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Abstract
During heating (loading characterised by a progressive increase in strain rate)
and cooling (loading characterised by a progressive decrease in strain rate)
numerical tests, performed by using Discrete Element codes, granular materials
experience phase transition phenomena, named in this paper ‘dry liquefaction’
(when from solid the material starts behaving like a fluid) and ‘dry resolidi-
fication’ (freezing, when the material from fluid starts behaving like a solid).
The aim of this paper consists in reproducing phase transition phenomena by
using a strain hardening visco-elastic-plastic model based on the critical state
concept and kinetic theories of granular gases. The authors demonstrate that cru-
cial is the role of isotropic softening/hardening, which describes the size of the
elastic domain and the capability of the solid skeleton of storing elastic energy
according to permanent force chains. The main ingredients of the model are:
(i) the additivity of quasi-static and collisional stresses, (ii) the energy balance
equation governing the evolution of the granular temperature, interpreted this
latter as an additional internal variable for the system for the collisional con-
tribution, (iii) the mixed isotropic and kinematic hardening characterising the
quasi-static incremental constitutive relationship. The model has been both cal-
ibrated and validated on Discrete Element Method (DEM) numerical results,
obtained by testing dry assemblies of monodisperse spheres under true triaxial
loading conditions.
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1 INTRODUCTION

As is well known, in nature, granular media behave differently according to their state: for instance, under quasi-static
conditions, a sand deposit under a raft foundation behaves like a solid and can be idealised as a network of permanent
force chains developing among grains.1,2 In contrast, when flowing at large values of strain rate, the samematerial exhibits
a fluid-like behaviour with grains colliding among each other.3–5
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An attempt to experimentally investigate the mechanical behaviour of granular material in a wide range of
strain rates is in Yamamuro et al.6 This unique series of experimental results was obtained by means of an
unconventional triaxial apparatus. These results put in evidence that an increase in shear rate corresponds to an
increase in (i) stiffness at small strains, (ii) residual shear strength and (iii) dilatancy. These preliminary results testify
the role of both strain rate and strain acceleration in affecting the mechanical behaviour of granular soils, but the study
conducted by the authors was not systematic and did not investigate the response when the loading process is arrested.
In case of ideal materials, in the last 20 years, in the physicists community, numerous Discrete Element Method

(DEM) numerical simulation results7,8 have confirmed the role of both strain rate and confining pressure in govern-
ing the mechanical behaviour of granular media. DEM results are extremely useful when fundamental research is
performed, since they provide microstructural information (for instance contact forces, energetic contributions and
microstructure),9 nowadays also partially available owing to the use of sophisticated experimental devices.10,11 DEM
can be used as an effective numerical tool, capable of capturing many inherent aspects of the soil response, although
they do not directly account for many peculiarities of the soil behaviour related to grain shape, crushing, damage and
indentation.1,12–14
In the scientific literature, very few15–17 are the models capable of dealing with phase transition phenomena. In fact,

the very numerous standard geotechnical constitutive models, introduced in the last five decades, based on elastic-
plasticity,18,19 on bounding surface plasticity,20 on hypoplasticity21,22 or incrementally non-linear formulations,23 are
capable of successfully predicting the material response under quasi-static conditions but are not adequate for simulat-
ing granular media in both the previously mentioned regimes; whereas, in the hydraulics/physicists community, popular
are the theories/approaches proposed to describe themechanical behaviour of granularmedia under fluid-like conditions.
These, based on either experimental tests or numerical data, consider steady conditions only, disregard themicromechan-
ics governing the phenomena and do not take into account phase transition processes.4,24–26 To this category of models
belongs the so called μ–I rheology,4 according to which, under simple shear conditions, a unique relationship between
stress level μ, void ratio e and inertial number I exists: high values of I correspond to agitated conditions, whereas small I
values to quasi-static regimes. The unicity of such relationship, in case of deformable spheres, has been recently critically
discussed by Redaelli and di Prisco27,28 and Marveggio et al.29
The challenging goal of this paper consists in introducing a constitutive approach capable of reproducing phase tran-

