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Abstract: This study proposes a simulation-based methodology for estimating the energy saving
achievable through the implementation of a just-in-time morning ramp-up procedure in a warehouse
(equipped with a heat pump). In this methodology, the operation of the heating supply unit each
day is initiated at a different time, aiming at achieving the desired setpoint upon (and not before) the
expected arrival of the occupants. It requires the estimation of the ramp-up duration (the time it takes
the heating system to bring the indoor temperature to the desired setpoint), which can be provided
by machine learning-based models. To justify the corresponding required deployment investment, an
accurate estimation of the resulting achievable energy saving is needed. Accordingly, physics-based
energy behavior simulations are first performed. Next, various ML algorithms are employed to
estimate the ramp-up duration using the simulated time-series data of indoor temperature, setpoints,
and weather conditions. It is shown that the proposed pipelines can estimate the ramp-up duration
with a mean absolute error of about 3 min in all indoor spaces. To assess the resulting potential energy
saving, a re-simulation is conducted using ML-based ramp-up estimations for each day, resulting in
an energy savings of approximately 10%.

Keywords: smart building; machine learning; ramp-up duration estimation; warehouse HVAC load;
energy optimization

1. Introduction

Allocating resources to the logistics industry enhances economic efficiency, decreases
transportation costs, and fosters improvements in productivity and resource allocation [1].
Economies with expanding and well-established logistics networks are seeing growing
financial benefits. However, the operations of logistics also play a major role in the emis-
sions of Greenhouse Gases (GHGs) [2]. Transportation and storage of raw materials and
completed goods are examples of logistics operations that contribute significantly to emis-
sions and are important sources of environmental pollution in global supply chains [3].
Although the transportation industry has received the majority of study attention, it is
becoming more widely acknowledged that tackling emissions throughout a company’s
whole supply chain is the most efficient way for businesses to lower the carbon footprint
of their goods and services [4]. Logistics facilities like warehouses account for a sizeable
amount of carbon dioxide emissions linked to logistics [5].

Warehouses, with their high thermal inertia and vast spaces, would require a signifi-
cant amount of energy for cooling or heating [6]. It is reported that the Heating, Ventilation,
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and Air Conditioning (HVAC) contribute to approximately 30% of a warehouse’s total en-
ergy expenses [7]. The expansive sizes and unique structural characteristics of warehouses
inherently suggest greater susceptibility to leaks and energy wastes, thereby necessitating
the implementation of comprehensive energy-saving measures.

1.1. Nighttime Setback Scheduling as an Existing Conventional Solution

Nighttime setback scheduling is an Energy Conservation Measure that involves adjust-
ing the cooling and heating setpoints to higher and lower levels, respectively, during periods
when the space is vacant [8]. Implementing temperature setbacks at night could lead to
significant energy savings in buildings that remain unoccupied during nighttime hours,
including commercial or public buildings, schools, etc. In warehouses where heating is
used for occupant comfort, nighttime temperature setbacks can be implemented, provided
they do not compromise comfort and ensure that both the warehouse and offices reach a
comfortable temperature when occupants arrive. Therefore, owing to the challenges in
identifying the optimal duration for transitioning from nighttime temperatures to daytime
setpoints, operators are compelled to opt for conservative approaches with shorter setback
periods [9] to guarantee the thermal comfort of the occupants. Nevertheless, excessively
lengthy setback periods result in occupant discomfort, while overly short periods would re-
sult in achieved savings that would fall short of the potential amount that could be attained
if an optimal duration for nighttime setbacks were established. This holds particular signif-
icance for warehouses, given their considerable HVAC energy usage. Furthermore, due to
the substantial thermal inertia and increased amount of losses in these particular buildings,
the duration it takes for the HVAC system to adjust the temperature from nighttime to
comfortable setpoints (ramp-up duration) will vary considerably depending on outdoor
temperature and solar radiation. Consequently, it is not feasible for the operator to set the
accurate nighttime setback duration for the storage and office areas each day. A literature
review of studies focused on improving the nighttime setback scheduling approach is
provided in the following section.

1.2. Literature Review of Studies Focused on Improving the Nighttime Setback Scheduling Method

Various works have been conducted on improving the nighttime setback scheduling
methodology. Gao et al. [10] introduced a self-programming thermostat designed to
identify setback times by utilizing motion sensors in rooms and magnetic reed switches
on doors to gather occupancy statistics and recommend a schedule to the user. However,
this straightforward approach had limitations, as it did not consider the ramp-up duration
and the physical characteristics of the thermal zones. To determine the optimal setback
time, a simulation study was conducted by Seem et al. [11] utilizing the Modelica and
Matlab Simulink [12,13]. They aimed to predict the ramp-up time and assess the impact
of the unoccupied control strategy, zone orientation, controller calibration, building mass,
and climate. The least squares regression was performed to determine the parameters for
each considered model. However, a limitation of this work is the necessity for detailed
data on building mass, zone orientation, and controller calibration. An alternative, more
streamlined approach would rely solely on measurable values obtained from IoT sensors,
irrespective of the construction and orientation of each thermal zone. Amasyali et al. [14]
proposed a data-driven method to assess the potential of occupant behavior modeling in
reducing energy consumption and improving comfort. The proposed method developed
machine learning-based occupant-behavior-sensitive prediction models for the prediction
of cooling and lighting energy consumption and thermal and visual occupant comfort.
However, the work did not attempt to disaggregate the energy saving from adjusting the
HVAC setpoints (starting moment of the setback period) in the mornings. In an attempt to
determine the optimal start time for a heating system in a building.

