within the same CPU family. For example, they can have
different Non-Uniform Memory Access (NUMA) configurations
and hyperthreading capabilities, which could even be adjusted by
the end-user or system administrator [1]. On the one hand, these
hardware design concepts raise the theoretical performance peak
obtainable by the hardware; on the other, they highly affect software
performance portability and make tuning workloads to the under-
lying hardware more tedious. These challenges appear even more
prominent in High-Performance Computing (HPC) environments,
where additional components such as communication networks and
accelerators further contribute to the the system’s overall complex-
ity. While several aspects jointly affect the workloads’ performance,
process binding and thread affinity are among the most impactful
when considering alternative CPU designs or configurations.

The vast majority of HPC programming environments are based
on the Message Passing Interface (MPI), whose implementations,
such as OpenMPI, allow to specify processor affinity through pro-
cess binding at different granularities (e.g., core, socket, numa) [6].
Each MPI process and its threads are thus bound to a specific sub-
set of processing resources. Although resulting in severe perfor-
mance penalties, it is also possible to oversubscribe the system, with
multiple processes sharing hardware resources. Moreover, affin-
ity/binding can be set through dedicated options when launching
an MPI program. Consequently, the end developer is responsible
for figuring out the optimal affinity configuration to increase, for
example, the data locality inside its application, avoiding the place-
ment of collaborative threads/processes in distinct NUMA domains,
sockets, or even entirely different nodes. Unfortunately, those hand-
tuned workloads and configurations developed on a specific CPU
architecture won’t necessarily perform as expected on a different
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Figure 1: Bird’s eye view on the architecture of the GMT runtime.

one [14]. This is particularly relevant as it is common practice to de-
velop and validate HPC applications on small(er)-scale systems and
later deploy them in large-scale supercomputers. Another aspect
that may make applications fine-tuning more challenging is that
developers often rely on runtime systems or productivity libraries
that, by design, don’t provide direct control over threading in favor
of high-level APIs. In this paper we discuss the Global Memory
and Threading (GMT) runtime system from the Pacific Northwest
National Laboratory (PNNL) [11]. GMT offers a Partitioned Global
Address Space (PGAS) through global arrays, and, software multi-
threading. The library differentiates between worker, helper, and
comm_server threads, all of which are internally mapped to ac-
tual POSIX threads. A simplified representation of the software
architecture is shown in Figure 1. While runtimes like GMT have
higher-level APIs than barebone MPI, they are still not an ideal
solution for developing complex applications. Several software and
libraries have been built to fill this productivity gap, often relying on
lower-level runtimes. The Scalable High-Performance Algorithms
and Data-structures (SHAD) C++ library offers APIs and semantics
analogous to the C++ Standard Template Library (STL) and uses
GMT as the backend [4]. SHAD’s containers and methods are pur-
posely designed to scale in size and performance on distributed
HPC environments.

In this work, we study how process binding and thread affinity
affect the scalability and performance of applications running on
top of GMT as a representative of distributed C++ HPC runtimes.
To explore multiple configurations, we have introduced additional
workload-agnostic affinity policies in the runtime. We conduct
our experimental campaign on HPC clusters with different proces-
sors, spanning multiple CPU architecture generations. Our analysis
emphasizes the urge for HPC runtimes and libraries to exploit ar-
chitectural awareness and, possibly, to provide the end-users with
utilities to tune affinity at runtime without the need to modify their
codes. Our study indeed indicates that a workload and architecture-
agnostic solution would fail to provide optimal performance out
of the box, further highlighting the need for user-level, runtime
customization options.

2 ENABLING ARCHITECTURAL AWARENESS
IN THE GMT RUNTIME

While offering its own API and PGAS, GMT ultimately maps on
MPI; thus, an application written with the runtime is indeed an

DevCluster Deception Perlmutter

CPU Intel E5-2670 AMD 7502 AMD 7763
Sockets 2 2 2
NUMA/Socket 1 1 4
Core/NUMA 10 32 16
PU/Core 1 1 2
Memory 768 GB 256 GB 512 GB
Network Mlnx MT27500 Mlnx HDR100 HPE Slingshot11

Table 1: Systems Specifications.

