US 20230403029A1

a2y Patent Application Publication o) Pub. No.: US 2023/0403029 A1

a9y United States

Ferrari et al.

43) Pub. Date: Dec. 14, 2023

(54) LOW-DENSITY PARITY-CHECK DECODER
WITH SCALING TO REDUCE POWER
CONSUMPTION

(71) Applicant: Nokia Solutions and Networks Oy,
Espoo (FI)

(72) Inventors: Marco Ferrari, Milano (IT); Alberto
Tarable, Alpignano (IT); Luca
Barletta, Milano (IT); Giancarlo
Gavioli, Usmate Velate (IT); Luca
Gabriele Razzetti, Sesto San Giovanni
(IT); Carlo Costantini, Casatenovo
(IT); Sara Caobianco, Robbiate (IT);
Daniele Cucchi, Milano (IT); Davide
Cattaneo, Seregno (IT)

(73) Assignee: Nokia Solutions and Networks Oy,
Espoo (FI)

(21) Appl. No.: 18/206,161

Publication Classification

(51) Int. CL
HO3M 13/11 (2006.01)
(52) US.CL
CPC ... HO3M 13/1105 (2013.01); HO3M 13/1151
(2013.01)
(57) ABSTRACT

A method and apparatus are provided for decoding a plu-
rality of codewords from a received binary bitstream. A first
decoding stage processes each of the codewords with a first
iterative decoding algorithm based on forward error-correc-
tion information of the codewords. A second decoding stage
processes selected ones of the codewords with a second
iterative decoding algorithm, which is based on forward
error-correction information in the selected ones of the
codewords. Each codeword selected for the second decoding

(22) Filed: Jun. 6, 2023 stage is selected in response to an exit from the decoding of
that codeword without the production of a decoded code-
(30) Foreign Application Priority Data word. The second iterative decoding algorithm is configured
to enable a greater number of iterations of decoding per

Jun. 8, 2022 (EP) wceveveviviivivieiiene EP22177819.4 codeword than the first iterative decoding algorithm.

101

102

! /

104 /
103 N SCALING LUT #1
MIN [Lin] >\_
N
LLR MEMORY D SELECTION NULL SCALING LUT |

N\ 105 \\
Le MEMORY N SCALING LUT #2 \ 106
109\ 107 N 108

EARLY TERMINATION TEST




Patent Application Publication  Dec. 14, 2023 Sheet 1 of 3 US 2023/0403029 A1

FIG. 1
101

/102

raAny
A%

103 104 SCALING LUT #1
N MIN [Lin] /</
LLR MEMORY SELECTION NULL SCALING LUT

SCALING LUT #2

\y

Le MEMORY
T \107

/N

109 N
EARLY TERMINATION TEST

FIG. 2

s 200

SET FIRST
SCALING MAP SUCCEED

;205

1 ITER

TERMINATION
TEST
MAX—ITERATION
NUMBER

s 225

210

NULL ITER AND
SET SECOND
SCALING MAP

s 230

1 ITER

TERMINATION
TEST

MAX-ITERATION
240 NUMBER

245
FAIL /




Patent Application Publication  Dec. 14, 2023 Sheet 2 of 3 US 2023/0403029 A1

FIG. 3

WER
=)

I
X
/ &
i

[

OI
(7]
= |
/

10-4 — | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

SERIAL DECODING ITERATION / MAX. NR. OF ITERATIONS [%]




Patent Application Publication  Dec. 14, 2023 Sheet 3 of 3 US 2023/0403029 A1

FIG. 4A

430
g 441
410
405 ol

400 90°
AN HYBRID “‘% P
443
L0 Y~ O] SIT’(I).IvﬁER W~
HYBRID 430
420 / 444

w5’ w57 i %o/
430

FIG. 4B
441
442 ~ 271 ANALOG-TO-DIGITAL CONVERSION
_o—] 450
443 X
4447
DESKEWING,
ORTHOGONALIZATION, CHANNEL EQUALIZATION
AND NORMALIZATION 460
455
INTERPOLATION FREQUENCY AND
AND CARRIER PHASE
TIMING RECOVERY ESTIMATION
465 470

SYMBOL ESTIMATION
FEC, AND DECODING DATA OUT )
475




US 2023/0403029 Al

LOW-DENSITY PARITY-CHECK DECODER
WITH SCALING TO REDUCE POWER
CONSUMPTION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to Patent Applica-
tion EP 22177819.4, filed in the European Patent Office on
Jun. 8, 2022.

TECHNICAL FIELD

[0002] The subject matter of the present disclosure relates
to methods and apparatus for decoding messages that have
been optically transmitted using low-density parity-check
(LDPC) codes.

[0003] ART BACKGROUND

[0004] This section introduces aspects that may be helpful
to facilitating a better understanding of the invention.
Accordingly, the statements of this section are to be read in
this light and are not to be understood as admissions about
what is prior art or what is not the prior art.

[0005] In digital communication, and especially in coher-
ent optical communication, techniques of forward error
correction (FEC) techniques are usefully employed to
recover from errors in transmitted digital data that occur due
to random noise and other transmission impairments. For-
ward error-correcting codes add redundancy to the transmit-
ted messages. At the receiver, the redundancy typically
makes it possible for a decoder to detect and correct at least
some of the errors without requiring the messages to be
retransmitted.

[0006] Forward error-correcting codes are broadly subdi-
vided into convolutional codes, which operate on bit streams
of arbitrary length, and block codes, which operate on bit
sequences, or “blocks”, of fixed length. Low-density parity-
check (LDPC) codes, which are block codes, have attracted
interest because, among other things, they can be decoded
with low complexity; more specifically, they can be decoded
in time that grows linearly relative to the block length. Some
LDPC codes also offer advantages in performance at high
code rates and under channel conditions of relatively low
noise.

