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Abstract: Close-proximity operations play a crucial role in emerging mission concepts, such as Active
Debris Removal or small celestial bodies exploration. When approaching a non-cooperative target,
the increased risk of collisions and reduced reliance on ground intervention necessitate autonomous
on-board relative pose (position and attitude) estimation. Although navigation strategies relying on
monocular cameras which operate in the visible (VIS) spectrum have been extensively studied and
tested in flight for navigation applications, their accuracy is heavily related to the target’s illumination
conditions, thus limiting their applicability range. The novelty of the paper is the introduction of a
thermal-infrared (TIR) camera to complement the VIS one to mitigate the aforementioned issues. The
primary goal of this work is to evaluate the enhancement in navigation accuracy and robustness by
performing VIS-TIR data fusion within an Extended Kalman Filter (EKF) and to assess the performance
of such navigation strategy in challenging illumination scenarios. The proposed navigation architecture
is tightly coupled, leveraging correspondences between a known uncooperative target and feature points
extracted from multispectral images. Furthermore, handover from one camera to the other is introduced
to enable seamlessly operations across both spectra while prioritizing the most significant measurement
sources. The pipeline is tested on Tango spacecraft synthetically generated VIS and TIR images. A
performance assessment is carried out through numerical simulations considering different illumination
conditions. Our results demonstrate that a combined VIS-TIR navigation strategy effectively enhances
operational robustness and flexibility compared to traditional VIS-only navigation chains.

Keywords: spacecraft thermal infrared imaging; relative navigation; Kalman Filter

1. Introduction

In recent years, researchers have dedicated considerable attention towards operations
in close-proximity to uncooperative orbiting artificial objects. Within this context, the
onboard reconstruction of the chaser-target relative state vector is a crucial capability for
incoming mission scenarios such as formation flying missions (FF), on-orbit servicing
demonstrators (OOS), and active debris removal, as well as small bodies exploration [1].
While these missions are currently in the spotlight of discussions, attaining feasibility
still hinges on substantial technological advancements. The necessity for close-proximity
manoeuvring introduces a requirement for a guidance, navigation, and control chain
to be autonomously solved onboard to ensure timeliness, reactivity, effectiveness, and
robustness in both nominal and off-nominal operations. The initial component of this chain
is the relative state reconstruction and navigation. This is especially challenging when
dealing with artificial uncooperative targets, which calls for a robust solution relying solely
on the chaser’s capabilities, as highlighted in [2,3]. In this operational context, imaging
with passive sensors emerges as the best sensor architecture. A comprehensive review of
initial pose determination techniques based on a VIS monocular camera is provided in [4].
Further, VIS-based optical navigation has been successfully applied within both cooperative
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and uncooperative rendezvous, as pointed out in [5,6]. Nonetheless, the effectiveness of
visible imaging is heavily reliant on illumination conditions. Consequently, OOS missions
encounter substantial constraints when illumination requirements for VIS image acquisition
are integrated into the design and definition of the close proximity operations. Elements
such as the target orbit beta angle, attitude history, solar aspect angle induced by the chaser’s
fly-around, and the camera axis could significantly jeopardize the ability to detect and track
the target appropriately. This limitation may lead to an unacceptable increase in either mission
duration or risk. Illumination bottlenecks become particularly pronounced for targets in Low
Earth Orbit (LEO) experiencing prolonged eclipses, as highlighted in [7]. In recent years, the
Hayabusa 2 mission successfully exploited its thermal-infrared (TIR) imager for vision-based
navigation purposes [8]. Such an outcome has highlighted the possibility of combining sensors
operating in different spectral bands to enhance the navigation solution accuracy. This work
aims at exploiting a TIR imager leveraging its insensitivity to illumination conditions, to
overcome the limitation imposed by imaging sensors operating in the visible spectrum. Some
preliminary work on the topic can be found in [9], in which the author performs an assessment
of the best feature detector and descriptors for thermal infrared images. Nevertheless, TIR
sensors are usually characterized by a smaller array size compared to visible ones, thus they
have a lower resolution and poorer contrast with respect to VIS sensors, which negatively
affects image processing algorithms, as highlighted in [10]. To overcome these limitation,
sensor fusion strategies can play a major role, as pointed out in [11]. Multispectral data fusion
is a dominant technique within the field of Unmanned Aerial Vehicle (UAV) navigation [12],
yet its role remains marginal in the domain of spacecraft relative navigation. The different
multispectral data fusion schemes can be divided into two main approaches: image fusion
and high-level data fusion, as portrayed in Figure 1.

Figure 1. VIS-TIR coupling strategies.