sition phenomena (‘dry liquefaction’, when from solid the material starts behaving like a fluid, and ‘freezing’ or ‘dry
resolidification’, when the material from fluid starts behaving like a solid) experienced by granular assemblies when
either confining pressure is nullified/increased or strain rate is increased/decreased. The proposed model considers tran-
sient conditions and is based on the comprehension of the dissipative and storing mechanisms governing the phenomena
and on the hypothesis of distinguishing collisional dissipation contributions from the ones related to long elapsing force
chains. For steady conditions, the model follows the approach proposed in Berzi et al.,30 Vescovi et al.31 and Redaelli
and di Prisco,27 where a parallel scheme is adopted to account for separately both quasi static (i.e., force chains related)
and collisional terms. The former contribution is evaluated by employing the so-called critical state theory,32 whereas
the latter one according to the kinetic theories of granular gases.33–36 Recently, the same approach has been extended by
Vescovi et al.37 to account saturated conditions for. The same framework has been employed to simulate transient dry
simple shear conditions by Redaelli et al.,38 in which the quasi-static contribution is computed according to the standard
elastic perfectly plastic theory, modified by including the critical state concept. This model could reproduce solid to fluid
like transition process but not the vice versa. Thus, it has been modified by introducing a kinematic hardening39 and
validated against DEM simulation results to reproduce liquefaction and post-liquefaction response under isochoric con-
ditions. The model seems to be capable of reproducing DEM results but not the nullification of the material history after
liquefaction.
In this paper, a strain hardening visco-elastic-plastic model is proposed to overcome all the limitations mentioned here

above. The model is based on the assumption that the evolution of the isotropic hardening variable (measuring the capa-
bility of the solid skeleton of storing elastic energy by means of permanent force chains) has to follow the one of the
coordination number, whereas the back stress hardening rule, the one of the second invariant of the deviator of fabric ten-
sor.When solid to fluid phase transition occurs, thematerial memory is assumed to be partially delated, since the isotropic
hardening variable is assumed to experience a severe softening, whereas the second invariant of the back-stress is assumed
not to evolve. During the reconsolidation process, the material is assumed to behave like a ‘pseudo-virgin’ material, char-
acterised by an initial not negligible induced (from the previous strain history) anisotropy. In the model proposed in this
paper (i) a 3D formulation is adopted, (ii) a closed shaped yield surface is employed, (iii) amixed isotropic-kinematic strain
hardening, based on critical state theory for granular materials,40 via the definition of a back-stress tensor is introduced
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MARVEGGIO et al. 2417

and (iv) in agreement with what put in evidence by DEM numerical data of Huang et al.41 but not considered by popular
critical state based constitutive models like those previously cited,19,42 the dependence of both critical void ratio and crit-
ical obliquity on Lode angle is accounted for. The constitutive model is validated against the numerical results obtained
by Redaelli and di Prisco,28 by discussing phase transition in terms of evolution of stored energy (elastic and fluctuating
kinetic), stresses and internal variables.
In Section 2, by analysing DEM simulation data available in literature, the concept of phase transition is clarified.

In Section 3, the constitutive model is introduced, while in Section 4 a constitutive parameters calibration procedure is
described. Then, the model is validated against DEM ‘heating’ (i.e., monotonic loading during which the strain rate is
increased) test results (Subsection 5.1). The role of (i) initial void ratio, (ii) Lode angle (from pure compression to exten-
sion) and (iii) deviatoric strain rate is accounted for. In Subsection 5.2, ‘cooling’ triaxial test (performed on specimens
initially sheared under steady conditions by progressively decreasing the strain rate) results are discussed. Finally, the
model is employed to predict the state of stress at rest after performing cycles of heating and cooling, performed at different
acceleration/deceleration values (Subsection 5.3).