MPI program. As such, GMT executables can be launched with dif-
ferent MPI affinity policies, e.g., binding processes to board (entire
node), socket, or NUMA domains. Setting a specific binding for the
processes restricts its available Processing Units (PUs) and, most im-
portantly, changes the locality profiles of containers, such as GMT’s
global arrays or SHAD’s STL data structures. Consider, for example,
the case of a CPU with multiple NUMA domains and processes
bound to board. Memory allocated on a specific NUMA domain
is still accessible by all the threads within the process, potentially
resulting in crossing NUMA boundaries, with significant overall
performance penalties. On the other hand, increasing the number of
processes at will brings diminishing returns because of the cost of
inter-process communication and, in the case of over-subscription,
sharing PUs across processes. While we can explore different bind-
ings directly through MPI’s options, evaluating the effects of thread
affinity requires working directly inside GMT. GMT currently offers
two affinity options for worker, helper, and comm_server threads,
ignoring hardware topology information. We remark that, at run-
time, each process has its independent set of specialized threads.
The overall number of threads is set to the number of the process’
PUs, although the user can override this by oversubscribing the
system. Setting an affinity corresponds to defining, at runtime, the
thread affinity mask, which indicates to the OS scheduler the set
of cores where a thread is allowed to run. GMT’s default affinity
policy sets the mask to be the same as the thread parent process. Al-
ternatively, users can pin each thread to a single, specific core using
the pin policy. However, the legacy implementation has severe limi-
tations since it assumes a linear enumeration of core IDs and a single
PU per core. While these assumptions held for older CPU architec-
tures, they do not for more modern designs, which commonly adopt
different enumeration schemes and include multiple PUs per core,
e.g., when hyper-threading or Simultaneous Multithreading (SMT)
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Figure 2: Execution time (in seconds) on 8 nodes for each system while varying process bindings and affinity policies.

is enabled. To this end, we introduce two additional affinity policies
in GMT. Our implementations use the Portable Hardware Locality
(hwloc) library APIs to capture hardware characteristics, including
topology [3]. The first one, singlified, differs from default by
filtering out from the processes’ affinity masks additional virtual
PUs within the same core hierarchy (e.g., in hyper-threaded cores).
This avoids frequent context switching, which might ultimately
hinder overall performance [5]. Finally, new_pin restricts threads to
a single, physical core exploiting topology information. Our current
implementation assigns the comm_server to the core closest to the
network interface card, when applicable, and pins the rest of the
threads so that helpers and workers are grouped into disjoint sets
of physically adjacent cores.

3 EXPERIMENTAL STUDY
We evaluate the effects of process binding and thread affinity poli-
cies on GMT’s applications performance on three supercomputers
with different CPU architectures employed respectively in an HPC
development cluster (DevCluster), PNNL’s institutional cluster De-
ception and NERSC’s Perlmutter. Table 1 details the specifics of each
system. DevCluster and Deception are equipped respectively with
Intel and AMD-based processors with 2 sockets and one NUMA
domain per Socket. DevCluster’s CPU architecture features 10 cores
per socket, while Deception has 32 cores per socket. Perlmutter’s
compute nodes are instead equipped with two, more recent, AMD
Milan CPUs with SMT enabled resulting in 2 PUs per physical core.
Perlmutter’s CPU configuration is much more complex, with the
design laid out in 4 NUMA domains per socket, for a total of 8
NUMA domains per node, compared to the 2 NUMA domains in
DevCluster and Deception. Finally, while DevCluster and Deception
feature Infiniband, Perlmutter features a Slingshot interconnect.
We use GMT v1.1 with OpenMPI in all experiments. We study the
performance of six workloads implemented using the SHAD C++

library for increased productivity. Black-Scholes [8] is a financial
model used to predict the price of stock options. The application’s
input is a synthetic dataset with 6 billion option values. PI com-
putes an high-precision value of pi with a 10 billion points sim-
ulation. triangle-counting [2] is a structural pattern-matching
algorithm that enumerates triangles in a graph. Here, we consider
a synthetic R-MAT graph with 8 million vertices and 134 million
edges. Finally, we implement three temporal graph homomorphism
kernels from [9] on the ask-ubuntu [7] dataset (159K vertices and
964K temporal edges). In particular, we selected the two motifs
with a simpler structure (motif_1 and motif_2), and the most
time-consuming one to match (motif_5). We select these applica-
tion because of their diverse memory, communication and load
balance profiles. Black-Scholes, PI and triangle-counting all
use global arrays which are evenly distributed. However, while
the first two are mostly embarrassingly parallel, with limited com-
munication, the latter is affected by poor load balance. motif_1,
motif_2 and motif_5 instead, store graphs in sparse hash-based
data structures, and suffer from both load unbalance and high net-
work traffic. For each configuration, we report the average execu-
tion time from 13 consecutive runs, accounting for the first three as
warm-up. We explore MPI process bindings to board, socket, and
NUMA domain. For the latter, we report results only on Perlmutter,
since in DevCluster and Deception, which only have one NUMA
domain per socket, socket and NUMA bindings coincide. Figure 2
plots execution times when running the applications on 8 nodes of
each system. In these experiments, we don’t report execution times
with GMT’s legacy pinning strategy (pin) because it generates,
on the newer generation AMD Milan CPUs, a sub-optimal thread
assignment with heavily degraded performance. At first glance,
we observe that in older or simpler CPU architectures, different
thread affinity policies (i.e., default, singlified, and new_pin)
only marginally affect performance. However, while in most cases
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Figure 3: Scaling impact of board vs. socket bindings under different thread affinity policies for the triangle-countingworkload.