Yang et al. [15] developed an optimized Artificial Neural Network (ANN). In this study,
learning data for various building conditions were collected through simulation to predict
room temperature. The data were then fed into the ANN learning program developed
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in the study, and the ANN learning was executed to determine optimal values for the
learning factors. Moon et al. [16] introduced a predictive algorithm designed to identify the
optimal starting time for the nighttime setback schedule during the heating season. This
approach utilized an artificial neural network model to predict the ideal initiation time for
setback temperature, aiming to maintain occupant comfort while enhancing energy efficiency.
The study demonstrated that the primary variables influencing the predictions were indoor
temperature, outdoor temperature, and the temperature difference from the setback point.
Similarly, in the context of a cooling system, a predictive model using an artificial neural
network was proposed by Moon et al. [17] to determine the required time for increasing the
current indoor temperature to the setback temperature (start moment of the setback period).
The model was developed and tested for performance using TRNSYS 16.1 and MATLAB 14.
They achieved a prediction accuracy with a root mean square error (RMSE) of 0.9097 when
the model’s outputs were compared to the simulated results. To extract the occupancy profile
for estimating the nighttime setback schedule and save energy, Nweye et al. [8] proposed a
methodology based on clustering Wi-Fi-derived occupancy profiles. The obtained results
were shown to be effective, saving a significant amount of energy both in summer and fall
on a university campus. However, the work lacked an estimation of the duration required
for the HVAC system to bring each thermal zone to the desired setpoint.

1.3. Just-in-Time Morning Ramp-Up Implementation as an Alternative Solution

An alternative solution to this problem is the implementation of an automatic system
that modifies the timestamp of initiation of the operation of the heating supply unit in each
day (and each thermal zone), such that the desired setpoint is reached once (and not before)
the occupants are expected to arrive. Such a system requires the accurate estimation of
the ramp-up duration, which can be provided by machine learning models [18]. Machine
learning-based pipelines can be trained to estimate the duration of the ramp-up in each
thermal zone in a building on a daily basis. Due to the significant variation in ramp-
up duration across different thermal zones and throughout the year, implementing this
methodology could yield substantial energy savings, especially in warehouse buildings.

1.4. The Key Objective and the Main Contributions of the Present Study

Utilizing the solution suggested in the previous subsection can lead to a significant
energy saving. However, the implementation of such a system requires an investment
to cover the costs associated with the model development and real-time deployment,
along with possible hardware-related costs such as upgrading or installing a building
management system (in case it is missing). Thus, in order to justify the corresponding
required investment (before the experimental deployment) and assess the corresponding
techno-economic feasibility by determining the resulting payback period, an accurate
estimation of the expected energy saving is necessary. Accordingly, in the present paper,
a physical simulation-based approach is first utilized to model the thermal behavior of the
building, which permits extracting the data concerning the ramp-up interval.

On the other hand, the achieved energy saving (through the planned deployment) is
also affected by the accuracy of the machine learning-based ramp-up duration estimation
models and the corresponding error, as in the case of low estimation accuracy, a signifi-
cant safety margin should be considered, which limits the obtained energy saving. Thus,
to achieve a realistic estimation of the achievable energy saving, using the data extracted
from the conducted simulations, machine learning-based pipelines that estimate the dura-
tion of the ramp-up interval are developed. The required safety margin is then determined
by employing the maximum under-estimation error (considering two different scenarios).
Next, based on the ramp-up duration that is estimated by the ML model and after adding
the required safety margin, the optimal operation initiation timestamp of each thermal zone
is identified. Finally, another simulation is performed, in which, on each day, the heating
supply unit is initiated in the timestamp that is specified in the previous step. Using the
results of the latter simulation, the resulting energy saving that can be achieved is estimated.
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It is worth mentioning that the just-in-time morning ramp-up methodology for conditioned
warehouses has not been investigated in the literature. Furthermore, no previous study
proposed a methodology for estimating the impact of deploying this methodology in
buildings. This study thus addresses both of these shortcomings in the literature.

2. Methodology

This section outlines the detailed methodology of the predictive modeling of morn-
ing ramp-up to improve energy performance in a warehouse building in Bologna, Italy.
First, the physics-based simulation of the warehouse provides the energetic behavior of the
different zones of the building. Next, machine learning pipelines with different training ap-
proaches (offline and sliding window) and state-of-the-art ML models are utilized to achieve
the most accurate predictions for the duration of the morning ramp-ups. The average saving
window using different safety margin scenarios is obtained, showing an opportunity for
considerable energy savings in the building. Finally, to assess the energy-saving potential,
the developed approach (adjusted daily heating start times based on ML predictions) is de-
ployed on the warehouse zones using a re-simulation of the thermal behavior of the building.
Furthermore, Figure 1 presents a schematic representation of the adopted methodology.

Figure 1. Schematic representation of the proposed methodology.

2.1. Case Study

A physics-based co-simulation using EnergyPlus V9.4 [19] and its Python API [20] has
been utilized in the current work. The reference warehouse building model is developed
under the ANSI/ASHRAE/IES Standard 90.1 [21] in Bologna, Italy. The example values of
the parameters used in the warehouse physics-based modeling and simulation processes
are provided in the Appendix A. The energetic co-simulation considers the winter season
heating scenario from November 2022 to April 2023 and provides data with a frequency
of 60 timestamps per hour (1-min intervals), which is the maximum possible frequency to
define in EnergyPlus, in order to increase the accuracy of the prediction of thermal behavior
and its impact on energy consumption. The building model consists of two zones (office
and storage) with different heating strategies. A detailed description of the building model
and the simulation parameters are provided in Table 1.