Multispectral image fusion aims at creating a new and more informative image type
by combining the complementary strengths of the two distinguished spectral bands. The
newly obtained image type can then be fed to the subsequent navigation chain to enhanche
its robustness to illumination conditions. Image fusion has been successfully applied within
the context of remote imaging [13], while its application in spacecraft navigation scenarios
remain marginal. The work presented in [14] is concerned with the evaluation of the differ-
ent pixel-level image fusion techniques within the context of spacecraft relative navigation.
The validity of image fusion techniques for navigation purposes is assessed in [15,16];
where the authors test the effectiveness of pose initialization algorithms on VIS-TIR fused
images. A further step is then presented in [17], in which a Convolutional Neural Network
(CNN) based pose estimation algorithm is successfully tested on this new image type.
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Despite the effectiveness of pixel-level image fusion, this work focuses on high level data
fusion. Decision-level multispectral data fusion allows for more flexibility and robustness
of the whole navigation chain. In fact, the two source images are processed separately and
they are treated as two independent sensors. In this way, the information channels can be
treated as redundant, and thus it is easier to isolate faulty measurements or to exclude one
sensor when it is no longer providing meaningful information. The work presented in [18]
presents a navigation architecture in which feature tracking is performed simultaneously
on both VIS and TIR images, and this information is then fused within a Kalman Filter
to achieve robustness in person motion tracking. Subsequently, the idea of performing
high-level multispectral data fusion was adopted for relative navigation and mapping of
asteroids and unknown spacecraft by [19,20], respectively. Further research on asteroid
relative navigation is carried out in [21], in which the authors perform a CNN-based feature
map fusion to enhance the accuracy of centroid detection during proximity operations of
the HERA mission. In the presented research, the author build on the approach presented
in [22], to propose a flexible navigation strategy to fuse multispectral information. Specifi-
cally, the aforementioned work introduces the concept of sensor handover from onecamera
to the other to support night-time navigation for a mobile robot. The results presented in
the paper suggest that the navigation accuracy and robustness can clearly benefit from
the introduction of a thermal infrared imager. However, the handover from the VIS to the
TIR camera is controlled by an external user; whereas we implement a fully automatic
switch between the two different sensing modalities. Feature detection and feature tracking
are performed separately for VIS and TIR images, and the feature points position is fed
as observable to an Extended Kalman Filter (EKF). Model-to-image matching is then em-
ployed to establish 3D-2D correspondences between the known model and the extracted
feature points. Such tightly coupled architecture can be affected in terms of robustness
whenever the target’s shape is particularly complex, since it may be more challenging
to accurately detect and track a high number of features. However, given the relatively
simple shape of the Tango spacecraft and the utilization of two cameras simultaneously,
these robustness issues are easily mitigated. Further, we introduce autonomous sensor
handover from one sensing modality to the other, in such a way to retain only the most
meaningful measurements source. This approach may be extremely useful during eclipses,
where the VIS camera is automatically excluded from the navigation chain, since it cannot
contribute to the pose estimation task. The presented navigation scheme is applicable to
known uncooperative targets, for which at least a simplified geometrical model is available.
It is important to remark that the target geometry of an uncooperative space object may
not be always known. The most common way of dealing with unknown uncooperative
objects is to rely on Simultaneous Localization and Mapping (SLAM) techniques, which
enable the chaser to both reconstruct the target’s shape and to perform relative navigation.
However, such techniques tend to be numerically heavy, due to the high number of map
points which shall be stored in the memory. As proposed in [23], it can be useful to split
the mission into two operative phases: the first one relies on SLAM to gather information
about the target’s shape; while in the second phase of the mission the known geometry of
the target object is exploited to perform model-based relative navigation. Building on this
concept, we can assume to be beyond the preliminary mapping phase, and that at least
partial information regarding the target’s shape can be exploited. The major contributions
of the paper can be then summarized as follows:

• Development of a tightly-coupled navigation chain for cross-spectral relative nav-
igation, capable of performing autonomous sensor handover among the different
sensing modalities.

• Quantitative assessment of the advantages of introducing a TIR imager in the naviga-
tion chain through numerical simulations and high-fidelity image rendering tools.

The paper is organized as follows: Section 2 presents a schematic outline of the devel-
oped navigation architecture, highlighting the functionalities of each building block. The
Image Processing (IP) functional block is thoroughly described in Section 3; while Section 4
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details the relative navigation filter. The simulation environment is introduced in Section 5,
while the results are presented and discussed in Section 6. Conclusion summarizing the
main outcomes of our study are reported in Section 7.

2. Navigation Chain

A block diagram of the proposed visual navigation architecture is shown in Figure 2.
The navigation chain can operate either using VIS or TIR images, or both of them. The image
processing functional block performs feature detection and tracking; while an Extended
Kalman Filter (EKF) estimates the relative chaser-target pose. The filter employs the target
point-features positions on the images as measurements and estimates the relative pose
by comparing them with the expected position of the matching target’s model landmarks
projection on the image plane. Our EKF exploits a target model which is built offline on the
target’s geometry information, as similarly done in [2,24].

Figure 2. Navigation chain architecture.

3. Image Processing

The image processing functional block is in charge of extracting features and tracking
them across the incoming images. Periodically, feature re-initialization is performed. Lastly,
sensor handover is performed from one camera to the other when necessary.