[0007] At the receiver, LDPC-encoded messages are typi-
cally decoded by a soft-decision decoder, which uses tech-
niques of statistical inference in an iterative process to
decide on the corrected bit values. Notionally, each bit of a
received codeword has a reliability metric, which is indica-
tive of a level of belief that the true bit value is 0. In each
iteration, this metric for the respective bits is updated, using
parity constraints on the bits that have been built into the
code. The updated reliability metrics can be invoked to
assign a 1 or a 0 to each bit. If the updated binary values
satisfy the parity condition, the process terminates for that
codeword. Otherwise, the process continues for another
iteration, unless a preset limit on the number of iterations has
been reached.

[0008] The above description of a decoding process is
meant only as a broad outline offered for pedagogical
purposes. In practical applications, there are numerous
variations and alternative implementations that deviate in
large and small ways from the steps described above.
[0009] One well-known type of algorithm for an LDPC
decoder is the log-likelihood ratio sum-product algorithm

Dec. 14, 2023

(LLR-SPA). LLR-SPA algorithms can achieve excellent
capacity performance. However, they compute reliability
metrics in terms of log-likelihood ratios (LLRs). These
computations have relatively high complexity, which can
lead to undesirably high decoding delay. This problem has
been addressed by various lower-complexity approxima-
tions. One of the most important of these is the Min-Sum
(MS) approximation, which estimates the log-likelihood
ratio using a minimum-search operation in place of the more
complex exact computations, which involve the hyperbolic
tangent and its inverse function.

[0010] Although algorithms based on the MS approxima-
tion are useful, the approximation leads to some loss of
information. Further, treating an estimate as though it rep-
resented a true probability tends to degrade the performance
of the decoder.

[0011] Various design modifications have been proposed
to reduce the error rate and improve performance, while
avoiding an unacceptable increase in the decoding complex-
ity. In one such approach, referred to as Scaled Min-Sum,
the estimated LLR is modified by applying a scaling func-
tion to it in order to decrease the error rate. In some
examples, a mapped value of the LLR under the scaling
function may be obtained by applying a multiplicative
coeflicient obtained from a look-up table (LUT). In other
cases, alternative methods for obtaining the mapped value
may be used. Generally, the LLR is mapped under the
scaling function to a smaller value. Thus, for example, it is
multiplied by a scaling coefficient that is less than 1.
[0012] Asis known in the art, an optimum scaling function
would depend on the signal-to-noise ratio (SNR) of the
transmission channel and on the structure of the particular
LDPC code. Scaling can also be designed to change at each
iteration and to adapt to the evolution of the probability
density of messages over the several iterations, so that in
practice, the scaling function depends on the iteration num-
ber. Because the scale factors affect the rate of convergence
of the iterative procedure, the scaling function may also be
designed according to a specified number of iterations to
convergence. Because of these and other complexities, it is
known in the art to implement the scaling function in the
form of a look-up table (LUT).

[0013] Investigators have proposed various scaling meth-
odologies that range from exhaustive searching for suitable
scale factors to more analytical approaches for constructing
a scaling function. For example, A. Alvarado et al., “Cor-
recting Suboptimal Metrics in Iterative Decoders,” 2009
IEEE International Conference on Communications (2009)
1-6, describes a methodology reliant on the distribution of
the soft information exchanged in the iterative process.
[0014] Some investigators have proposed a methodology
in which the scale factor is a constant multiplier for a given
set of parameters such as the code, the channel SNR, and the
iteration number.

[0015] LDPC codes are well-suited for use in digital
communication, among other applications, because they can
approach the best achievable performance with reasonable
computational complexity. In selecting an error-correcting
code, a system designer typically considers a tradeoff
between complexity, which affects chip area and power
consumption, and performance, understood as the ability to
correct errors in critical noise conditions. LDPC codes are
valuable in this regard because they can work with decoders
of different types.



US 2023/0403029 Al

[0016] As noted above, an LDPC decoder can be designed
with complexity that increases only linearly with the block
size. However, the price of this advantage is the need for
iterations in the decoding process. Power consumption
increases linearly with the number of iterations. Hence, if all
iterations consume the same amount of energy, fewer of the
iterations will typically mean less power consumption by the
receiver to correct the errors. In view of this, system
designers may attempt to minimize the iteration number, as
averaged over many different data blocks, in order to econo-
mize on power consumption.

[0017] The MS approximation, scaling, and other refine-
ments have been proposed as approaches for reducing the
required number of iterations. However, there remains a
need for new approaches that can further increase the power
efficiency of LDPC decoding, while maintaining a desired
level of decoder performance.

SUMMARY OF THE DISCLOSURE

[0018] In a first aspect, the disclosed subject matter relates
to method for decoding a plurality of codewords from a
received binary bitstream. The codewords may, for example,
be LDPC-encoded codewords.

[0019] In a first decoding stage, the disclosed method
processes each of the codewords with a first iterative decod-
ing algorithm based on forward error-correction information
of the codewords. In a second decoding stage, the method
processes selected ones of the codewords with a second
iterative decoding algorithm, which is based on forward
error-correction information in the selected ones of the
codewords. The first and second decoding stages may, for
example, each process codewords with a scaled MS decod-
ing algorithm.

[0020] Each codeword that is selected for the second
decoding stage is selected in response to the event that the
decoding of that codeword is exited without producing a
decoded codeword. The second iterative decoding algorithm
is configured to enable a greater number of iterations of
decoding per codeword than the first iterative decoding
algorithm.

[0021] In implementations, each of the selected ones of
the codewords is selected in response to an indication, in the
processing of the first decoding stage, that a preset maxi-
mum number of iterative decoding attempts has been made
thereon without producing a successtul decoding.

