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A B S T R A C T

The adoption of digital technologies in manufacturing enables intelligent dynamic control approaches, at the
cost of increased design complexity. In this paper, ontologies and delta-lenses are exploited to enable multi-
scale models of a manufacturing system to map digital models at different scales and let data flow according
to the level of fidelity. A workflow is designed to assess the capability of models with a lower level of details
to approximate the behaviour of the original system, through the application of a hybrid delta-lens. The
approach is illustrated with a user case and applied to an industrial case, aiming at deciding the positions of
sensors in an assembly line.
© 2021 The Authors. Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction and problem statement

The adoption of digital technologies in the industry has enabled a
wide range of new solutions for the management and control of
manufacturing systems. Specifically, the availability of enabling technol-
ogies like sensors, internet of things, cloud computing and system inte-
gration, usually labelled as industry 4.0, has brought the possibility of
implementing intelligent dynamic control approaches [1]. At the core of
these approaches is the Digital Twin, intended as the coupling of a real
system, its digital counterpart, a set of models and algorithms to support
decisions, a continuous flow of data coming from the field and a control
bus to actuate the decisions in the real system [2].

The benefits derived from this class of approaches have to cope
with the capability and effort to collect and store data from the
manufacturing system and to harmonize information coming from
different sources with different sampling rates and levels of detail.
Indeed, the selection of the level of details (i.e. fidelity) in a digital
model is fundamental because it is related to the trade-off between
the needed accuracy and the cost/effort to collect data (e.g. installa-
tion of sensors and communication networks) and run elaborations
(e.g. optimization, performance evaluation, simulation, planning,
etc.) in the scope of the Digital Twin. In addition, methods and algo-
rithms included in the Digital Twin typically need heterogeneous
data with different level of details.

The integration of data sources and the interoperation of digital
tools lead to the need of multi-scale modelling of manufacturing sys-
tems where complex phenomena are represented at different scales
exploiting data with heterogenous resolutions. This concept has been
exploited in different areas, e.g., production planning [3], gaining fur-
ther relevance with the use of multi-fidelity models, i.e., multiple
coupled models, with different levels of accuracy/complexity accord-
ing to the available data and/or intended use [4]. Low-fidelity models
(LFMs) are obtained by reducing the details of a high-fidelity model
(HFM) associated with a real system [5], enabling rapid analyses and
lower computational loads, at the cost of a possible reduced accuracy.

Multi-scale modelling in a dynamic context, like a manufacturing
system, asks for mechanisms to automatically map digital models at
different scales and let data seamlessly flow between models accord-
ing to the level of fidelity of the models and provides a consistency
check for these mappings.

This paper proposes an approach for multi-scale modelling of
manufacturing systems aimed at the definition of a multi-fidelity sur-
rogate model (MFSM) [5], exploiting information coming from a sim-
plified model of a manufacturing system, together with its mapping
to the full-scale model, to reconstruct the state of the real system.
The proposed approach integrates formal methodologies like ontol-
ogy-based modelling with delta-lenses [6] that are presented in Sec-
tion 2, whereas the overall approach is detailed in Section 3 through
an exemplary user case. A specific focus is given to reverse map the
information related to an LFM back to a HFM grounding on an auto-
matic generation of rule-based transformations.

With respect to manufacturing systems, an application is demon-
strated in Section 4 for selecting where to apply sensors that can moni-
tor the parts flowing through an assembly line. Different configurations
of the sensors trigger different low-fidelity models of the original sys-
tem. Delta-lenses are then used to enrich the information obtained by
the sensors to reconstruct the flow of parts in the real system and to
verify if the reconstructed information is consistent with its characteris-
tics and behavior. In practical terms, this approach provides a way to
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select among different configurations of sensors, those providing the
most reliable information to support the decisions.