3.1. Features Detection and Tracking

Among different feature detectors, Oriented Fast and Rotated Brisk (ORB) [25] has
been selected for this work to be applied both to VIS and TIR images; due to its robustness
to challenging illumination conditions and scale variations. ORB feature detection has
been used in a wide number of application for relative spacecraft navigation in the visible
spectral band [26]. On the other hand, the literature concerning the evaluation of feature
detection algorithms on TIR images is scarce. A preliminary performance evaluation of
different detector and descriptor is available in [27], in which different feature detector and
descriptors are tested on synthetic thermal infrared images. This work shows that ORB
features offer a good compromise between detection accuracy and computational time, and
that they are well-suited for feature tracking. The number of features is restrained to 250 to
reduce the computational burden. The detected feature points are then tracked across the
subsequent images using Lucas-Kanade tracking algorithm [28].

3.2. Features Re-Initialization

The number of tracked features decreases throughout the sequence images due to the
relative motion between the chaser and the target. To keep the number of tracked features
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high enough to ensure a reliable pose estimation, a dedicated routine is implemented to
detect and match new features to be added to the already tracked set. This process is initi-
ated when the ratio between the convex hull of the tracked image features and the convex
hull formed by projecting all the landmarks onto the images falls below a predetermined
value. This indicates that only a portion of the target is currently encompassed by the
tracked features. When this condition is verified new features are detected in the part of the
image outside the convex hull of the tracked set. The newly identified candidate features
are subsequently projected based on the homography that establishes the relationship
between the tracked image features and the model’s landmarks. This enables the matching
of these candidates to the model landmarks, through a straightforward nearest neighbour
association. However, this method relies on correlations between previous features and
landmarks to match new candidates. This dependence can introduce error propagation,
especially if the initial matching is erroneous. To mitigate this issue, the navigation chain
undergoes periodic full re-initialization of features. This process involves discarding the
entire tracked set, detecting new features across the entire image, and matching them with
the model landmarks. Without the possibility to use any existing features-to-landmarks
correlations, it is necessary to perform 2D-3D point registration. A pseudocode of the
algorithm designed to re-initialize the features is reported in Algorithm 1. Initially, the
algorithm calculates the convex hull encompassing all detected features and all model
points projected according to the best state estimate, as shown in Figure 3a. Assuming that
estimation errors are constrained during the pose tracking process, the algorithm randomly
guesses the association between the feature set’s peripheral points and the closest model
landmarks’ peripheral points, which is shown in Figure 3b. The homography associated
with these pairings is then computed and applied to all model landmarks. After this
homographic transformation, it is reasonable to consider that the model landmarks and
their respective image features are closely overlapped. Therefore, the matching of features
to landmarks is computed using a nearest-neighbor association technique, as shown in
Figure 3c. The peripheral points association, homographic transformation, and nearest-
neighbor matching process are executed iteratively. Utilizing a RANSAC-like approach, the
iteration that yields the most matched features is saved as the output of the routine. While
this algorithm effectively tackles the 3D-2D registration problem with efficiency, it exhibits
decreased robustness when faced with relative attitude errors exceeding 15 degrees. This
implies its suitability primarily for the re-initialization of features during the pose tracking
process. The feature reinitialization procedure is summarized in Algorithm 1.

Algorithm 1 Feature Re-initialization

1: Given I: set of image feature locations on the image plane
2: Given M: set of model landmark locations on the image plane
3: Given nmax: maximum number of feature points
4: Given imax: maximum number of iterations
5: procedure RE-INITIALIZE FEATURES(I, M, nmax)
6: Identify boundary point sets Ib and Mb from sets I and M
7: for i← 1 to imax do
8: Randomly pair four coordinates from set Ib with four from set Mb
9: Compute homography H mapping these pairs

10: Project set M onto set I using homography H
11: Identify the matching pairs between I and M using nearest neighbor association
12: if number of matched pairs > nmax then
13: result←matched pairs
14: nmax ← number of matched pairs
15: end if
16: end for
17: Return result
18: end procedure
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(a) (b) (c)
Figure 3. Visualization of the major steps of the re-initialization process. (a) Landmarks vs. feature
detection; (b) Convex Hull visualization; (c) Landmarks to features matching.

3.3. Sensing Modalities Switch

For optimal performance, the navigation chain is designed to leverage both spectral infor-
mation whenever possible. Conversely, a sensing modality switch is introduced to automatically
discard one of the two spectra when it lacks informative content. Concerning thermal images,
they are excluded during the re-initialization process if reliable results are not obtained (i.e., the
number of features output by the routine is lower than the trigger for re-initialization). The same
is done for visible images, but in addition a further check on the pixel intensity is performed.
The visible images are used only if the number of pixels with an intensity above a threshold set
at three times the standard deviation (3σ) of the image’s Gaussian noise exceeds a user-defined
value. This value was calibrated by considering images useful if at least 10% of the region of
interest, where the target is located, is illuminated. This additional condition is introduced
because, in low-light conditions, the target loses clarity in visible images, while in thermal
images, pixel intensity is preserved even under dynamic illumination conditions. If the switch
discards a spectrum, periodic re-initialization tests occur to assess whether positive results
can be obtained. If successful, the previously discarded spectrum may be reintroduced into
the sensor fusion process, enhancing adaptability to changing environmental conditions. The
spectra selection procedure is summarized in Algorithm 2.