2 NUMERICAL EVIDENCE OF PHASE TRANSITIONS IN GRANULARMEDIA

According to Jop et al.,4 under steady conditions, solid and fluid-like regimes can be distinguished as a function of inertial
number I, since only in the solid-like regime stress ratio 𝜇 and void ratio e do not depend on I.
On the contrary, Redaelli and di Prisco27 by performing DEM triaxial compression tests have shown that, at steady state,

for sufficiently small inertial number values, the relationship between e and I is not unique as the void ratio seems to be
independent of the deviatoric imposed strain rate �̇�𝑒 but markedly decreases with the imposed confining pressure 𝐼1𝜎.
They have proposed three regimes: the solid (quasi static), the transitional and the fluid-like (collisional35) one

(Figure 1). As is evident, only in the transitional regime both stress level and void ratio remain constant with I.
Under evolving conditions, Redaelli and di Prisco28 have analysed DEM results of constant pressure (dashed lines

HP, starting from initial condition I1) and constant volume (solid lines HV, starting from initial condition I2) triaxial
compression tests (Figure 2), performed by imposing different deviatoric strain rates. By focusing on both stored energy
and coordination number Z, they have individuated a condition identifying the boundary from transitional to collisional
regimes and vice versa: the passage through lines Z = ZT and

𝐸𝑒𝑙

𝐸𝑘𝑓
= 1, where 𝐸𝑒𝑙 is valued as the elastic energy stored at

the contacts (durable and collisional), while 𝐸𝑘𝑓 is defined as the kinetic fluctuating energy.
The dotted line is the locus obtained by interpolating the steady state points (HI with I = 1,..,6) of the triaxial tests. As

is evident, the intersection between the two straight lines previously mentioned belongs to this locus.

3 THEORETICALMODEL

The model, inspired to the numerical observation previously outlined, is defined by assuming the parallel scheme
proposed by the authors in the above-mentioned papers. The stress tensor σ is thus defined as:

𝝈 = 𝝈𝑞𝑠 + 𝝈𝑐𝑜𝑙, (1)

where the quasi-static solid skeleton contribution, 𝝈𝑞𝑠, refers to the contact network, whereas the collisional one, 𝝈𝑐𝑜𝑙,
is associated with collisions among particles. Once the quasi-static contribution is incrementally formulated, if an Euler
explicit time integration scheme is adopted, the constitutive relationship can be written as follows38:

𝝈𝑖 =
(
𝑫
qs
𝑖−1

Δ𝑡 + 𝐇col
𝑖−1

)
∶ �̇�𝑖 + 𝝈

qs
𝑖−1

+ 𝒉col
𝑖−1

, (2)

where symbol : stands for double scalar product, ‘dot over’ stands for the time derivative, while subscript 𝑖 for the i-th
integration time step. 𝜺 is the strain tensor, 𝐇𝑐𝑜𝑙

𝑖−1
and 𝑫

qs
𝑖−1

the viscous collisional (Subsection 3.1) and the quasi-static
tangent stiffness 4th order tensors (Subsection 3.2), respectively, evaluated at the (i−1)-th time step, Δ𝑡 is the time step
employed in the explicit time integration, 𝝈𝑞𝑠

𝑖−1
the quasi-static stress tensor evaluated at the previous integration time

step and 𝒉𝑐𝑜𝑙
𝑖−1

is a collisional-related term (Subsection 3.1).
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2418 MARVEGGIO et al.