The default starting times for air conditioning in the office and storage areas are fixed
and designed to meet user comfort requirements in the coldest days of the year, taking into
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account the capacity of the HVAC system designed for the space. Similar to the office zone,
the storage zone is also utilized for peaking activities, which thus requires heating. In this
work, a water-to-air heat pump is used as the heating source which is connected to the
heating coil of an air handling unit (of a centralized air-based system) that is supplying
warm air to the building. A water-to-air heat pump is an integrated system comprising
a fan, water-to-air cooling and heating coils, and an auxiliary heating coil. This device
transitions between cooling and heating modes based on the specific demands of the zone
it serves. On the load side (air), it incorporates an on/off fan, a cooling coil, a heating coil,
and a supplemental gas or electric heating coil. Conversely, the source side (water) connects
to a condenser loop featuring a heat exchanger or a heating source, such as a boiler, and
a cooling source, such as a chiller. This setup ensures efficient temperature regulation by
transferring heat between water and air, tailored to the zone’s requirements [19,20]. An
illustration of the connections between the heat pump’s source and load sides in a ground
heat exchanger configuration can be found in EnergyPlus documentations [20].

Table 1. Description of the buildings used in the physical-based simulations in EnergyPlus.

Building Type Warehouse
Location Bologna, Italy
Simulation Period November–April
Time Step 1 min
Status New Building
Total Floor Area 4835 m2

Heating type Water-to-air Heat Pump
Thermostat—Offices 21 ◦C Heating
Thermostat—Storage 19 ◦C Heating

2.2. Physics-Based Energy Simulation and Extracting Ramp-Up Durations and Related Features

A standard methodology has been adopted to determine the durations of morning
ramp-ups in the baseline scenario. As mentioned in Table 1, the thermostats for office
(zone 1) and storage (zone 2) are set to 21 ◦C and 19 ◦C, respectively, and these setpoint
temperatures should be reached before or (in the worst case) on the arrival of the workers
to the building in the morning. The working schedule of the zones for the working days
(Monday until Friday) starts at 7 a.m. and lasts until 5 p.m. For technical reasons, such
as reducing the risk of operation challenges, there is a setpoint temperature of 11 ◦C for
heating during the unoccupied hours of weekdays and the whole period of weekends.

The physics-based simulation is conducted to extract the durations of morning ramp-
ups, which is the time required by the heating system to raise the temperature of the zone
from nighttime setback temperature to comfort temperature. It should be noted that in
the baseline scenario, the starting time is fixed (default schedule of the building) and the
duration of ramp-up varies based on indoor and outdoor conditions. For the office zone,
the HVAC system is scheduled to start heating at 5:20, with a maximum ramp-up duration
of 100 min in the worst-case scenario. On the other hand, despite the lower setpoint
temperature of the storage zone, the heating system of the storage has to start earlier (at
4:04) than the office. The higher ramp-up duration of the storage (164 min in the worst-case
scenario) is due to the significantly higher surface area of this zone. Table 2 presents a
summary of the weather conditions of the simulated warehouse model.

Table 2. Ranges of the weather-related parameters in the simulation.

Mean Minimum Maximum

Outdoor Temperature [◦C] 4.6 −6.0 20.7
Relative Humidity [%] 40.0 12.2 80.4

Wind Speed [m/s] 0.8 0.0 9.3
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2.3. Feature Extraction Procedure

In supervised machine learning algorithms, features represent the input variables em-
ployed to train prediction models. An initial investigation is conducted to identify the key
factors influencing the heating of the thermal zones. These factors include the heat input from
the fan coil unit, the rate of thermal losses, and the thermal behavior of the zones. First, the iden-
tification process demonstrates that the time-series data of indoor temperature and its lagged
values represent the thermal behavior of the zone and the rate of heat loss. These lagged values
are included for up to 30 min before based on their importance in prediction, as determined
through an initial feature correlation investigation. Subsequently, the outside temperature,
a key factor affecting the required heating load, is included. Similarly, the lagged values of
the outdoor temperature are incorporated to account for their delayed impact. Furthermore,
since the developed pipelines estimate the duration of the ramp-up using input parameters
available just before the ramp-up procedure begins, solar irradiation is excluded from the data.
This exclusion is due to the fact that the sun does not rise before the ramp-up on most days
and because of the delayed impact of solar radiation on indoor temperature. To account for
the thermal interactions between zones and eliminate the need for detailed floor plan data,
the mean temperature of building zones at the time of ramp-up is included in the dataset. This
approach effectively captures the thermal influence of adjacent zones on each other. Lastly,
to account for the thermal inertia of the zones, the temperature slopes over the last 15 and
30 min are included in the dataset. These slopes provide critical information about the rate of
temperature change, reflecting the zones’ thermal response characteristics. Table 3 provides
the features extracted from the simulations to be utilized as input for training the ML models.
The training dataset consists of these nine features as the input variables and the ramp-up
duration as the target variable, with each day represented as a separate row in the dataset.

Table 3. List of extracted features for each zone of the warehouse model.