[0022] In implementations, individual ones of the code-
words are checked periodically during the processing of the
first decoding stage to determine whether their decoding has
been successful; and for each individual one of the code-
words, the processing of the first decoding stage is exited
upon the earlier of two events, namely, when a determination
is made that the individual one of the codewords has been
successfully decoded, or when a determination is made that
a preset maximum number of decoding iterations has been
reached for the individual one of the codewords.

[0023] Inimplementations, the first decoding stage and the
second decoding stage each process codewords with a scaled
MS decoding algorithm having a respective scaling strategy;
and the scaling strategy for the second decoding stage is
designed to enable a greater number of decoding iterations
than the scaling strategy for the first decoding stage.
[0024] In implementations, at least one of the first and
second decoding stages uses flood scheduling or sequential
scheduling.

Dec. 14, 2023

[0025] In implementations, the second decoding stage is
designed to decode with a smaller error rate than the first
decoding stage, at a given channel quality.

[0026] In implementations, the first decoding stage pro-
cesses codewords with a scaled MS decoding algorithm that
takes values indicative of a scaled posterior LLR from a first
look-up table (LUT); the second decoding stage processes
codewords with a scaled MS decoding algorithm that takes
values indicative of a scaled posterior LLR from a second
look-up table (LUT); the first and second LUTs are each
designed to implement a respective scaling strategy; and the
scaling strategy implemented by the second LUT enables a
greater number of decoding iterations per codeword than the
scaling strategy implemented by the first LUT.

[0027] In implementations, each codeword that is in-
process in the first decoding stage undergoes at least one
decoding iteration;

[0028] each decoding iteration in the first decoding
stage updates posterior LLR values for bits of the
in-process codeword; and before any selected one of
the codewords is processed with the second iterative
decoding algorithm, the bits of the selected one of the
codewords are reset to initial LLR values. The initial
LLR values are LLR values that were associated with
the respective bits prior to processing in the first
decoding iteration in the first decoding stage.

[0029] In various implementations, a received, LDPC-
encoded, data-modulated optical signal is converted to the
binary bitstream in a coherent optical receiver. The binary
bitstream is then advanced to the first decoding stage.
[0030] Inasecond aspect, the subject matter of the present
disclosure relates to apparatus comprising a decoder circuit
and a codeword memory. The decoder circuit is configured
to decode codewords using an iterative algorithm, i.e., an
algorithm that is performed in decoding iterations. The
codeword memory is configured to store a portion of the
codewords, i.e., some or all of the codewords, in response to
said portion having failed to be decoded by the decoder
circuit, in a first decoding stage, after a preset maximum
permitted number of the decoding iterations of the algo-
rithm. The decoder circuit is further configured to process
codewords of the stored portion in a second decoding stage
in response to retrieving the codewords of said portion from
the codeword memory.

[0031] In implementations, the decoder circuit is further
configured to exit the decoding iterations on each codeword
that is in-process in the first decoding stage upon the earlier
of two events, namely, a determination that the in-process
codeword has been successfully decoded, and a determina-
tion that a preset maximum permitted number of decoding
iterations has been reached thereon. The decoder circuit is
further configured to store the in-process codeword in the
codeword memory for processing in the second decoding
stage, if the preset maximum permitted number of decoding
iterations has been reached thereon.

[0032] In implementations, the apparatus further com-
prises an LUT circuit and a memory for storing a first
look-up table (LUT) and a second look-up table (LUT). The
LUT circuit is configured to retrieve a set of values indica-
tive of scaled posterior LLRs from the first look-up table
memory and to retrieve a different set of values indicative of
scaled posterior LLRs from the second look-up table
memory. The LUT circuit is further configured to provide
values from the first LUT to the decoder circuit for use in the



US 2023/0403029 Al

first decoding stage, to provide values from the second LUT
to the decoder circuit for use in the second decoding stage,
and to reset bits of each codeword retrieved from the
codeword memory to initial LLR values before each said
retrieved codeword is processed in the second decoding
stage. The initial values are respective values that the bits of
the retrieved codeword had prior to the processing thereof in
the first decoding stage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1 is a simplified flowchart illustrating a pos-
sible architecture for a serial-C, discrete MS decoder.
[0034] FIG. 2 is a flowchart illustrating an exemplary
method of operating the decoder of FIG. 1.

[0035] FIG. 3is a graph showing the evolution of the word
error rate (WER) as the relative number of iterations
increases in example implementations of a decoding scheme
as described here.

[0036] FIG. 4A is a simplified, functional block diagram
showing the optical front end of a polarization and phase
diversity, coherent optical receiver in a non-limiting
example.

[0037] FIG. 4B is a simplified, functional block diagram
of the functional subsystems of a coherent optical receiver
that may be implemented in a digital signal processor (DSP).

DETAILED DESCRIPTION

[0038] Incorporation by reference. The entirety of each of
the following publications is hereby incorporated herein by
reference:

[0039] A. Alvarado et al., “Correcting Suboptimal Metrics
in [terative Decoders,” 2009 IEEE International Confer-
ence on Communications (2009) 1-6;

[0040] E. Sharon, S. Litsyn and J. Goldberger, “Efficient
Serial Message-Passing Schedules for LDPC Decoding,”
in IEEE Transactions on Information Theory, vol. 53, no.
11, (Nov. 2007) 4076-4091;

[0041] Emna Ben Yacoub, “Matched Quantized Min-Sum
Decoding of Low-Density Parity-Check Codes”, Proc.
2020{EEE Information Theory Workshop (ITW), (11-15
Apr. 2021); and

[0042] A. Balatsoukas-Stimming and A. Burg, “Density
evolution for min-sum decoding of LDPC codes under
unreliable message storage”, IEEE Commun. Letters,
18(5) (May 2014) 849-852.