F IGURE 1 Steady state points of discrete element method (DEM) triaxial compression tests (A) inertial number – stress ratio plane, (B)
inertial number – void ratio plane. Empty data points are characterised by the same deviatoric strain rate (�̇�𝑒 = 121∕𝑠) and different confining
pressures (𝐼1𝜎), filled data points are characterised by the same confining pressure (𝐼1𝜎 = 150 kPa) and different deviatoric strain rates (�̇�𝑒).
Data from Redaelli and di Prisco27

3.1 Collisional contribution

As in Redaelli and di Prisco,27 the collisional contribution is modelled according to kinetic theories of granular gases.33–36
This approach assumes as state variables both void ratio 𝑒 and granular temperature 𝑇, where this latter measures the
system agitation and is defined as one third of the grain velocity variance.33
The evolution laws for both e and T are given in Subsection 3.1.1, while the collisional stress definition, in terms of the

two viscous collisional tensors𝐇col and 𝒉𝑐𝑜𝑙, is introduced in Subsection 3.1.2.
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MARVEGGIO et al. 2419

F IGURE 2 Phase diagram, in terms of
stored energy ratio (elastic over kinetic
fluctuating) and coordination number Z,
under evolving conditions (solid lines) and
steady limit (dotted line). HP tests are those
under constant pressure (dashed line), HV
under constant volume (solid line). Data from
Redaelli and di Prisco28

3.1.1 𝑒 and 𝑇 evolution laws

Void ratio evolution law is governed by the mass balance, as it follows:

�̇� = − (1 + 𝑒) Tr (𝜀) , (3)

whereas the evolution of granular temperature is ruled by the fluctuating energy 𝐸𝑓 balance30:

�̇�𝑓 = 𝝈𝑐𝑜𝑙∶�̇� − Γ𝑐𝑜𝑙. (4)

As in Vescovi et al.,39 Γcol is the rate of energy dissipated by inelastic collisions, given by73:

Γ𝑐𝑜𝑙 =
𝜌𝑝

𝐿
𝐹4𝑇

3

2 . (5)

where 𝜌𝑝 is the particle density, 𝐹4 is a function of both 𝑒 and 𝑇 and its expression, is discussed in Subsection 3.1.2null . 𝐿,
whose expression is reported in Appendix B, is the so-called correlation length, representing the size of particle clusters
developing in the collisional regime.
In contrast, the novelty introduced in this paper consists in accounting for the elastic energy stored by the system during

collisions (𝐸𝑓,𝑒𝑙) as a function of the fluctuating kinetic energy (𝐸𝑓,𝑘):

𝐸𝑓 = 𝐸𝑓,𝑘 + 𝐸𝑓,𝑒𝑙, (6)

where, according to Garzò and Dufty34:

𝐸𝑓,𝑘 =
3

2
𝜌𝑝

1

1 + 𝑒
𝑇, (7)

whereas, according to the authors:

𝐸𝑓,𝑒𝑙 =
3

2
𝜌𝑝

1

1 + 𝑒
𝑇𝑓𝑟 (𝑇, 𝑒) , (8)

being 𝑓𝑟 (Appendix B) calculated, according to Berzi and Jenkins,43 as the ratio of collision duration and flight time
(i.e., average time elapsing between two subsequent collisions). In Equation (8), the average elastic energy stored during
each collision is evaluated equal to the fluctuating kinetic energy. As in Berzi and Jenkins,43 𝑓𝑟 accounts for the collision
frequency in a representative elementary volume (REV), depending on 𝑇 and 𝑒. According to these definitions, when
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2420 MARVEGGIO et al.

F IGURE 3 Jamming void ratio: Lode angle dependence

no stable force chains are present in the system and the grain flight time is negligible with respect to particle collision
duration, 𝑓𝑟 = 1 and the energy is equally stored in terms of kinetic fluctuations and elastic potential energy.