Algorithm 2 Spectra Selection

1: Given VIS: current VIS image
2: Given xVIS: VIS feature points
3: Given TIR: current TIR image
4: Given xTIR: TIR feature points
5: Given px_intensity_threshold: pixel intensity threshold
6: Given px_number_treshold: number of activated pixels treshold
7: Given f eature_threshold: feature points threshold
8: procedure SELECT_SPECTRUM(VIS, TIR)
9: f lag_VIS← True

10: f lag_TIR← True
11: if sum(n_pixels(VIS) > px_intensity_threshold) > px_number_treshold then
12: xVIS ← Re_initialize_Features
13: if length(xVIS) < f eature_threshold then
14: f lag_VIS← False
15: end if
16: else
17: f lag_VIS← False
18: end if
19: xTIR ← Re_initialize_Features
20: if length(xTIR) < f eature_threshold then
21: f lag_TIR← False
22: end if
23: Return xVIS, xTIR, f lag_VIS, f lag_TIR
24: end procedure
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4. Navigation Filter

We employ an EKF for relative pose estimation. The most common estimation tech-
niques, i.e., EKF, Unscented Kalman Filter (UKF) and Particle Filter (PF) were taken into
account [29]. The main driver for choosing the EKF is its computational cost. Adopting
a linear model to describe the relative translational motion allows us to directly have an
analytical expression for the translational part of the Jacobian matrix used to evaluate the
State Transition Matrix (STM). This solution is extremely effective in terms of computational
resources, thus driving our choice to the EKF rather than more complex filters. The filter is
designed to estimate the relative position, velocity, attitude and angular rates of the target
with respect to the chaser spacecraft. Since the observation model depends on both the
relative position and attitude, the navigation filter needs to be coupled. The state vector is
defined as:

x =
[
�T , �̇T , qT , ωT]T (1)

being � and �̇ the relative position and velocity between the two spacecraft’s centers of
mass, q the relative quaternion and ω the relative angular velocity.

4.1. Coordinate Systems

The reference frames considered in this paper include the Earth-Centered Inertial
(ECI) coordinate system, represented by I ; a chaser-fixed Local Vertical, Local Horizon
(LVLH) frame, denoted as L, where the x-component aligns with the spacecraft’s radial
direction, the z-component aligns with the orbit’s angular momentum, and the y-axis
completes the right-hand triad; and two body-fixed reference frames, aligned with the
target’s and chaser’s principal inertia axes, designated as C and T respectively. Without
loss of generality, the chaser body frame C is assumed to coincide with the imaging sensors’
reference frame. Please notice that the LVLH frame is here defined on the chaser to exploit
the knowledge of the chaser spacecraft true orbital motion, which is reflected in the mean
motion parameter n.

4.2. Dynamical Model

The translational dynamical model selected for the propagation of the relative position
is based on the Clohessy–Wiltshire [30] equations of unperturbed relative motion, which
are reported in Equation (2).

ẍ− 2nẏ− 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

(2)

where, � = [x, y, z]L represents the position of the target in the chaser’s LVLH frame, and
n is the chaser’s mean motion. The attitude parametrization follows the formulation of a
Multiplicative Extended Kalman Filter (MEKF) [31]. The filter propagates a three-element
local attitude error a formalized in Modified Rodrigues Parameters (MRP) while keeping
track of a reference quaternion. For the propagation of the attitude error, the differential
equation detailed in [32] from quaternion kinematics is used, as presented in Equation (3).

ȧ = −1
2
[ω×]a + ω (3)

The relative angular velocity vector ω between the target and the chaser, expressed
in the chaser body frame, is defined as in Equation (4). Here, ωT and ωC represent the
angular rates of the target and chaser in their respective rotating frames, and AC/T is the
rotation matrix mapping the target body frame into the chaser body frame.

[ω]C = AC/T [ωT ]T − [ωC ]C (4)
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Equation (5) describes the dynamics of the relative angular rates, in which the inertia
tensors of the chaser and target are labeled IC and IT , uC is the control torque of the chaser
spacecraft and the subscript C has been omitted for brevity.

ω̇ =I
−1
C

{
ICAC/T I

−1
T

[
− AC/T (ω + ωC)× IT AT

C/T (ω + ωC)
]

−
[
uC −ωC × ICωC

]
− IC(ωC ×ω)

} (5)

The filter performs a discrete propagation of the states and the associated covariance
by computing the State Transition Matrix (STM) of the ordinary differential equations
reported in Equations (2), (3) and (5).

4.3. Observation Model

The filter processes the projected positions of the target’s model landmarks onto the
image plane, according to Equation (6)

pi = K(AC/T Pi + �) (6)

In which Pi is the i-th feature point position in the target’s reference frame and K
is the intrinsic camera calibration matrix. A more detailed derivation of the observation
model is available in [33] for the interested reader. The target’s landmarks are the vertices
of a reduced CAD model of its shape. In the case of the target Tango, this model contains
170 vertices.

4.4. Measurement Noise Covariance Adaptation

For optimal functionality, the Extended Kalman Filter (EKF) necessitates precise mod-
elling of the noise covariance of the measurements. This task holds particular significance
in this research application, where a dynamic environment introduces time-varying mea-
surement noise. To overcome these shortcomings, an online adaptation of the measurement
noise covariance matrix based on the residual of the filter is implemented. At each iteration,
the covariance matrix R is updated according to the equation derived in [34] and reported
in Equation (7).