2. Foundation methodologies

2.1. Ontology-based modelling of manufacturing systems

The relationship between a low-fidelity and the related high-
fidelity model is generally based on two main criteria, simplification
(e.g. elimination of a component or specific behaviour) and aggrega-
tion (e.g. merging components). Without loss of generality, this work
focuses mainly on the aggregation criterion [4]. The ability of
smoothly switching from a high-fidelity to a low-fidelity model (and
vice versa) is a key enabler to further spread the use of advanced
methodologies and tools that would take advantage of reduced mod-
els while preserving an accurate representation of reality. To guaran-
tee the consistency between models with different fidelity a proper
knowledge representation is needed. Semantic Web and ontologies
can be exploited to enhance data representation and integration
while supporting engineering workflows [7]. In particular an ontol-
ogy-based representation may enable both the definition of high-
and low-fidelity models, together with relations among them to
explicitly define the enforced aggregations and simplifications.

Herein, the adopted factory data model [8] is a modular OWL
ontology based on technical standards, as represented in Fig. 1 with
corresponding prefixes listed in Table 1. Production resources com-
posed of a manufacturing system like machine tools (fa:MachineTool)
and buffers (fa:BufferElement) are defined as classes subsuming
abstract classes (i.e. IfcElement, IfcProduct, Ifc-Object) that are charac-
terized by basic relations. Therefore, elements of a manufacturing
system can be described in terms of decomposition (ifcext:decompo-
sesObject), assignment (ifcext:has-AssignedObject) and connection
(ifcext:isConnectedToElement) relations. E.g., a workstation (fa:Machi-
neTool) can be decomposed by input/output conveyors (ifc:Transpor-
Fig. 1. Excerpt of the factory data model (classes and properties).

Table 1
List of ontology modules with prefix names. All modules are
available online at the same address.

Prefix Prefix IRI of ontology module

fa http://www.ontoeng.com/factory#
ifc http://ifcowl.openbimstandards.org/IFC4_ADD1#
ifcext http://www.ontoeng.com/IFC4_ADD1_extension#
rdfs http://www.w3.org/2000/01/rdf-schema#
ssn http://www.w3.org/ns/ssn/

Fig. 2. The structure of Delta-lens and its composition.
tElement), a working position (fa:BufferElement) and cutting tool (fa:
Tool). In turn, a conveyor can be decomposed by buffer positions (fa:
Buffer-Element) ordered in sequence thanks to connection relations.
Production resources can be assigned to an operation (ifc:IfcTask)
and characterized by the number of parts that can be hosted, e.g.
number of servers (fa:MachineServerN) of a machine or capacity (fa:
BufferCapacity) of a buffer. In turn, operations are characterized by a
task time (ifc:IfcTaskTime) and precedence relations (ifcext:isPredeces-
sorToProcess). Thanks to the adopted data model it is possible to flexi-
bly and iteratively define aggregations of production resources, thus
enabling a consistent multi-scale representation within a single
model. Digital tools can take as input the desired level of details while
providing an output that is placed in the scope of the multi-scale
model. However, even though ontology helps to represent different
levels of details, the transformation between levels is poorly sup-
ported by native OWL reasoning, based on the open-world assump-
tion that does not fit engineering applications [9].
2.2. Delta-lenses

Delta-lenses are mathematical structures under the umbrella of
category theory [6] to capture the fundamental aspects of synchroni-
sation between a pair of systems with different granularity. The goal
of such synchronisation is to coherently propagate updates in one
system to another, and vice versa. From an engineering standpoint, a
lens constitutes a dual mapping between two systems S (source) and
V (view), allowing to focus on a V2S, perform some analyses and then
have the occurred changes reflected in S. As shown in Fig. 2, a lens S
Ð V consists of a get: S!V and a put: S£ V’!S’ function, where the
get extracts a view (V) from a source (S) and put updates the source S
according to a given view update V’ producing a new source S’.

Delta-lens [10] is a type of lenses introducing an inter-model,
called delta, to specify the commonalities and differences between
two models, together with a dual-delta propagation which inputs
and outputs deltas between V and S. Two more functions dget and
dput are also defined. The dput: V’ £ S! S’ is a backward mapping
translation which takes a delta (ΔV) in the view V and produces a
delta (ΔS) in the source S, obtaining S’. It also considers the initial state
of the source model as its second argument to recover information
missing in the view. The dget function translate ΔS in the source S to
ΔV in the view V.