3.1.2 Collisional stress

As in Redaelli et al.,38 viscous collisional tensors𝐇𝑐𝑜𝑙 and 𝒉𝑐𝑜𝑙 are defined as:

𝐇𝑐𝑜𝑙 = H𝑐𝑜𝑙
𝑖𝑗𝑘𝑙

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌𝑃𝑑
(
4

3
𝐹2 + 𝐹3

)
𝑇

1

2 if 𝑖 = 𝑗 = 𝑘 = 𝑙

𝜌𝑃𝑑
(
−

2

3
𝐹2 + 𝐹3

)
𝑇

1

2 if 𝑖 = 𝑗 ∩ 𝑘 = 𝑙 ∩ 𝑖 ≠ 𝑘

𝜌𝑃𝑑𝐹2𝑇
1

2 if 𝑖 ≠ 𝑗 ∩ 𝑖 = 𝑘 ∩ 𝑗 = 𝑙

0 elsewhere

(9)

and

𝐡𝑐𝑜𝑙 = 𝜌𝑃𝐹1𝑇𝑰, (10)

being 𝐼 the 2nd order identity tensor, 𝐹1, 𝐹2 and 𝐹3 three functions of 𝑒 and 𝑇 (Equation 11) and 𝑑 the particle diameter.
𝐹𝑖, 𝑖 = 1, … , 4 (where 𝐹4 is required to define the rate collisional dissipation in Subsection 3.1.1) are defined to take the

particle deformability into account, according to Berzi and Jenkins43:

𝐹𝑖 =

⎧⎪⎨⎪⎩
𝑓𝑖

𝜌
1∕2
𝑝 𝑇1∕2

(
𝑓𝑖

𝑓𝑖𝜌
1∕2
𝑝 𝑇1∕2

+ 1

)−1

if 𝑒 < 𝑒𝑐 (𝛼𝜎)

𝑓𝑖

𝜌
1∕2
𝑝 𝑇1∕2

if 𝑒 > 𝑒𝑐 (𝛼𝜎)

, (11)

being 𝑓𝑖 and 𝑓𝑖 , i = 1,. . . ,4 only functions of void ratio (Appendix B), depending on one macroparameter (𝑒𝑚) and three
input data (particle Young modulus 𝐸𝑝, interparticle friction coefficient 𝜇𝑝 and restitution coefficient 𝜀𝑛). 𝑒𝑐 is the jam-
ming void ratio, that is the void ratio at which force chains start developing within the granular medium under steady
conditions. According to Zhao and Guo,44 Zhou et al.45 and Redaelli and di Prisco,27 𝑒𝑐 is independent of the loading
path. In contrast, Barreto and O’Sullivan46 and Huang et al.41 have numerically shown that 𝑒𝑐 depends on Lode angle

𝛼𝜎 = atan[

√
3(𝜎𝑦−𝜎𝑧)

2𝜎𝑥−𝜎𝑦−𝜎𝑧
] (being 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 the maximum, intermediate andminimum, respectively, principal stresses). In

particular, themaximumvalue of jamming void ratio is expected in case of extension,while theminimum for compression.
For this reason, the authors introduce for 𝑒𝑐 the following expression (Figure 3):

𝑒𝑐 (𝛼𝜎) =
1

2
[(𝑒𝑐𝑐 + 𝑒𝑐𝑒) + (𝑒𝑐𝑐 − 𝑒𝑐𝑒) cos 3𝛼𝜎] , (12)
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MARVEGGIO et al. 2421

where 𝑒𝑐𝑐 and 𝑒𝑐𝑒 are the values of critical void ratio associatedwith compression and extension loading paths, respectively.

3.2 Quasi-static contribution

The quasi-static contribution is modelled by employing a time independent elastic-plastic anisotropic strain hardening
formulation, based on the critical state theory, interpreted this latter as a limit steady state for 𝑇 going to zero.27 Accord-
ing to elastic-plasticity, stiffness tensor 𝑫𝑞𝑠 of Equation (2) is assumed to coincide with the elastic stiffness tensor 𝑫𝒆𝑙

(Subsection 3.2.1) under unloading, whereas under loading:

𝑫qs = 𝑫el −
𝑫el ∶ 𝒏 ⊗

df
𝑑𝝈qs

∶ 𝑫el

df
𝑑𝝈qs

∶ 𝑫el ∶ 𝒏 + 𝐻
, (13)

where⊗ stands for tensor product, 𝑓 the yield function (Subsection 3.2.2), 𝒏 a second order tensor governing the plastic
strain rate direction (Subsection 3.2.3) and𝐻 the hardening modulus (Subsection 3.2.4), this latter defined as:

𝐻 = −

�̄�∑
1

𝑑𝑓

𝑑𝑞𝑖

(
𝑑𝑞𝑖

𝑑𝜀𝑝𝑙
∶𝒏

)
, (14)

being 𝑞𝑖 the i-esim out of �̄� model hardening variable.