[0043] Technical background. The codewords of an LDPC

code of length n and rank k, i.e., of an (n, k) code, are strings

of n bits each. The codewords must all satisfy a parity
condition, which can be formulated in terms of a sparse,

binary-valued matrix H. The matrix H represents a set of n-k

parity-check constraints, each of which is a requirement that

some selection from the full sequence of codeword bits must
sum to 0, modulo-2.

[0044] At the receiver, the parity-check constraints can be

used to correct bit errors in the received block. Each bit

position in the received block is subject to some subset of the

n-k constraints, and each constraint involves a different

subset of the bit positions in the block. Each constraint may

be interpreted as a requirement for the affected bits to sum
to 0, modulo 2. A decoder may use an iterative procedure to
update information about each of the bits in the received
block in repeated cycles, until the constraints are all satis-
fied, or until a limit on the number of iterations is reached.

Dec. 14, 2023

[0045] A soft-decision decoder, as noted above, uses tech-
niques of statistical inference to decide on the corrected bit
values. This inference is based on reliability metrics, such as
LLRs, that are updated in each of multiple iterations, subject
to the parity constraints built into the code. Because each
constraint dictates that some collection of bits must sum to
0, it follows that the reliability metric for a given bit can be
updated by considering the reliability metrics of all of the
other bits that relate to the given bit through a parity-check
constraint.

[0046] LDPC decoders implement a sub-category of pro-
cesses known as belief propagation (BP) algorithms. LLR-
SPA, for example, is a type of BP algorithm. A typical
feature of a BP algorithms is that, conceptually, it involves
the passing of messages between nodes of a bipartite graph.
In the LDPC decoder, messages are passed, conceptually,
between variable nodes, representing the bits of the received
block, and check nodes, representing the constraints. Each
check node has a neighborhood, consisting of all of the
variable nodes subject to the constraint that check node
represents. Likewise, each variable node has a neighbor-
hood, consisting of all of the check nodes to whose respec-
tive constraints that variable node is subject.

[0047] In graphical terms, each check node is connected
by an edge of the graph to each variable node in its
neighborhood, and each variable node of the graph is
connected by an edge to each check node in its neighbor-
hood. Conceptually, the messages, which contain reliability
metrics, are effectively passed between variable nodes and
check nodes along the edges of the graph.

[0048] Another feature of a BP algorithm is that for each
of the variables to be inferred, it calculates marginal prob-
ability distributions that are conditional on observed values.
In the graphical conceptualization described above, the
check nodes effectively calculate, in each iteration, marginal
probability distributions that are the basis for the reliability
metrics returned to the respective variable nodes.

[0049] For numerical stability and for economy in com-
putational time, it is advantageous to perform the necessary
statistical calculations in the logarithmic domain. Hence, the
distributions are typically described using log-likelihood
ratios (LLRs).

[0050] We will now briefly discuss the LLLR-SPA. We
introduce the following notation:

[0051] R, denotes the log-likelihood ratio (LLR) of bit
i derived from the observations.

[0052] At iteration k, E; . is the LLR of bit i which
is sent from check node j to variable node i.

[0053] It is defined if and only if the variable node i and
the check node j are connected by an edge.

[0054] At iteration k, M, is the LLR of bit i which
is then sent from variable node i to check node j. It is
defined if and only if the variable node i and the check
node j are connected by an edge.

[0055] E; ., sometimes referred to as the “L-value”,
is given by:

® _ otanh! e
Ej5; = 2tanh I_Lﬂ tanh] 2 K

[0056] Mjei(k) is given by:
M

i O=RAT, E; . (In

i i



US 2023/0403029 Al

[0057] As noted above, the Min-Sum (MS) approximation
reduces the complexity of the above computations by using
a minimum-search operation in place of the more complex
computations involving the hyperbolic tangent and its
inverse function.

[0058] In the MS approximation, the updating rule in
Equation (I) is replaced with the following:

Ej~>i(k):Hi’=i SgU(M'ei'(kil))mini'=im’1j<~i'(kil)‘- I1m

[0059] As explained above, this approximation can
degrade the performance of the decoder. Scaled Min-Sum
algorithms have been designed to decrease the error by using
a scaling function, which is typically implemented by a
look-up table (LUT). An example approach based on scaling
will be described below.

[0060] In each iteration of a known message-passing
schedule for LDPC decoders known as a “flooding” sched-
ule, all the variable nodes, and then all the check nodes, pass
new messages to their neighbors. An alternative type of
schedule, known as a “serial” schedule, is also known in the
art. Serial schedules enable immediate propagation of mes-
sages, which can result in faster convergence.

[0061] A serial-C schedule, for example, is based on a
serial update of the messages effectively received and sent
by the check nodes. A sequential ordering is devised for the
check nodes. Effectively, for each check node, in turn, the
neighboring variable nodes send their messages to the check
node, and then the check node sends its messages to the
neighboring variable nodes. The procedure then passes to
the next check node in sequence.

[0062] FIG. 1, for example, is a simplified flowchart
illustrating a possible architecture for a serial-C, discrete MS
decoder. To simplify the discussion, we consider a single
check node CN;. Memory 103 holds the posterior LLR of
each variable node connected to CN;. Each of these posterior
LLRs is computed, in iteration k, by the summation at block
101 of input messages L,,, input to the check node at iteration
k, and output messages Le output by the check node at
iteration k.

[0063] Memory 107 holds a set of extrinsic LLRs,
denominated Le, which are sent from the check node to the
variable nodes in its neighborhood. For the kth iteration,
each Le is derived from the quantity MinlL,, |=min,,IM,_ .
=Dy, as will be explained further below. The quantities
Lm:Mjﬂ.,(k) are the input messages sent to check node j
from the variable nodes in its neighborhood.