A major advantage of the use of delta-lenses is the possibility to
compose multiple lenses among systems with different level of
details, as shown in Fig. 2. This enables multi-scale modelling making
the transitions between different models efficient and easy to man-
age even in complex cases (multi-level modelling and nesting of
lenses), as the behaviour of the lens structure is predictable and only
the very first delta needs to be computed.

2.3. Multi-scale modelling using ontologies and delta-lenses

The combined use of ontology-based modelling and delta-lenses
can support multi-scale modelling of manufacturing systems.
Grounding on what is described in Section 2.1, a coherent structure
of models with different levels of details can be defined. Thus, for
each pair of models with a higher (HFM) and lower level of fidelity
(LFM), a delta-lens structure HFMÐ LFM can be defined, according to
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Fig. 3. Example of HFM and LFM representation of an assembly system.

Table 2
Performance evaluation of the hybrid delta-lens.

id card aggregation jDjtot stot DLB
UB

508 5 (M1,B1,B2); (M2,M3,B3); M4; (B4,
M5,B5,M6); (B6,M7)

0.0027 0.16 �1, 1

509 5 (M1,B1,B2); (M2,M3,B3); M4; (B4,
M5,B5,M6,B6); M7

6.0783 6.52 �7, 7

510 4 (M1,B1,B2); (M2,M3,B3); M4; (B4,
M5,B5,M6,B6,M7)

6.0785 6.66 �7, 7
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the characteristics of the LFM: a) the LFM is a sub-set of the HFM and
there is a unique dput function for a given get function (one-to-one);
b) the LFM is an abstraction of the HFM and many dput functions are
possible for a given get function (one-to-many), unless the mapping
is defined by additional rules. The definition of an LFM of a
manufacturing system through multiple aggregations lead to the lat-
ter case, therefore a hybrid delta-lens structure is typically defined.

The associated get function is automatically defined in terms of
decomposition relations (ifcext:decomposesObject) between the HFM
and the LFM. The same set of relations supports the definition of the
dput function, incorporating additional backward mapping rules
specified by the user. In the proposed framework, the dput serves for
three main purposes: 1) propagate the ΔV occurring in the LFM into
the HFM and vice versa; 2) evaluate the performance of the delta-
lens checking the resulting changes in the HFM (S’) for any violation
of structure integrity or data constraints and assess the viability to
reconstruct the behaviour of the HFM; 3) use the retrieved full infor-
mation as an input to generate a solution of the backward mapping.

3. Multi-scale modelling and elaboration of monitoring data

The proposed multi-scale approach (Section 2.3) can be applied to
several business processes related to manufacturing systems, ranging
from system design to manufacturing execution. Herein the general
approach is customized for an application case related to the collec-
tion and elaboration of monitoring data coming from sensors
installed in a manufacturing system.

The high-fidelity model (HFM) of the reference manufacturing
system consists of connected resources (machines and buffers) with
the maximum level of details. Consistently with the ontology data
model, buffers are characterized in terms of capacity cj and transport
time tj, while machines in terms of number of servers kj and service
time sj. A low-fidelity model (LFM) can be a partition of the HFM with
resources clustered in mutually exclusive groups.

Raw monitoring data provided by sensors are log of events
describing how parts flow through the system. Events can be defined
as 4-tuple (t, pid, rid, etype), where t is the timestamp, pid is the id of
the part, rid is the id of the resource where the part is hosted, and
etype is the type of event (i.e. entry or exit).

The positioning of sensors determines an LFM of the original system.
Indeed, the interfaces between clusters in an LFM can be interpreted as
the position of sensors monitoring the flow of parts, since the log of
events provides an incomplete description of what happens inside a clus-
ter in terms of flow time of a part at each resource and exact number of
parts hosted by a resource. The log of events is generated by real sensors
during manufacturing execution, but could be similarly generated by a
simulator during the design phase. Fig. 3 shows an example of an assem-
bly system that is jointly represented as a HFM (i.e. machinesM1-M7 and
buffers B1-B6) and a LFM (i.e. clusters of aggregated resources A1-A5). For
instance, a log of events associated with the LFM can tell if at a given time
a part is in cluster A4, but cannot decide if it is hosted by B4, M5, B5 or
M6. The capacity of buffers in HFM ranges between 4 and 10.