Rk = αRk + (1− α)(εkεT
k + HkP+

k HT
k ) (7)

In Equation (7), ε represents the filter’s residual, Hk is the Jacobian of the measurement
function, and P+

k is the updated covariance matrix of the states. A major advantage of this
solution is that the noise covariance is adapted online for each target’s feature individually,
progressively identifying and assigning less significance to the least reliable ones. The main
parameter which rules the adaptation is the forgetting factor α, which ranges from 0 to 1.
A higher α value leads to a slower adaptation of the Rk matrix, yet it provides more stability.
In this work the value is set to α = 0.8; which represents a good compromise between
adaptation capabilities and stability of the Rk matrix.

4.5. Outliers Rejection

To increase the robustness of the filter an outlier rejection routine is introduced, as
explained in [35] and successfully employed in [32]. The null-hypothesis test is performed,
assuming that the measurement noise is Gaussian distributed, using the Mahalanobis
distance as a figure of merit. By defining the filter’s innovation at the k-th step as dk and its
covariance as Sk, the Mahalanobis distance γk can be computed as shown in Equation (8).

γk = m2
k = dT

k S−1
k dk (8)
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Under the assumption that the null hypothesis holds, γk follows a Chi-square distri-
bution. Therefore, all the measurements with a squared Mahalanobis distance exceeding a
threshold k are excluded, defining k to ensure that Equation (9) holds.

P(k > α) = 0.05 (9)

5. Simulation Environment

5.1. Image Rendering

This work employs the open-source POV-Ray [36] to generate photorealistic space-
borne validated VIS images, as described in [37]. The VIS rendering tool used for this
work has been validated against the SPEED dataset [38], which in turn has been validated
against images of the PRISMA mission. It is worth noticing that the different illumination
conditions can be easily simulated by the user by properly selecting the Sun position in
the ECI frame, as well as the chaser and target absolute coordinates in the ECI frame. The
Sun represents the only light source of the POV-Ray scene, and thus it is representative of
a realistic scenario. Concerning TIR images, Blender 2.93 has been preferred as the main
image rendering software, exploiting a tool internally developed by the ASTRA research
group. The full description of the thermal infrared rendering tool is available in [39,40].
The tool exploits a validated thermal simulation to compute the temperature field of the
Tango spacecraft. Such temperature field is then processed to obtain the heat flux captured
by the camera, exploiting the relative pose between the camera and the target to compute
the view factors. It is then possible to obtain the thermal image based on the assumption
that the output Digital Number (DN) produced by the sensor is proportional to the heat
flux received by the pixels. Furthermore, a thorough description of the characteristic noise
of a thermal camera, that has been used for this work, is available in [41]. Please notice
that the validation of TIR images is significantly more challenging due to the lack of TIR
datasets. However, the model used for the thermal simulation of the Tango spacecraft has
been validated against a thermovacuum experiment within the context of CubeSat testing
and integration [42]. It is also acknowledged that the acquisition of real thermal infrared
images requires a dedicated and calibrated facility, which is not currently available. The
images produced using such tools are reported in Figure 4 where the VIS images (Left) are
compared with the TIR images (Right) for a simplified Tango spacecraft model and the
camera parameters reported in Table 1.

(a) VIS Frame 1 (b) TIR Frame 1

Figure 4. Cont.
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(c) VIS Frame 2 (d) TIR Frame 2

(e) VIS Frame 3 (f) TIR Frame 3

Figure 4. VIS synthetic images (Left) and respective TIR synthetic images (Right).

Table 1. VIS and TIR camera parameters.

Array Size [px] FoV [deg] Focal Length [mm]

VIS 1024 × 1024 [14, 14] 20
TIR 512 × 512 [14, 14] 20

For simplicity, the VIS and TIR camera centers are assumed to be coincident with the
chaser spacecraft center of mass, and they are always pointing towards the target. Con-
cerning the noise level of the synthetically generated images, VIS images are postprocessed
by adding a white Gaussian noise with σ2 = 0.0022 and blurred with a Gaussian blurring
characterized by σ2 = 1 and zero mean. The noise parameters have been selected equal
to [43]. With regards to thermal imaging sensors, the research presented in [44] demon-
strated that microbolometers are mostly affected by two sources of noise: the thermal
noise and the 1/ f noise. The former is a characteristic of all electronic devices and it is
modeled as an additive white Gaussian noise, assuming the same characteristics adopted
for VIS images. The 1/ f noise, which is also referred to as flicker noise or pink noise, is
instead dominant at low frequencies, as demonstrated by [45]. An additive pink noise can
be numerically obtained by applying a suitably shaped low-pass filter to a white Gaussian
noise. A two-dimensional Fourier transform is used to decompose white noise into the
frequency domain. The amplitude (A) of each frequency is then scaled such that the higher
the frequency, the lower the amplitude using the following relationship:
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A′ = A
1

( f 2
x + f 2

y )
α/2 (10)

where fx and fy are the spatial frequencies and α is an exponent which determines the
spectral slope (α = 1 for flicker noise). The inverse Fourier transform is then applied to
convert the filtered result back to the spatial domain. The variance of the White Noise to be
filtered is here assumed to be σ2 = 0.0022. Similar to VIS images, also the TIR images are
blurred with a Gaussian blurring characterized by σ = 1 and zero mean.