Indoor conditions Zone temperature
Mean temperature of the zones

Outdoor conditions Outdoor temperature
Lagged outdoor temperature (−15 min)
Lagged outdoor temperature (−30 min)

Thermal inertia of the zones Temperature Slope (last 15 min)
Temperature Slope (last 30 min)
Lagged zone temperature (−15 min)
Lagged zone temperature (−30 min)

2.4. Machine Learning Modeling

The obtained dataset from the simulation contains the duration of the morning ramp-
up and its corresponding features, which are mentioned in Section 2.2, for each day. In this
case, each row of the dataset contains the data regarding a day of the investigated period,
and each row can be treated independently. The data set is divided using a random
seed into a training/validation set and a test set with 80% and 20% share, respectively.
In order to develop a generalized predictive model and prevent overfitting in the prediction
procedure, k-fold cross-validation is used to partition the training/validation set into five
folds, where each fold is an equal-sized data subset. In this way, four folds are used as
training and one as a validation data subset, and the prediction error is calculated. This
iterative process is repeated five times (k = 5), and the validation/training error is obtained
as the average of these five iterations. Eventually, the trained model performs prediction on
the test set, and the corresponding error is obtained. It should be noted that using a single
random seed to split the dataset into training/validation and test sets can introduce biases.
To prevent this potential issue, five different random seeds are used iteratively. The dataset
is partitioned into a unique training/validation and test subset for each seed, allowing the
models to be trained and tested on five different datasets. This process ensures a more
reliable evaluation by providing an average test accuracy across multiple datasets.
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In this work, to find the most accurate model for predicting the ramp-up duration, six
different machine learning algorithms, including linear regression, Random Forest (RF),
XGBoost, Extra Trees (ETs), Support Vector Machine (SVM), and K Nearest Neighbors
(KNN), using offline and sliding window training approaches are employed, and their per-
formances are compared. Finally, the accuracy for each model, considering both validation
and testing datasets, is demonstrated using two accuracy metrics: Mean Absolute Error
(MAE) [min] and Mean Absolute Percentage Error (MAPE) [%].

2.5. Machine Learning Training Approaches

In this study, both offline and sliding window training approaches have been utilized.
In offline learning, the entire dataset is utilized to train the predictive model in its entirety and
is advantageous for its ease of implementation, in case the entire dataset is available upfront.
However, a shortcoming of this training method is that the model is not updated when new
data becomes available. As a result, it cannot retrain to incorporate changes in underlying
patterns, potentially leading to outdated and less accurate predictions over time [22].

On the other hand, sliding window approaches provide a dynamic solution for process-
ing sequential data by focusing on a subset of recent observations or a ‘training window’.
This training window moves along the data stream, utilizing the most recent data for
iteratively retraining the models, capturing temporal dependencies, and updating the
model. These methods are particularly valuable for real-time applications or scenarios
with significant changes in the data over time. However, selecting an appropriate window
size is crucial, as it requires balancing the need to capture sufficient context to maintain
computational efficiency [23].

The present work uses offline and online (sliding window) training approaches to
obtain the most accurate pipeline for ramp-up duration estimation. Three different window
sizes are tested for the sliding window approach, and the one that leads to the most accurate
performance is decided. The trained and tested window sizes are 5, 10, and 15 days.
Further improvements can be obtained by systematically optimizing the training size of the
window [24]. As mentioned before, the online (sliding window) approach can significantly
reduce the computational cost and make the pipeline less dependent on data availability.

3. Complementary Concepts

This section provides an overview of the concepts used in this study, including six
different machine learning regression algorithms and two evaluation metrics employed to
assess the accuracy and reliability of the ML models. The models employed in this research
were sourced from the Python libraries Scikitlearn [25] and XGBoost [26].

3.1. Machine Learning Regression Algorithms

The algorithms chosen for this study are selected to represent a diverse array of ma-
chine learning categories and families. This selection is based on the proven effectiveness of
these algorithms in the context of predicting the thermal behavior within building systems,
using the results of a previous study (Alawadi et al. [27] dedicated to comparing the perfor-
mance of different ML algorithms in this area, along with the results obtained by the authors
in their previous works ([28,29]). Simpler models, such as linear regression and k-nearest
neighbors, are included to provide a baseline, taking into account their straightforward
implementation. More advanced models are chosen for their ability to handle non-linear
relationships, manage high-dimensional data, maintain robustness against overfitting,
and the capability of performing well while being trained with small to medium-sized
datasets. These characteristics ensure that the chosen algorithms can effectively address
the complexities and nuances inherent in predicting heating duration in buildings.

3.1.1. Linear Regression (LR)

Linear regression is a fundamental statistical method used to model and analyze the
relationship between a dependent variable and one or more independent variables. Linear
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regression aims to establish a linear equation that predicts the dependent variable based on
the independent variables by minimizing the residual sum of squares, thereby quantifying the
difference between the observed data and the predicted values [30]. This method assumes a
linear relationship between the variables, which is mathematically represented as Equation (1):

y = b0 + b1x1 + b2x2 + · · ·+ bnxn (1)

The equation features a dependent variable, y, as well as independent variables, x1,
x2, . . . , xn, and coefficients, b0, b1, b2, . . . , bn.

3.1.2. Random Forest Regressor (RFR)

The Random Forest Regressor (RFR) is a machine-learning algorithm that operates
by constructing multiple decision trees during training. Each tree is trained on a random
subset of the data and a random subset of the features. Predictions are made by averag-
ing the outputs of all the individual trees, which helps reduce overfitting and improves
generalization. RFR is particularly well-suited for datasets with complex relationships and
high-dimensional spaces [31].