[0064] At the kth iteration, the decoder accesses memory
103 and reads, from there, the posterior LLRs of the variable
nodes connected to CN,. For each variable node i, the
previous check-node output Le for variable node i is sub-
tracted from the posterior LLR at node 104. Thus, there is
computed, at node 104, an input set of extrinsic LLRs that
are sent in messages to the check node from the variable
nodes in its neighborhood.

[0065] This previous check-node output, referred to here
as Le, is, to within a sign, a scaled version of the quantity,
Min IL,, |=min,,_,IM,_, * I

(] g’
[0066] New IL, | values are computed, and for each vari-
able node in the CN, neighborhood, a new Min IL,,| is
computed at block 105. The quantity Hi,#isgn(Mjei,(k)) Min
IL,,! is scaled at block 102, 106, or 108, and stored in Le
memory 107 as a new check-node output. The scaling will

Dec. 14, 2023

be discussed in more detail below. The LLR memory 103 is
updated. At the end of the iteration, an early termination test
is performed at block 109.

[0067] Simulation studies have indicated that serial decod-
ers can often converge in about half the number of iterations
that are needed with flooding schedules. In practice, this can
reduce the amount of processing hardware that is needed by
about half] and it can also reduce the memory requirements.
LDPC decoding with a serial-C schedule is discussed, for
example, in E. Sharon, S. Litsyn and J. Goldberger, “Effi-
cient Serial Message-Passing Schedules for LDPC Decod-
ing,” in IEEE Transactions on Information Theory, vol. 53,
no. 11, (Nov. 2007) 4076-4091.

[0068] Scaling functions that seek the best achievable
performance are typically designed with the smallest scaling
coeflicients, so that the messages are updated with a greater
degree of caution Performance, in this regard, is typically
measured by the convergence threshold, i.e., the lowest
channel quality that still allows the decoder to converge.
Channel quality is typically expressed as signal-to-noise
ratio (SNR), although it may equivalently be expressed as
E/N, i.e., as the energy per bit, divided by the noise power
spectral density. More formally, then, the convergence
threshold is the minimum SNR value beyond which the
probability mass functions (pmfs) of the messages evolve
toward error-free distributions within the desired number of
iterations. A pmf, sometimes referred to as a “discrete
density function”, is a function that gives the probability that
a discrete random variable is exactly equal to some value,
such as the value O or 1 in the present example.

[0069] However, cautious scaling with small coefficients
tends to increase the average number of iterations needed to
complete the decoding process. Larger scaling coefficients,
on the other hand, tend to speed up the decoding process,
although there is a penalty, because sometimes convergence
may be lost, leading to a degradation in performance. This
tradeoff has been addressed by proposals to employ a
dynamic scaling strategy in which the scaling can vary from
iteration to iteration in a manner that adapts as the prob-
ability density of the messages evolves.

[0070] Inthis regard, Discrete Density Evolution (DDE) is
a technique that tracks the average probability density
functions (pdfs) of the messages effectively exchanged
between the variable and check nodes as they change from
one iteration to the next. DDE assumes that all messages are
independent, as it operates in the limit of infinite block
length. The scaling function can be involved because it maps
the probabilities of pre-scaling values into those of post-
scaling values.

[0071] The application of DDE begins with the pmfs of
the input messages, which typically are obtained from a
channel model. A typical model for this purpose is the
well-known channel with additive white noise, i.e., the
AWGN model. The DDE can be extended to a scaled-MS
decoder, for example, by taking into account the scaling law
which maps the probability of pre-scaling values into that of
post-scaling values. The paper by E. Ben Yacoub and the
paper by A. Balatsoukas-Stimming et al., both cited above,
may be of particular interest in regard to applications of
DDE for scaling design.

[0072] Doubly scaled decoding. We have devised a new
approach to the scaling problem that has the potential to both
reduce computational complexity and provide high perfor-
mance, relative to some conventional scaling strategies. Our



US 2023/0403029 Al

new approach may be useful with various LDPC codes.
Also, the new approach may be useful with various scaling
designs. Although an example provided below uses DDE to
design the scaling for serial-C scaled MS decoding, the
example is for purposes of illustration and does not limit the
scope of our inventions.

[0073] Various embodiments of our method employ a
combination of two scaling strategies. At an initial stage, a
scaling, which typically converges rapidly, is used for
decoding codewords with a relatively small average number
of'iterations. A second decoding stage is entered after a reset,
which is described below. The second decoding stage is used
to decode a portion, typically some, but possibly all, of the
codewords. The scaling in the second decoding stage typi-
cally achieves a desired performance, such as a desired
convergence SNR threshold. The second decoding stage will
generally employ a cautious decoding strategy, in the sense
that it is designed for a greater number of iterations per
codeword than the first decoding stage, but is also expected
to achieve a higher level of performance.

[0074] The initial stage employs a test to determine when
a codeword has been successfully decoded, so that the
decoding iterations for that codeword can be halted. The
various embodiments pass to the second stage only those
codewords that failed to be successfully decoded in the
initial stage. In typical instances, the number of codewords
that are successfully decoded in the first stage is expected,
by the inventors, to far exceed the number of codewords that
are passed to the second stage in the various embodiments.
Hence, a desired performance level is expected to often be
achieved with a lower average number of iterations than
would be required if all codewords were subjected only to
the second stage of decoding.