the performance difference is negligible (≤ 1%), we still identify
outliers in this behavior, i.e.motif_2 which exhibits a significant 22%
slowdown when preferring singlified or default to new_pin on
DevCluster. On Deception instead, we observe that for the major-
ity of the workloads (4 out of 6), the worst performing affinity is
new_pin, which in turn provided, on average, a marginal perfor-
mance improvement on DevCluster. This is particularly apparent
with black-scholes and motif_2. On more complex hardware, as
in Perlmutter, affinity impacts performance even more. First, we
notice that each workload’s performance significantly varies with
each affinity, with a much more pronounced difference on several
configurations. Nevertheless, we highlight that on this machine we
were able to identify a configuration that always outperforms the
others, that is, singlified affinity with processes bound to numa,
with speedups up to 4.88𝑥 for motif_2with respect to the default
policy. As for the thread affinity, we highlight that the impact of
process binding on performance is more notable on more modern
architectures, with Deception and Perlmutter typically perfoming
better with finer grained bindings, i.e. to socket/NUMA. This configu-
ration brings significant performance improvements on DevCluster
only for motif_1 and motif_2.

Finally, we evaluate the scaling properties of triangle-counting
on all the systems, varying both the nodes counts (from 2 to 16)
and binding/affinity configurations. Figure 3 shows experimental
results with the new_pin, singlified and the legacy GMT pinning
policy (pin), and, process bindings to socket (x axis) and board (y
axis). We remark that pin’s implementation is based on assump-
tions on the system software (Section 2), which don’t hold in the
configurations under test. In particular, with binding to socket,
this affinity results in multiple threads to be accidentally bound to
the same core, oversubscribing the hardware. For this reason, the
strategy consistently results in degraded performance. Our anal-
ysis highlights two major considerations. Firstly, the data points
have different distributions across different CPUs. This reinforces
that developers must incorporate architecture awareness in their
solutions to exploit the underlying system effectively and ensure
performance portability across different architectures. Secondly,
the workload exhibits a broader range of behaviors as the CPU
architecture becomes increasingly complex.

4 CONCLUSIONS
Modern processor architectures feature novel NUMA domain con-
figurations, hyper-threaded cores and increasing core counts. In this
work, we highlight the relevance of architectural-awareness consid-
erations in modern software stacks, especially in distributed HPC
runtime systems. We take GMT as a representative of those sys-
tems and dissect its thread affinity strategies, introducing two new
architectural-aware policies, namely new_pin and singlified. We
evaluate those policies with different GMT/MPI process bindings on
three HPC clusters with different CPU architectures. Our findings
showcase the inherently multifaced nature of this problem. Indeed,
on one side, the affinity policies and the various process bindings
have less effect on simpler CPU architectures; on the other, as the
topology complexity of the CPUs increases, we observed a varie-
gated range of runtime behaviors. For these systems, depending on
the workload, selecting a proper process binding and thread affinity
is crucial to achieve superior performance. Therefore, while devel-
oping modern HPC runtimes, it becomes essential to incorporate
those aspects into their inner designs to improve the utilization
of the underlining architecture and provide effective performance
portability across different systems. Our experimental study high-
lights that for only one of the tested systems a configuration that
always outperforms the others exists. More in general, the effects
of the various affinity policies are not uniform across the systems
and the workloads. Therefore, we advocate for providing the user
the ability to select the policy that best matches its workload, even
if theoretically ideal configurations for specific machines might
exist.
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