3.1.3. Extra Tree Regressor (ETR)

The Extra Tree Regressor (ETR) is a machine learning algorithm that belongs to the
ensemble learning family, similar to random forest. It builds multiple decision trees using
random subsets of the training data and averages the predictions from these trees to enhance
robustness and accuracy [32]. The level of randomness introduced in the split selection pro-
cess distinguishes Extremely Randomized Trees (ETs) from random forests. While random
forests search for the best possible thresholds to split each node, Extremely randomized
trees choose random thresholds for each feature. This increased randomness helps to reduce
variance and can lead to faster training times compared to random forests [33].

3.1.4. XGBoost Regressor (XGBR)

Similar to the random forest and extra trees, XGBoost (Extreme Gradient Boosting) is
also a powerful tree-based machine learning algorithm, but it enhances performance by
using gradient boosting. It builds and trains weak decision trees sequentially, each time
utilizing the errors from previous iterations to improve the subsequent tree’s performance.
This iterative process allows XGBoost to effectively minimize the overall error of the model,
leading to high prediction accuracy [26].

3.1.5. K Nearest Neighbors Regressor (KNNR)

The K Nearest Neighbors (KNN) regressor is a non-parametric algorithm used for
regression tasks in machine learning, which operates on the principle that similar data
points should have similar output values. In KNN regression, predictions are made by
averaging the target values of the k-nearest neighbors in the training set [34]. The choice
of k (the number of neighbors) is crucial as it influences the smoothness and accuracy of
the model’s predictions. Smaller values of k lead to more complex models with potentially
high variance (overfitting), whereas larger values of k result in smoother predictions that
may introduce bias (underfitting). The proper selection of k is essential for balancing the
trade-off between bias and variance to achieve optimal model performance [35].

3.1.6. Support Vector Regressor (SVR)

The Support Vector Regressor (SVR) is a type of Support Vector Machine (SVM)
designed specifically for regression tasks. In contrast to traditional linear regression models,
which aim to minimize the error between predicted and actual values, SVR seeks to find a
function that approximates the data within a specified tolerance margin [36]. This approach
involves fitting the best line (or hyperplane in higher dimensions) within a threshold
defined by the parameter epsilon (ϵ), which sets the width of the acceptable deviation from
the regression line [37].



Energies 2024, 17, 4401 9 of 18

3.2. Evaluation Metrics
3.2.1. Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) given by Equation (2) is a metric used to evaluate
the accuracy of a predictive model by calculating the average absolute differences between
predicted and actual values. It provides a straightforward measure of error magnitude,
unaffected by the direction of deviations, making it easy to interpret.

MAE =
1
n

n

∑
i=1

∣∣∣ f (x(i))− y(i)
∣∣∣ (2)

3.2.2. Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) given by Equation (3) is a statistical
measure that quantifies the average absolute deviation error expressed as a percentage,
allowing for a straightforward comparison between different prediction models.

MAPE =
100%

n

n

∑
i=1

| f (x(i))− y(i)|
y(i)

(3)

In these equations, y(i) presents the actual value of the i-th element in the dataset,
f (x(i)) shows the predicted value of the i-th element in the dataset, i denotes the index of
the elements in the dataset, and n represents the total number of elements in the dataset.

4. Results and Discussion

This section initially presents the results of the physics-based simulation and investi-
gation of the warehouse’s thermal behavior. For each zone of the building, the ramp-up
durations and the required weather-based data were extracted. Next, various ML-based
pipelines, utilizing different models and training approaches, were implemented to identify
the most effective one for predicting ramp-up durations in each warehouse zone. MAPE
and MAE metrics were used to evaluate the performance of the predictive models. The best
machine learning pipelines were then selected for each zone based on the obtained test
results, and two different strategies (conservative and semi-conservative saving) were
proposed to investigate the values of the average saving window. The average saving
window (minutes per day) would be the average of the difference between the existing
heating initiation schedule and the starting time obtained using the ML models. This would
indirectly evaluate the possible potential of energy saving. Finally, another physics-based
simulation was conducted after deploying the developed approach, and the energy-saving
potential (kWh per year) was assessed.

4.1. Energetic Behaviour Simulation

This subsection provides the results of the energetic behavior simulations explained
in Section 2.2. In the default HVAC schedule of the buildings, setpoints were adjusted for
zone 1 (office) at 5:20 and for zone 2 (storage) at 4:04 in order to ensure thermal comfort
in the morning for users (based on the longest ramp-up duration required throughout
the year). Due to continuous fluctuations in indoor and outdoor temperatures, as well as
the performance of the designed heating system, the ramp-up duration was observed to
change consistently from day to day. Figure 2 presents an example of the morning ramp-up
in the physics-based simulated model on a day with moderate environmental conditions,
while the outside temperature is around 8 ◦C when the setpoint temperature increases
in the morning. In this case, the office and storage experience ramp-up durations of 32
and 68 min, respectively. This thermal behavior demonstrates significant energy-saving
potential on this day, as the heating setpoint temperature is achieved more than an hour
before workers enter each zone of the warehouse.
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Figure 2. Simulated ramp-up event on 12–28 for the zones (normal environmental conditions).

On the other hand, Figure 3 shows the simulated morning ramp-up behavior in
extreme environmental conditions. On this specific day, the outside temperature of the
building decreases to values below 0 ◦C when the heating starts in the zones. As a result,
the ramp-up durations of the office and storage are significantly higher than the previous
example, with 83 and 131 min, respectively.