[0075] In an illustrative example, both stages are per-
formed by serial-C scaled-MS decoding. Turning again to
FIG. 1, it will be seen that the Min IL,,| output from block
105 is scaled by a scaling function implemented with a
coeflicient or mapped value selected from one of three
LUTs, labeled in the figure as “LUT #1” (block 102). “null
scaling LUT” (block 106), and “LUT #2” (block 108). LUT
#1 is used in the stage-1 decoding, and LUT #2 is used in the
stage-2 decoding.

[0076] In the serial-C scaled-MS decoder, a step of run-
ning a single iteration with null scaling coefficients is
performed to reset, to their original input values, those
messages that failed to decode at the initial decoding stage.
That is, those messages are reset to the original input
messages. Accordingly, the null scaling LUT is selected for
a single iteration after the initial stage 1, so as to reset those
messages to their original input values before commencing
the cautious decoding of stage 2.

[0077] FIG. 2 provides a flowchart illustrating an exem-
plary method of operating the decoder of FIG. 1. The
flowchart is an example and does not exclude numerous
alternative ways in which the illustrated method could be
implemented by a skilled person having the knowledge of
the present disclosure.

[0078] Prior to performing the method of FIG. 2, a scaling
map, which implements a scaling function, is defined at
block 200 for LDPC decoding stage-1. For example, the
scaling map may be stored in a LUT.

[0079] At block 205, the method of FIG. 2 includes
performing a first or subsequent iteration of the stage-1
decoding.

Dec. 14, 2023

[0080] At block 210, after each stage-1 iteration, the
method of FIG. 2 includes performing an early termination
test to determine whether the stage-1 decoding has success-
fully decoded a codeword, so that decoding can be termi-
nated for this codeword. The early termination test involves
checking the decoding result for the codeword of the present
iteration against the set of parity checks for the correspond-
ing LPDC code, as has been schematically explained in our
description, above, of the bipartite graph representation of
iterative decoding schemes for LPDPC codes. A decoding
result for a codeword passes the early termination test if the
decoding result satisfies all of the parity constraints of the
specific LDPC code.

[0081] If the results of the early termination test indicate
a decoding success, the method includes outputting the
decoded codeword, at block 215.

[0082] If the results of the early termination test do not
indicate a decoding success, the method includes determin-
ing, at control block 220, whether a preset maximum num-
ber of stage-1 decoding iterations has been reached for the
particular codeword. If the preset maximum number has not
been reached, a new iteration of stage-1 decoding is initiated
on the decoding result of the present iteration, at block 205.
If the preset maximum number of iterations has been
reached, the method includes, at block 225, performing a
single decoding iteration with null scaling coefficients. The
effect of this iteration is to reset the codeword to its
as-received condition, i.e., its condition prior to stage-1
decoding. In this condition, the codeword is suitable for
stage-2 decoding.

[0083] As also indicated at block 225, the method further
includes defining the scaling map for the stage-2 decoding.
At block 230, the method includes performing a first or
subsequent iteration of the stage-2 decoding, with its respec-
tive scaling, on the reset codeword output from block 225.
[0084] After each iteration of stage-2 decoding, the
method includes performing an early termination test, as
indicated at block 235. The early termination test involves
checking the codeword bits resulting from the present itera-
tion against the set of parity checks for the corresponding
LPDC code, as schematically explained above in reference
to bipartite graph representations of iterative decoding
schemes for LDPC codes.

[0085] If the result of the early termination test of block
235 indicates a successtully decoded codeword, the method
outputs the decoded codeword at block 215 as the stage-2
decoding result for this codeword. If the result of the early
termination test of block 235 does not indicate a successful
decoding, the method includes, at block 240, determining
whether the preset maximum number of iterations for
stage-2 decoding of this codeword has been reached. If the
preset maximum number of iterations has not been reached,
the method includes returning to block 230 to start a new
stage-2 decoding iteration. If the preset maximum number of
iterations for stage-2 decoding of this codeword has been
reached, the method includes indicating, at block 245, a
decoding failure, for this codeword.

[0086] In embodiments of the above-described two-stage,
iterative LDPC decoding method, the inventors expect that
most decoding results will satisfy the early termination test
in the stage-1 decoding prior to reaching the preset maxi-
mum number of iterations. Thus, the average number of
iterations for decoding a codeword is likely to be reduced by
the two-stage method. The cost is that in general, the number



US 2023/0403029 Al

of iterations will be higher for the second decoding stage
than for the first decoding stage. However, since most
codewords are expected to be decodable by the stage-1
decoding, the increased length of the stage-2 decoding of
“some” codewords is expected to cause only a modest
increase in the average number of iterations needed to
decode a codeword, while achieving a high performance
level.

[0087] Implementations details. As explained above in
reference to FIG. 2, respective LUTs are defined, in example
implementations, for the stage-1 decoding and for the
stage-2 decoding. Any of various methodologies may be
employed for defining the LUTs. It is desirable, however,
that the stage-2 LUT should be designed for a greater
number of iterations than the stage-1 LUT. Generally, a
scaling strategy designed for a greater number of iterations
would be expected to result in a smaller error rate, such as
a smaller word error rate (WER), for a given channel quality.
A combination of lower complexity in stage 1 with better
error performance in stage 2 will often be advantageous.
[0088] In simple cases, the WER can be predicted from
theory for a given code and decoder, given sufficient knowl-
edge of the channel characteristics. More generally, the
WER can be estimated by simulation. Thus, it will in at least
some cases be possible to design or select a stage-2 scaling
strategy that is expected to yield a desired, relatively high
level of error performance.