3.1. Implementation of hybrid delta-lens

The multi-scale approach consists of the following steps.
Step1: the get function is established by generating an aggregation

map from the HFM to the LFM thanks to the structural link provided
by decomposition relations (see Section 2.1).

Step2: the deltas on the LFM are generated from the associated log
of events. For each time Ti, the delta ΔL

T(i) is the difference between
the current (Ti) and last (T(i-1)) status of LFM, that is ΔLT(i)= difX(LT(i-1),
LTi) where X is a positional-based alignment strategy, matching an
object in the LFM at Ti to that of T(i-1).

Step3: the dput function takes the changes on LFM (ΔLT(i)) as input to
generate changes on the HFM (ΔHT(i)) thanks to information on aggre-
gated resources provided by the HFM together with a backward sched-
uling calculation. For example, whenever a part enters or exits from A4
(Fig. 3), backward scheduling estimates if parts are located on B4, M5,
B5 and M6, while exploiting knowledge derived from the HFM in terms
of capacity c4 and transport time t4 for B4 (c5 and t5 for B5), and number
of servers k5 and service time s5 forM5 (k6 and s6 forM6).

Step4: the output of the dput function is a reconstructed high-
fidelity log of events.

3.2. Performance evaluation

The performance of the hybrid delta-lens is evaluated according
to three criteria: 1) the possible violation of mathematical properties
of the delta-lens; 2) errors and violation of constraints and structural
integrity on both the LFM and HFM; 3) the difference between the
result of the estimated backward mapping and the actual high-fidel-
ity data; this criterion is typically evaluated only during the design
phase when the actual high-fidelity log can be generated via simula-
tion. For criterion 1, a set of delta-lens laws (including PutGet, GetGet,
and identity law [11]) are used. For criterion 2, the maximum capac-
ity of the hosting object (machine or buffer) at each time Ti, and the
minimum possible flow time are verified. According to structural
integrity, also the precedence of visited buffers/machines is verified.
With respect to criterion 3, the actual high-fidelity log and the recon-
structed high-fidelity log are compared in terms of the difference
between the estimated T’i and actual Ti of each part on each buffer/
machine; moreover, for each Ti, the difference between estimated
number of parts N’Ti is compared with the actual number of parts NTi

on each buffer/machine.
For each resource j, jDjj is the mean absolute difference

between the estimated and actual number of parts in the whole
log; jDjtot is the sum of the jDjj for all the resources j and it is
intended to measure the global magnitude of the average errors
resulting from application of the dput function. In a similar way,
given sðDÞj the standard deviation of the difference between the
estimated and actual number of parts in resource j, stot is their
sum over all the resources in the system, thus it is aimed at mea-
suring the global variability of the estimation error. Finally, DLB

UB

indicates the minimum and maximum deviation between esti-
mated and actual number of parts over all the resources in the
system. With reference to the system in Fig. 3, a total of 511 LFMs
with different aggregations have been evaluated and the results
for a subset of them are shown in Table 2, where columns id, card
and aggregation specify the identifier of the LFM, the cardinality
(i.e. number of resources after aggregation) and the operated
aggregations using round brackets, respectively. The LFM in
Fig. 3 (id 508) reduces the resources in the model (5 instead of
13) with jDjtot close to zero parts and a maximum estimation
error of §1 part. A model with the same cardinality but different
aggregations (id 509) entails a worse performance, with jDjtot=
6.08 parts and a maximum estimation error of §7 parts, similar
to the performance of model 510, having the lowest cardinality.
These results demonstrate that it is possible to assess the



Fig. 4. Schematisation of the industrial case (courtesy of Cosberg S.p.A). The squares represent machines and the circles represent buffers.
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approximation of an LFM, thus constituting a valuable tool for selecting
the best LFM according to requirements related to accuracy.

4. Industrial case

The proposed approach has been exploited to support the design
and user phase of monitoring and control methods in an automatic
assembly line producing slides for drawers for the furniture market
[8] with 26 workstations and 21 buffers (Fig. 4).