Figure 3. Simulated ramp-up event on 1–14 for the zones (extreme environmental conditions).
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A broader analysis of the physics-based simulated morning ramp-up event reveals
a dynamic behavior with a wide range of ramp-up duration values over the heating
season. It can be observed that the ramp-up duration varies daily and differs between
zones on the same day. Figures 4 and 5 illustrate that these ramp-up durations are highly
negatively correlated with both indoor and outdoor temperatures when the heating setpoint
temperature rises in the morning.

Figure 4. Ramp-up durations of zone 1 (office).

Figure 5. Ramp-up durations of zone 2 (storage).

4.2. Predictive Modeling

The following subsections present the results and discussion regarding the accuracy
of the predictive models in forecasting the morning ramp-up durations for each zone of the
physics-based simulated warehouse. Regarding the methodology detailed in Sections 2.4
and 2.5, the performance of six different ML models is compared using offline and sliding
window training approaches for zones 1 (office) and 2 (storage). This separate comparison
is due to their differing heating setpoint temperatures and HVAC system start times. The
reliability of the models is assessed using k-fold cross-validation. To ensure the reliability of
the obtained results, the entire training/validation and testing process is repeated five times
with different train/validation and test subsets created using five randomly generated
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seeds. As a result, the reported final values represent averages across all seeds and the
corresponding standard deviations.

4.2.1. Zone 1—Office

Table 4 reports the performance of the ML learning models for zone 1 (office) on
the training/validation dataset. The results indicate that using the offline training ap-
proach, tree-based ensemble algorithms perform the best, with the random forest algorithm
achieving the lowest MAPE of 12.95%.

Table 4. Validation accuracy results for ML models analyzed in zone 1 (office), offline learning.

Model MAPE [%]

Extra Trees 13.76
K Nearest Neighbors 19.22

Linear Regression 48.41
Random Forest 12.95

Support Vector Regressor 26.75
XGBoost 13.47

Therefore, selecting the random forest algorithm, its performance has been evaluated
on the test set (Table 5) leading to an MAE of 3 min, illustrating its reliability. Since the slid-
ing window training approach does not improve the model performance, the corresponding
results are not included.

Table 5. Obtained results for random forest model in zone 1 (office) on the test set, offline learning.

Model MAPE [%] MAE [min]

Random Forest 12.76 3

4.2.2. Zone 2—Storage

As presented in Table 6, similar to zone 1 (office), the performances of tree-based
ensemble models are more accurate compared to other algorithms for zone 2 (storage).
In this zone, the sliding window training approach resulted in more reliable predictions
than the offline training approach, and the performances of the machine learning models
are obtained by employing three different window sizes: 5, 10, and 15 days. Increasing the
window size from 5 to 10 days improved the model’s accuracy, while further increasing
it to 15 days yielded similar accuracy values. Since the predictive model’s performance
did not improve beyond a 10-day window, further increases in window length were not
pursued. Thus, a 15-day window was selected as the optimal size for prediction. The best
result on the training/validation set was obtained using the Extra Trees (ETs) model, with a
Mean Absolute Percentage Error (MAPE) of 16.5%.

Table 6. Validation accuracy results for the ML models in zone 2 (storage), Sliding window learning
(window = 15 days).

Model MAPE [%]

Extra Trees 16.50
K Nearest Neighbors 21.33

Linear Regression 46.12
Random Forest 17.22

Support Vector Regressor 33.72
XGBoost 18.77

Table 7 presents the performance of the Extra Trees (ETs) machine learning algorithm
using the sliding window training approach on the test dataset, yielding an MAE of 3 min,
consistent with the results for the office zone.
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Table 7. Test accuracy results for Extra Trees model in zone 2 (storage), Sliding window learning
(window = 15 days).

Model MAPE [%] MAE [min]

Extra Trees 15.84 3

4.2.3. Discussions on Performance of ML Algorithms

Linear regression algorithm has been observed to exhibit the poorest performance
among the algorithms due to its inability to capture the non-linear relationships inherent in
the dataset. The duration of the heating ramp-up is influenced by the thermal behavior of
the building, which is implicitly represented by the input features. Linear regression’s linear
assumptions fail to accommodate these complex, non-linear dynamics effectively. Similarly,
k-Nearest Neighbors (k-NN) and Support Vector Regression (SVR) also struggle with this
dataset, primarily due to challenges associated with high dimensionality. In contrast, tree-
based algorithms demonstrate superior performance in this application. Their success can
be attributed to their ability to capture non-linear relationships between features effectively.
Their robustness to outliers and overfitting enhances their accuracy and generalization,
making them ideal for predicting the ramp-up duration in the context of the current work.

4.3. Saving Potential Assessment

The current section initially provides the results of calculating the two safety margin
strategies proposed to guarantee the thermal comfort of the occupants. Next, the saving
window obtained using these safety margins is investigated. Finally, the potential energy
savings that can be achieved in case the obtained predictive models are deployed in the
physics-based simulated warehouse are provided.

Two different strategies (conservative and semi-conservative) are defined to calculate
the safety margin values in the present work. The conservative strategy considers all the
underestimations (differences between the estimated optimal morning ramp-up durations
and the actual values), selects the biggest value, and adds it to the prediction of the model
to ensure that the value of the ramp-up is not underpredicted. On the other hand, using
the semi-conservative approach, the outlier threshold is set at 10%, meaning the top 10%
of underestimated values are excluded from the safety margin calculation. Adopting a
semi-conservative strategy can be more realistic, as it excludes extreme underestimations.
The conservative strategy requires safety margin values of 20 and 44 min for the office
and storage zone, respectively, while these values using the semi-conservative strategy are
equal to 4 and 6 min. Next, the saving windows (the time that heating can be avoided in a
zone using the proposed predictive approach compared to the default HVAC schedule) can
be calculated for each day of each zone. The results are presented in Table 8, demonstrating
substantial average savings across all zones and scenarios and emphasizing the immense
energy-saving potential of deploying the smart morning ramp-up system in the building.