[0089] We will now comment on methodologies for defin-
ing a scaling function. As explained above in reference to
FIG. 1, the check-node output Le, sent from the jth check
node to the ith variable node in each iteration of the scaled
MS algorithm, is derived from the quantity, Min
ILmlzmin#iIM]—ei,(k_l)l. More specifically, the check node
output Le is a scaled version of the quantity Min [L,,|, but
with a sign obtained by multiplying together the signs of all
of the messages input to check node j from every variable
node in its neighborhood except for variable node i.
[0090] That is. Le is a scaled version L' of the quantity
L=E; Hi(k)zl'li,#sgn(Mje,(k_l)) Min IL,,l, obtained by a
mapping of this quantity under a scaling function f(L). The
scaling function f(I.) may be non-linear. It may depend on
the edge under consideration, on the iteration number, and
on the channel SNR.

[0091] The inventors believe that one way to find a
suitable scaling function f(L) is to choose one that satisfies
the following condition, which is discussed in the above-
cited publication by Alvarado et al.

Pr(L|c=1)

=1
L) c=0)

=S,

Here, c is the value of the variable node connected to the
edge. More specifically. “c=1" is the hypothesis that the true
value of the transmitted bit is 1, and “c=0" is the hypothesis
that the true value of the transmitted bit is 0. The conditional
distribution of L can be obtained from the DDE at each
iteration. The function f(L) determines the LUT.

[0092] As mentioned above, the stage-2 decoding strategy
is desirably designed for a greater number of iterations than
the stage-1 decoding strategy. To achieve this, one could, for
example, design the stage-1 scaling function by running the
DDE at a larger of two SNR values, so that convergence is
obtained in a smaller number of iterations, and by computing

Dec. 14, 2023

the corresponding function f(L). The same procedure could
be repeated at a lower SNR value, so that convergence is
obtained in a larger number of iterations, and thus using the
corresponding function f(L.) as the cautious scaling func-
tion.

[0093] It is noteworthy that often, hardware constraints
limit the allowed number of iterations. A designer of a
decoding algorithm would typically aim for the lowest
convergence SNR threshold that is attainable under this
constraint. Accordingly, the designer would aim for a LUT
suitable for reaching this constrained objective.

[0094] Example

[0095] FIG. 3is a graph showing the evolution of the word
error rate (WER) as the relative number of iterations
increases. The WER is plotted as a function of progress
toward a reference number, which is a maximum number of
iterations. The progress is expressed as the ratio, in percent,
of the current serial iteration number to the reference num-
ber. The data are for a serial-C, doubly scaled Min-Surn
(DS-MS) decoder at a reference channel SNR that is the
same for all three plots.

[0096] Three sets of data have been plotted in FIG. 3. To
generate each of the plots, first-stage decoding was per-
formed with an LUT designed with DDE for three cases. The
characteristic number of iterations in the decoding strategy
increases from case to case in the order, Case I (curve 301),
Case II (curve 302), Case III (curve 303). The first-stage
decoding was followed by second-stage decoding with fixed
scaling.

[0097] For comparison, we have also plotted the WER
obtained in a single decoding stage, at the same channel
quality, with an LUT designed with DDE for 60% (curve
311) and for 100% (curve 312) of the maximum number of
iterations.

[0098] The figure shows that all three of the double-scaled
schemes reach the same final WER of about 1.6x107> that is
achieved by the 60% single-stage decoder (curve 311).
However, it will be seen that the doubly-scaled decoders
obtain this result in two steps. That is, a fraction of the
received codewords are decoded earlier, after 20%-30% of
the reference number of iterations, whereas the rest are
corrected after 65%-85% of the maximum number of itera-
tions.

[0099] The fraction of early-decoded codeword is clearly
largest (90%) for curve 303, which corresponds to Case III
with the largest characteristic number of iterations. By
contrast, the two-stage decoding is almost irrelevant for
Case [ (curve 301).

[0100] It is notable in this regard that, given a particular
target SNR for the communication channel, it is possible to
seek a tradeoff between the characteristic number of itera-
tions in the stage-1 decoding and the characteristic number
of iterations in the stage-2 decoding that best economizes on
the total number of decoding iterations. Such a tradeoff can
be sought, for example, by using simulations.

[0101] System implementation. FIG. 4A is a simplified,
functional block diagram showing the optical front end of a
polarization and phase diversity, coherent optical receiver in
a non-limiting example FIG. 4B is a simplified, functional
block diagram of the functional subsystems of a coherent
optical receiver that may be implemented in a digital signal
processor (DSP). The functional subdivision represented in
FIG. 4B is only one possible illustrative example, and is not
meant to be limiting.



US 2023/0403029 Al

[0102] Turning first to FIG. 4A, the receiver is shown as
having an input port 400 for connecting an input optical fiber
to a polarization beam splitter (PBS) 405, which directs
different polarization components of the input optical signal
to 90° hybrid 410 and to 90° hybrid 415, respectively. A laser
420 provides a local oscillator signal, which is coupled into
optical power splitter 425. The power splitter directs a
portion of the local oscillator signal to each of the two 90°
hybrids. Each hybrid mixes the incoming optical signal, at
one of the two respective polarizations, with the optical
signal from the local oscillator. The optically mixed signals
are directed to the photodiodes 430 for coherent optical-to-
electrical transduction. The photodiodes are shown in the
present example as organized into four pairs of balanced
photodetectors, having respective outputs 441-444. Effec-
tively, these four outputs provide an in-phase signal channel
and a quadrature signal channel for each of the two polar-
ization components. These four output signals are analog
electrical signals.

[0103] Turning now to FIG. 4B, the four outputs 441-444
are shown coupled into functional block 450, which per-
forms analog-to-digital conversion (ADC). The digital out-
put from block 450 is processed at block 455 for deskewing,
orthogonalization, and normalization. These operations are
for temporal alignment of the digital signals, maximization
of signal-to-signal independence, and correction of signal
amplitude. The output from block 455 is digitally equalized
at block 460 to correct for channel impairments, processed
at interpolation and timing recovery block 465 to correct for
timing errors, and processed at frequency and carrier phase
estimation block 470 to compensate for carrier phase error.
[0104] Atblock 475, the conditioned and corrected signal,
as digitally demodulated at blocks 455-470, undergoes sym-
bol estimation, forward error correction, and decoding to
produce a signal output representing a best estimate of the
bit sequence encoded by the transmitter. Forward error
correction and decoding, may, for example, be performed in
accordance with the methods described hereinabove.