The first engineering problem is designing where sensors should
be placed to monitor the system. A discrete-event simulator was
employed to generate the full log of events for the HFM by intercept-
ing entry/exit events of parts at all production resources. The log for
an LFM is derived from the full log by deleting events that could not
Table 3
Results for the industrial case (15 iterations). Round brackets indicate the novel
aggregation in the incumbent iteration, whereas square brackets an aggregation
applied during previous iterations.

i n card incremental aggregation jD jtot stot DLB
UB

1 35 45 (B04, M06, B05) 5.9�10�5 0.012 �1,1
2 33 43 (M09, M10, M11) 1.2�10�4 0.023 �1,1
3 31 41 ([M09,M10,M11], M12, B09) 1.2�10�4 0.024 �1,1
4 29 39 ([M09,M10,M11,M12,B09],

M13,B10)
1.2�10�4 0.025 �1,1

5 27 37 ([M09,M10,M11,M12,B09,
M13,B10], M14, B11)

1.2�10�4 0.026 �1,1

6 25 35 (M08, B07, [M09,M10,M11,
M12,B09,M13,B10,M14,
B11])

1.3�10�4 0.028 �1,1

7 24 33 (M03, M04, M19) 1.9�10�4 0.041 �1,1
8 22 31 (M02, B02, [M03,M04,M19]) 2.1�10�4 0.046 �1,1
9 20 29 (B01,[M02,B02,M03,M04,

M19],M20)
2.8�10�4 0.056 �1,1

10 18 27 (M24, B21, M25) 3. 6�10�4 0.071 �1,1
11 16 25 (B18, M22, B19) 4.4�10�4 0.086 �1,1
12 14 23 ([B04,M06,B05], M07, B06) 3.4�10�3 0.155 �1,1
13 12 21 (B14, M18, B15) 5.7�10�3 0.225 �1,1
14 10 19 (M16, B13, M17) 8.3�10�3 0.312 �1,1
15 8 17 (M05, [B04,M06,B05,M07,

B06], [M08,B07,M09,M10,
M11, M12,B09,M13,B10,
M14,B11])

3.8�10�2 0.702 �1,2

Fig. 5. Search space of the sequential approach.
have been caught because of resource aggregation, thus emulating
the lack of a sensor.

Following the approach described in Section 3, different positions
of the sensors result in corresponding LFMs. To cope with the infeasi-
bility of enumerating and assessing all the possible LFMs, an iterative
approach is used. Starting from the HFM, LFMs are generated by
aggregating three consecutive resources. All LFM options are evalu-
ated in line with what is described in Section 3.2 and the one demon-
strating the best performance in terms stot is further processed by
operating additional aggregations. This sequence is iterated multiple
times to identify the LFM with lower cardinality (i.e., a reduced num-
ber of sensors) able to correctly estimate the actual state of the HFM.
For each iteration (i), Table 3 reports the number of alternative LFMs
evaluated (n), the cardinality (card), the incremental aggregation oper-
ated on the best LFM selected and its performance (jDjtot , stot , DLB

UB). At
the end of iteration n.14 the number of sensorized resources is
reduced by about 60% (from 47 to 19) with jDjtot= 0.008 parts,
stot = 0.312, and a maximum estimation error of (�1, 1). The best can-
didate LFM of the next iteration would significantly increase the esti-
mation error. The sequential steps of the search are shown in Fig. 5
where the red points represent the best LFMs for each iteration (see
Table 3), highlighting that the performance of LFMs with the same
cardinality can be considerably different.
An additional advantage of the approach is related to the user
phase of the assembly line, when installed sensors monitor the sys-
tem according to the selected LFM. The corresponding delta-lenses
developed at the design phase can be exploited to elaborate monitor-
ing data and derive a surrogate model providing reliable information
with a higher fidelity, e.g., estimating the number of parts in unmoni-
tored parts of the system to support the implementation of release
control policies [8].
5. Conclusions

This paper demonstrated how ontology-based approaches cou-
pled with delta-lenses support multi-scale modelling of manufactur-
ing systems. Further development will address the definition of more
complex and customised dput functions, as well as test the nesting of
delta-lenses for more levels of aggregation. The Huddersfield team
would like to acknowledge the funding support from the ESPRC: EP/
S001328, EP/P006930/1 and EP/R024162/1
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