Table 8. Average saving window values of the zones using different strategies.

Office Storage

Average saving window [min] 53 90Conservative strategy
Average saving window [min] 69 118Semi-conservative strategy

As mentioned in Section 2, to assess the energy-saving potential, the optimal starting
times of the heating system are deployed in the reference warehouse. As a result, a physics-
based resimulation is performed to evaluate the energy performance of the smart building,
and the results are compared to the baseline thermal simulation model. The comparison
shows a notable potential for energy savings, with the conservative strategy achieving
a 10.13% reduction and the semi-conservative strategy achieving an 8.23% reduction for
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the entire building. Table 9 presents the energy consumption and saving values for each
zone and the entire warehouse using different strategies, highlighting that the storage
zone has the highest energy consumption and the greatest potential for energy savings.
Furthermore, the substantial savings achieved for the entire building demonstrate the
effectiveness of the proposed approach in reducing energy consumption and enhancing
efficiency in warehouses.

Table 9. Energy consumption and saving of the zones and the entire warehouse for different strategies.

Office Storage Total

Baseline simulation energy consumption [kWh] 18,607 204,437 223,045
Conservative strategy’s energy consumption [kWh] 17,925 188,154 206,080

Semi-conservative strategy’s energy consumption [kWh] 17,797 182,647 200,443

Conservative strategy’s energy saving [kWh] 682 16,283 16,965
Conservative strategy’s energy saving [%] 3.67% 7.96% 7.61%

Semi-conservative strategy’s energy saving [kWh] 811 21,791 22,601
Semi-conservative strategy’s energy saving [%] 4.36% 10.66% 10.13%

5. Conclusions

This study proposed a machine learning-based solution attempting to enhance the
energy efficiency of HVAC systems in logistic nodes and warehouse buildings with night-
time setback schedules. The case study of a warehouse building in Bologna, Italy, was
investigated to assess the energy-saving potential of an ML-based approach for estimating
the optimal daily heating start times for each zone whilst ensuring that the thermal comfort
of the building is respected. By estimating the time required for the heating system to heat
up the zone to the comfort temperature, rather than using fixed starting times, heating
unoccupied zones is avoided, resulting in significant energy savings. Physics-based energy
simulations (using the EnergyPlus 9.4 software) were conducted to model the energetic
behavior of the warehouse. The simulated time-series data of indoor temperature, setpoints,
and other related features were collected in addition to the corresponding weather data to
capture the thermal behavior of the zones, the influence of the HVAC system, and the rate
of thermal losses to the environment. Next, these data were employed to train ML models
to predict the duration of the ramp-up for each zone of the building.

Six different ML regressor models were considered and trained to predict the ramp-up
duration of different zones during the mornings of winter 2022–2023. The selected ML
algorithms were linear regressor, extra trees regressor, random forest regressor, XGBoost,
support vector regressor, and k-nearest neighbors. Their offline performances (using the
whole data) were compared to a sliding window-based training approach. The accuracies
were evaluated in terms of MAE and MAPE. It was found that random forest in the offline
training approach provides the most accurate pipeline for the office (MAE of 3 min and
MAPE of 12.76%), the extra trees model with the online (sliding window) approach is best
for the storage zone (MAE of 3 min and MAPE of 15.84%).

Next, considering the maximum underestimation error made by the error, the two
safety margin scenarios were proposed, ensuring the comfort of the occupants would not
be compromised. Therefore, in the conservative method, the largest underestimation from
the model predictions was added to the model’s forecast, while the semi-conservative
approach dropped the top 10% of underestimation (outliers) before calculating the safety
margin. Next, the saving average window (the difference between the heating initiation
time proposed with this approach and the default schedule of the building) was calculated
for each zone using conservative and semi-conservative approaches. The obtained results
showed that there was a considerable potential for energy saving for the case study.

Lastly, in order to assess the energy-saving potential of the proposed approach, in case
it is deployed in the building, a physics-based resimulation of the warehouse was per-
formed, and the energy performance of the building equipped with smart morning ramp-up
systems was assessed. Obtained results indicated that a significant energy saving could
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be obtained, achieving 8.23% and 10.13% of total building energy savings using conserva-
tive and semi-conservative strategies, respectively. It can be concluded that the proposed
approach offers a significant potential for energy saving and is suitable for deployment
in conditioned warehouses. Additionally, in the context of the current work, no data
regarding the size of the buildings or details of the floor plan has been included to enhance
the generalizability of this study. Therefore, the proposed method can be deployed in
already existing warehouse buildings with building management systems. Consequently,
given the substantial savings demonstrated by the proposed methodology in this study, the
deployment of such an approach can be proposed as future work in real case study logistic
nodes to achieve energy efficiency and validate the obtained results.

Author Contributions: A.K.: software, formal analysis, validation, investigation, data curation,
writing—original draft; F.D.J.: formal analysis, methodology, validation, data curation, writing—
original draft; I.A.C.A.: software, formal analysis, validation; B.N.: conceptualization, methodology,
supervision, writing—review and editing; L.P.M.C.: supervision, methodology; S.P.: writing—review
and editing, supervision; F.R.: supervision, funding acquisition. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is part of a broader project financed by the European Union NextGener-
ationEU (National Sustainable Mobility Center CN00000023, Italian Ministry of University and
Research Decree n. 1033—17 June 2022, Spoke 10 “Sustainable Logistics”).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Example Parameters for Warehouse Modeling and Simulations

Table A1. Zone summary.