5.2. Reference Dynamic

The reference trajectory is computed apriori. The translational motion is computed
according to a perturbed restricted two-body model which accounts for the J2 effect, that is
the most dominant perturbation for satellites flying in LEO orbits. Furthermore, we consider
the effects of solar radiation pressure and atmospheric drag. The former contribution
is computed according to a simplified cannonball model, while the latter considers an
exponential air model to describe the atmospheric density. The rotational motion is instead
described through an unperturbed free motion, which is a valid assumption during the
limited simulation time of the work. Furthermore, an uncertainty of 15% on the principal
moments of inertia of the target is considered to simulate an imperfect knowledge of the
target spacecraft. This situation reflects a scenario in which the shape of an uncooperative
target is roughly known, perhaps from a previous inspection phase, yet its inertia properties
may not be certain. To ensure the target remains consistently within the cameras’ field of
view, a PID controller is employed to control the chaser’s attitude, guaranteeing accurate
pointing. The target rotates with an angular velocity of 0.25 deg/s around each axis.
The target is assumed to be in a nearly-circular equatorial orbit, while the relative initial
conditions are selected to have a planar and quasi-bounded motion of the chaser with
respect to the target. The corresponding relative translational state initial conditions are:

�0 =
[
−6.60× 10−1 1.47× 101 0.00

]
m

�̇0 =
[
1.70× 10−1 1.49× 10−3 0.00

]
ms−1 (11)

Figure 5 reports the evolution of the chaser-target intersatellite distance (right) for the
considered trajectory.

Figure 5. Relative target-chaser distance.
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The metrics used to assess the estimator performances are position absolute and rela-
tive Knowledge Error (KE) and attitude KE. The position KE is defined as in
Equations (12) and (13), where �̂ indicates the estimated values.

e� = ‖�̂− �‖ (12)

erel
ρ =

e�

‖ρ‖ (13)

By defining as qerr and qerr the vectorial and scalar part of the quaternion error
(i.e., the quaternion representing the discrepancy between the true and estimated atti-
tude), the attitude KE is defined as in Equation (14).

eq = 2 atan(‖qerr‖, qerr) (14)

The mean and associated standard deviation of these figures of merit over a period of
time are computed as:

μe =
1
N

N

∑
i=1

ei (15)

σe =

√√√√ 1
N

N

∑
i=1

(ei − μe)2 (16)

where N represents the number of realizations.

5.3. Filter Initialization

The filter’s tuning parameters are detailed in the present section. Each submatrix of
both the state covariance matrix and process noise matrix is assumed to be diagonal and
isotropic and they are reported in Table 2 and Table 3, respectively. Please notice that these
settings will be kept throughout all the simulations presented in the remainder of the paper.
The process noise covariance adopted in this work is meant to compensate for the imperfect
dynamical model of the filter and it has been tuned accordingly.

Table 2. Initial state covariance settings.

Parameter Value Unit

P0, � 1× 100 m2

P0, �̇ 1× 10−2 m2/s2

P0, a 5× 10−3 -
P0, ω 1× 10−1 rad2/s2

Table 3. Process noise settings.

Parameter Value Unit

σ� 1.41× 10−1 m
σ�̇ 1.00× 10−3 m/s2

σa 9.50× 10−3 -
σω 1.00× 10−3 rad/s

Since the algorithm does not include a pose acquisition routine, such as the ones
presented in [46] or [47], the initial pose information is randomly generated by sampling
within the 3σ bounds of the initial covariance. Given this initial pose information, the re-
initialization algorithm, described in Algorithm 1, is executed to retrieve the first matching
information. The navigation chain is designed to work at 1 Hz.
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6. Results

To assess the advantages and drawbacks of the three different sensing modalities,
two different test cases are introduced, as reported in Table 4. The first test case represents an
ideal situation, in which the SAA is forced to be near zero to achieve favourable illumination
conditions. It is also employed as a reference for the next simulations, in which the SAA
increases throughout the trajectory. It is worth noticing that the thermal infrared images
do not change, since they do not rely on external illumination sources. The temperature
profile of the spacecraft has been computed apriori, and it is assumed to be constant during
the short simulation time.

Table 4. Test plan summary.

Test Number Duration Objective

1 3000 s To evaluate the navigation chain using only the VIS images in good
illumination conditions.

2 3000 s To highlight the benefits of the sensor handover data fusion strategy.

For each test case, the results of three different sensing strategies are computed:

1. VIS-only
2. TIR-only
3. VIS-TIR fusion with sensor handover

The filter settings shown in the previous section are kept constant for both test cases,
and that a total of 250 Montecarlo runs are performed for each sensing strategy.

6.1. Test Case n.1

Representative VIS images acquired at t = 0 and t = 1000 s, respectively, are shown in
Figure 6.

Figure 6. VIS images acquired at t = 0 s (Left) and t = 1000 s (Right), respectively. Test case n.1.