We claim:

1. A method for decoding a plurality of codewords from
a received binary bitstream, comprising:

in a first decoding stage, processing each of the code-

words in said plurality with a first iterative decoding
algorithm based on forward error-correction informa-
tion of the codewords; and
in a second decoding stage, processing selected ones of
the codewords of said plurality with a second iterative
decoding algorithm based on forward error-correction
information in the selected ones of the codewords,
wherein:
the selected ones of the codewords are each selected in
response to the decoding of one of the codewords, in
the first decoding stage, being exited without producing
a decoded codeword; and

the second iterative decoding algorithm has a fixed scal-
ing and is configured to enable a greater number of
iterations of decoding per codeword than the first
iterative decoding algorithm.

2. The method of claim 1, wherein each of the selected
ones of the codewords is selected in response to an indica-
tion, in the processing of the first decoding stage, that a
preset maximum number of iterative decoding attempts has
been made thereon without producing a successful decod-
ing.

Dec. 14, 2023

3. The method of claim 1, wherein the codewords from
the received binary bitstream are L.DPC-encoded code-
words.

4. The method of claim 1, wherein the processing of the
first decoding stage further comprises:

periodically checking individual ones of the codewords
during the processing of the first decoding stage to
determine whether decoding thereof has been success-
ful; and

for each individual one of the codewords, exiting the
processing of the first decoding stage upon the earlier
of: a determination that the individual one of the
codewords has been successfully decoded, and a deter-
mination that a preset maximum number of decoding
iterations has been reached for the individual one of the
codewords.

5. The method of claim 1, wherein the first decoding stage
and the second decoding stage each process codewords with
a scaled MS decoding algorithm.

6. The method of claim 1, wherein:

the first decoding stage and the second decoding stage
each process codewords with a scaled MS decoding
algorithm having a respective scaling strategy; and

the scaling strategy for the second decoding stage is
designed to enable a greater number of decoding itera-
tions than the scaling strategy for the first decoding
stage.

7. The method of claim 1, wherein at least one of the first
and second decoding stages uses flood scheduling or sequen-
tial scheduling.

8. The method of claim 1, wherein the second decoding
stage is designed to decode with a smaller error rate than the
first decoding stage, at a given channel quality.

9. The method of claim 1, wherein:

the first decoding stage processes codewords with a scaled
MS decoding algorithm that takes values indicative of
a scaled posterior LLR from a first look-up table
(LUT);

the second decoding stage processes codewords with a
scaled MS decoding algorithm that takes values indica-
tive of a scaled posterior LLR from a second look-up
table (LUT);

the first and second LUTs are each designed to implement
a respective scaling strategy; and

the scaling strategy implemented by the second LUT
enables a greater number of decoding iterations per
codeword than the scaling strategy implemented by the
first LUT.

10. The method of claim 1, wherein:

each codeword of said plurality that is in-process in the
first decoding stage undergoes at least one decoding
iteration;

each decoding iteration in the first decoding stage updates
posterior LLR values for bits of the in-process code-
word; and

before any selected one of the codewords is processed
with the second iterative decoding algorithm, the bits of
the selected one of the codewords are reset to initial
LLR values with which said bits were associated prior
to processing in the first decoding iteration in the first
decoding stage.



US 2023/0403029 Al

11. The method of claim 1, further comprising:

in a coherent optical receiver, converting a received,
LDPC-encoded, data-modulated optical signal to said
binary bitstream; and

advancing the binary bitstream to the first decoding stage.

12. An apparatus, comprising:

a decoder circuit configured to decode codewords using
an algorithm performed in decoding iterations; and

a codeword memory configured to store a portion of the
codewords in response to said portion having failed to
be decoded by the decoder circuit, in a first decoding
stage, after a preset maximum permitted number of the
decoding iterations of the algorithm;

wherein the decoder circuit is configured to process
codewords of said stored portion in a second decoding
stage with a fixed scaling in response to retrieving the
codewords of said portion from the codeword memory.

13. The apparatus of claim 12, wherein:

the decoder circuit is further configured to exit the decod-
ing iterations on each codeword that is in-process in the
first decoding stage upon the earlier of: determining
that the in-process codeword has been successfully
decoded, and determining that a preset maximum per-
mitted number of decoding iterations has been reached
thereon; and

the decoder circuit is further configured to store the
in-process codeword in the codeword memory for

Dec. 14, 2023

processing in the second decoding stage, if the preset
maximum permitted number of decoding iterations has
been reached thereon.

14. The apparatus of claim 12, further comprising:

a memory for storing a first look-up table (LUT) and a
second look-up table (LUT); and

an LUT circuit configured to retrieve a set of values
indicative of scaled posterior LLRs from the first
look-up table memory and to retrieve a different set of
values indicative of scaled posterior LLRs from the
second look-up table memory, wherein:

the LUT circuit is further configured to provide values
from the first LUT to the decoder circuit for use in the
first decoding stage, and to provide values from the
second LUT to the decoder circuit for use in the second
decoding stage;

the LUT circuit is further configured to reset bits of each
codeword retrieved from the codeword memory to
initial LLR values before each said retrieved codeword
is processed in the second decoding stage; and

for each retrieved codeword, the initial values are respec-
tive values that the bits of the retrieved codeword had
prior to the processing thereof in the first decoding
stage.