Area Volume Gross Wall Area Window Glass Area Opening Area Lighting Plug and Process
[m2] [m3] [m2] [m2] [m2] [W/m2] [W/m2]

Zone 1 (Office) 236.9 1010.8 149.6 17.7 17.7 6.89 8.07
Zone 2 (Fine Storage) 4598.2 38,230.6 2347.4 0.0 0.0 3.55 1.78

Total 4835.1 39,241.4 2497.0 17.7 17.7 3.72 2.09

Table A2. Opaque exterior.

Reflectance U-Factor
with Film

U-Factor
No Film

Gross
Area

Net
Area Azimuth Tilt Cardinal

Direction
[W/m2-K] [W/m2-K] [m2] [m2] [deg] [deg]

Office (front wall) 0.30 0.528 0.573 110.5 97.4 270 90 W
Office (left wall) 0.30 0.528 0.573 39.0 30.6 0 90 N

Office (floor) 1.00 0.187 0.193 236.9 236.9 90 180 -
Fine Storage (front wall) 0.30 0.528 0.573 169.1 161.6 270 90 W
Fine Storage (right wall) 0.30 0.528 0.573 260.1 243.3 180 90 S
Fine Storage (left wall) 0.30 0.528 0.573 182.1 172.7 0 90 N

Office (front wall) 0.30 0.528 0.573 110.5 110.5 270 90 W
Fine Storage (office left wall) 0.30 0.528 0.573 39.0 39.0 0 90 N

Fine Storage (floor) 1.00 0.166 0.171 1156.5 1156.5 90 180 -
Fine Storage (roof) 0.23 0.233 0.240 1393.4 1372.6 90 0 -
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Table A3. Opaque interior.

Reflectance U-Factor
with Film

U-Factor
No Film Gross Area Net Area Azimuth Tilt Cardinal

Direction
[W/m2-K] [W/m2-K] [m2] [m2] [deg] [deg]

Office right wall 0.30 0.653 0.775 39.0 39.0 180 90 S
Office rear wall 0.30 0.653 0.775 110.5 110.5 90 90 E

Office roof 0.30 2.711 10.063 236.9 236.9 90 0 -
iz-Office right wall * 0.30 0.653 0.775 39.0 39.0 0 90 N
iz-Office rear wall * 0.30 0.653 0.775 110.5 110.5 270 90 W

iz-Office roof * 0.30 2.711 10.063 236.9 236.9 270 180 -

* iz refers to interzone surfaces.

Table A4. Exterior fenestration.

Glass Area Glass U-Factor Glass SHGC Glass Visible
Transmittance Azimuth Tilt Cardinal

Direction
[m2] [W/m2-K] [deg] [deg]

Office front wall window 1 5.58 2.843 0.231 0.231 270 90 W
Office front wall window 2 5.58 2.843 0.231 0.231 270 90 W
Office left wall window 1 3.25 2.843 0.231 0.231 0 90 N
Office left wall window 2 3.25 2.843 0.231 0.231 0 90 N
Fine Storage Skylight 1 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 2 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 3 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 4 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 5 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 6 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 7 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 8 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 9 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 10 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 11 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 12 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 13 1.49 3.979 0.303 0.301 180 0 -
Fine Storage Skylight 14 1.49 3.979 0.303 0.301 180 0 -

Table A5. Exterior door.

U-Factor with Film U-Factor No Film Gross Area Parent Surface
[W/m2-K] [W/m2-K] [m2]

Office front door 1.599 2.102 1.95 Office front wall
Office left wall door 1.599 2.102 1.95 Office left wall

Fine Storage overhead door 1 1.394 1.761 7.43 Fine Storage front wall
Fine Storage overhead door 2 1.394 1.761 7.43 Fine Storage right wall
Fine Storage overhead door 3 1.394 1.761 7.43 Fine Storage right wall
Fine Storage overhead door 4 1.394 1.761 7.43 Fine Storage left wall

Fine Storage right door 1.599 2.102 1.95 Fine Storage right wall
Fine Storage left door 1.599 2.102 1.95 Fine Storage left wall

Table A6. Interior lighting.

Lighting Power
Density

Zone
Area

Total
Power

Scheduled
Hours/Week Hours/Week > 1% Full Load

Hours/Week Consumption

[W/m2] [m2] [W] [h] [h] [h] [GJ]

Office lights 6.89 236.88 1631.84 56.99 168 39.73 5.03
Fine Storage lights 3.55 4598.25 16,333.41 62.12 168 47.01 59.63
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Table A7. Daylighting.

Fraction Controlled Lighting Installed Lighting Controlled
[W] [W]

Office Daylighting 1 0.29 1631.84 473.23
Office Daylighting 2 0.10 1631.84 163.18

Fine Storage Daylighting 1 0.25 16,333.41 4083.35
Fine Storage Daylighting 2 0.25 16,333.41 4083.35

Table A8. Exterior lighting.

Total Watts Hours/Week > 1% Full Load Hours/Week Consumption
[W] [h] [h] [GJ]

Exterior lights A 113.8 57.12 57.12 0.50
Exterior lights B 3955.0 99.12 78.12 23.99
Exterior lights C 1004.9 99.12 64.12 5.00
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