The averaged results for the relative position (left) and attitude (right) errors are shown
in Figure 7. It can be immediately noticed that there is hardly no difference between the
combined (VIS and TIR) sensing strategy and the VIS-only sensing mode. This behavior
is mainly due to two reasons. The first one is that the trigger to discard VIS images is
never activated; the second one is that the filter tends to prioritize the most accurate
source of measurement, that in this case is the visible spectrum, thus prioritizing these
measurements within the filter update step. The quantitative results are reported in Table 5.
Once again, it can be noticed that the VIS and the combined sensing modality achieve
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similar results. It should be acknowledged that the attitude estimation error achieved by
the combined sensing modality is the best among the three. Furthermore, the uncertainty
of the estimation error tends to decrease when relying on both cameras; even though the
number of montecarlo runs is the same. The TIR-based navigation strategy instead shows
a higher position and attitude error, together with a higher variance associated to these
results. This is due to the fact that a reduced sensor size and a high noise value of the
thermal images negatively affects the accuracy of the feature detection and tracking.

Figure 7. Average position KE (Left) and attitude KE (Right) over 250 simulations. Test case n.1.

Table 5. Position and attitude Mean Knowledge Errors (MKE) for different sensing modalities.
Test case n.1.

Test Case
Position Errors Attitude Errors

Abs. MKE [m] Rel. MKE [%] MKE [deg]

VIS 0.19± 0.10 1.25± 0.68 1.10± 0.97
TIR 0.23± 0.15 1.50± 0.99 1.83± 1.28
VIS—TIR Handover 0.21± 0.08 1.39± 0.49 0.94± 0.58

To further analyze the presented results, we report in Figure 8 the number of matched
feature pairs and the average measurement covariance noise value that the online adap-
tation of the measurements’ covariance assigns to each camera. The reported value has
been averaged considering all the features detected for each step to exclude outliers, and
then it has been normalized over the camera size; since the VIS and TIR cameras have a
different array size. It can be immediately noticed that the number of matched feature pairs
is comparable between VIS and TIR images. This result can be expected due to the good
illumination conditions of this test set. It can also be noticed that there is a drop in the
number of matched features between time t = 1000 s and t = 1500 s, which coincides with
an increase of the relative pose estimation error. Since this behaviour is present across both
spectra, it can be assumed that it is linked to the relative target-chaser attitude, which does
not allow for a higher number of matches. Concerning the mean covariance value assigned
to the different spectra, it is immediate to notice that the thermal features are generally
more noisy with respect to the visible ones. This result is expected due to the reduced array
size and higher noise of thermal infrared cameras. Furthermore, whenever the covariance
adaptation produces an increase in the measurement noise covariance, the overall state
estimation is affected, as in the period between t = 2000 s and t = 2500 s. It can be also
acknowledged that whenever the number of tracked features decreases, the covariance
adaptation is less stable, since the value of outlier matches may have a greater influence on
the overall noise estimation.
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Figure 8. Number of matched feature pairs (Left) and mean feature measurement noise covariance
normalized over image size (Right). Test case n.1.

6.2. Test Case n.2

The second testing campaign is meant to highlight the flexibility of the developed
navigation architecture, by enabling the sensing modality switch. To stress the navigation
chain, the simulation lasts 3000 s, during which the illumination conditions change dy-
namically. In this simulation, the sun aspect angle increases progressively, until the target
encounters an eclipse at t = 900 s approximately, forcing the switch to rely only on TIR
images. The evolution of the SAA is portrayed in Figure 9, while two representative VIS
images acquired at t = 0 and t = 1000 s are shown in Figure 10.

Figure 9. Sun aspect angle evolution for test case n.2.

The averaged results over the Montecarlo runs are shown in Figure 11 for the three
different sensing modalities, while Figure 12 reports the results for the combined VIS-TIR
sensing strategy, in which the utilization of both camera is highlighted in green, and the
periods during which the algorithm relies on ther TIR camera only are highlighted in red.
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Figure 10. VIS images acquired at t = 0 s (left) and t = 1000 s (right), respectively. Test case n.2.

Figure 11. Average position KE (Left) and attitude KE (Right) over 250 simulations. Test case n.2.

It is evident from the results presented in Figure 11 that visible images alone cannot
provide a reliable navigation solution when the SAA increases. The navigation error in-
creases until divergence before 1000 s, due to the fact that the filter can no longer detect
and track any features. On the other hand, when the navigation chain relies solely on
the thermal imaging measurements the errors present a more erratic behaviour and the
pose estimation error tends to increase. This behavior is evident when comparing the
results achieved through the sensor handover controlled by the switch, as illustrated in
Figure 12, with those derived from using the thermal camera independently, as depicted in
Figure 11. Notably, both the position and attitude errors are consistently lower only when
the algorithm manages to fuse the visible and thermal information (green area of Figure 12),
while they are coincident when the thermal camera is used independently. Analyzing the
average errors presented in Table 6, it becomes evident that, although there is a slight
decrease in attitude error, the benefits of employing an adaptive sensing modality solution
are enhances during intervals of favorable illumination, while it does not extend to the
overall performance for extended periods of dynamical illumination conditions. Figure 11
depicts the estimation error when using the visible spectrum as a standalone solution.
As anticipated, the pose estimation abruptly diverges when the image processing pipeline
fails to accurately identify and match the target’s features due to the images degradation.
This further underscores the critical role of the thermal camera in ensuring the robustness
of the navigation chain.
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Figure 12. Average positionKE (Left) and attitude KE (Right) over 250 simulations. In the red band
only the TIR camera is used due to poor illumination in the VIS spectrum.

Table 6. Position and attitude Mean Knowledge Errors (MKE) for different sensing modalities. Test
case n.2.

Test Case
Position Errors Attitude Errors

Abs. MKE [m] Rel. MKE [%] MKE [deg]

TIR 0.23± 0.15 1.50± 0.99 1.83± 1.28
VIS—TIR Handover 0.22± 0.14 1.43± 0.96 1.54± 1.16

In Figure 11 it can be observed that in both the thermal and sensor-handover scenarios
the attitude errors spikes at certain time-steps. This reduction in accuracy occurs when the
camera orientation coincides with one of the principal planes of the target, leading to a
loss of information regarding its three-dimensional shape. Although this behavior of the
navigation chain requires for further investigation on the image processing techniques, it
does not significantly impact the pose estimation capability over extended periods.

In the same way as the previous test section, we perform an analysis on the number of
matched features and their associated measurement noise covariance. Figure 13 reports
the number of matched feature pairs and the average measurement covariance noise value
assigned to each camera. First of all, it can be noticed that the number of matched features
for the visible spectrum is always lower than the number of thermal-infrared features. In
addition, when the visible camera is re-introduced within the navigation chain, its initial
covariance value is higher, and it decreases as the feature detection and tracking become
reliable again. Despite this difference, the accuracy of VIS-only navigation in favourable
illumination conditions is higher with respect to the thermal-infrared case. This is due to
the fact that the most important factor is the associated feature noise, which is lower in the
case of VIS images. The only time during which VIS features are noisier is in the proximity
of eclipses, and the online covariance adaptation assigns a high measurement noise to such
features. As for the number of matched thermal features, it can be noticed that the error
spikes in the pose estimation error are linked to those periods in which the number of
matched feature pairs decreases. This behaviour implies that due to the lower detection and
tracking accuracy, thermal-based navigation needs to rely on a higher number of features to
obtain accurate results. As expected, the measurement noise covariance of TIR features is
higher with respect to VIS ones, since the detection and tracking process is less accurate. It
is also necessary to acknowledge that towards the end of the simulation, the measurement
noise covariance of TIR features tends to be higher, which is immediately reflected in the
attitude error. It is also necessary to point out that the attitude estimation error is more
sensitive with respect to the position estimation, since it is tightly linked to the behaviour
of the measurements.
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Figure 13. Number of matched feature pairs (Left) and mean feature measurement noise covariance
(Right). Test case n.2.

7. Conclusions

We present a navigation chain for estimating the relative pose between a chaser
and an uncooperative target using combined visible and thermal sensing. The proposed
navigation strategy allows for a satisfactory estimation of the relative state and relative
angular velocity, and it highlights the two novel aspects of this work: the additional use of
a thermal-infrared camera to complement the existing sensor in the relative navigation task
and sensor handover between cameras operating in different part of the spectrum. The
numerical evaluation of the presented approach confirms that the information added by
the thermal camera improves the robustness of navigation architecture in a challenging
scenario with dynamical illumination conditions. However, it is important to highlight
that the accuracy of the navigation solution employing only thermal infrared images is
lower with respect to the one obtained by using visible images in favourable illumination
conditions. This outcome is due to two major factors: first of all TIR images have a lower
array size and a higher noise level with respect to VIS ones, thus affecting the feature
detection and tracking process; and secondly, the employed IP algorithms were initially
developed for VIS images only, and thus they have worse performances on TIR images.
In addition, an important new research contribution of the paper is in demonstrating
the use of a cross-spectral sensor handover, meaning that the navigation filter employs a
combined optical and thermal sensing for a part of the orbit, and it autonomously switches
to a thermal-only navigation mode when an eclipse occurs. The outcome of this research
represents a step forward towards a flexible navigation strategy capable of dealing with
any illumination conditions, enabling autonomous operations with uncooperative resident
space objects. A step further in this research field requires the development and tailoring
of image processing techniques to thermal infrared images to enhance the accuracy of the
navigation solution.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DoF Degrees of Freedom
ECI Earth Centered Inertial
EKF Extended Kalman Filter
FOV Field of View
IP Image Processing
LEO Low Earth Orbit
LK Lucas-Kanade
LVLH Local Vertical Local Horizon
KE Knowledge Error
MEKF Multiplicative Extended Kalman Filter
MKE Mean Knowledge Error
MRP Modified Rodrigues Parameters
ORB Oriented FAST and Rotated BRIEF
PF Particle Filter
RANSAC Random Sample and Consensus
SAA Sun Aspect Angle
STM State Transition Matrix
TIR Thermal-Infrared
UKF Unscented Kalman Filter
VIS Visible
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