3.2.1 Elastic stiffness tensor

A hyperelastic formulation with non-nil elastic stiffness, when elastic strains nullify, is mandatory to reproduce the mate-
rial mechanical behaviour at the solid-to-fluid transition. Since defining an expression for the elastic potential satisfying
these requirements is a non-trivial operation and is out of the scope of this paper, for the sake of simplicity, the elastic
contribution is modelled as linear and isotropic: elastic plastic coupling due to both void ratio dependence and elastic
stiffness tensor anisotropy are disregarded.47,48 The elastic stiffness tensor 𝑫𝒆𝑙 is thus assumed to be constant and only a
function of Young modulus 𝐸 and Poisson ratio 𝜈.

3.2.2 Yield function

A closed shaped yield locus is employed: this choice, as will be discussed in Section 5, is fundamental for correctly
simulating phase transition processes. The authors adopted the expression proposed in the model of di Prisco et al.49:

𝑓 = 3𝛽 (𝛾 − 3) ln

(
𝑟

𝑟𝑐

)
+
9

4
(𝛾 − 1) 𝐽∗2𝜎 − 𝛾𝐽∗3𝜎, (15)

where 𝛾 is a dimensionless constitutive parameter, while:

𝑟 = 𝝈𝑞𝑠∶𝝌 , (16)

𝐽∗2𝜎 = 3𝒔𝑞𝑠∗∶𝒔𝑞𝑠∗∕𝑟2, (17)

𝐽∗3𝜎 = 9
√
3𝑑𝑒𝑡(𝒔qs∗)∕𝑟3, (18)

𝒔𝑞𝑠∗ = 𝝈𝑞𝑠 − 𝑟𝝌 . (19)
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2422 MARVEGGIO et al.

(A) (B)

F IGURE 4 Yield surface in (A) deviatoric and (B) meridian planes. The geometrical role of the back-stress and the cap size is clarified in
(B)

As is clarified in Figure 4, 𝝌 is a back-stress second order tensor evolving with plastic strains, whereas 𝑟𝑐, equivalent to
the isotropic pre-consolidation pressure for an isotropic material, defines the size of yield locus 𝑓. 𝛽 controls, instead, the
yield locus shape. In the original model, all these quantities vary with plastic strains. For the sake of simplicity and since
an ideal material is considered in this paper, 𝛽 is assumed to be a constant constitutive parameter.

3.2.3 Flow rule

According to Manzari and Dafalias42 and Vescovi et al.,39 the direction of the plastic strain rate tensor �̇�𝑝 in the triaxial
plane may be assumed to be ruled by a function 𝐹𝑑, depending on both void ratio and stress level. As was suggested by
Manzari and Dafalias,42 in the model proposed by the authors, the flow rule is assumed to be associated in the deviatoric
plane and not associated in the meridian one. Therefore 𝒏 (Equation 13) is written as:

𝒏 =

√
3

2

df
𝑑𝒔qs||| df
𝑑𝒔qs

||| +
1

3
𝐹𝑑 (𝝈

qs, 𝑒) 𝑰. (20)

where 𝒔qs = 𝝈qs −
1

3
𝐼
qs
1𝜎𝑰 is the deviatoric stress, with 𝐼

𝑞𝑠
1𝜎 = 𝑇𝑟 (𝝈𝑞𝑠), whereas 𝐹𝑑 is defined by generalising to 3D loading

paths the expression proposed for simple shear conditions by Vescovi et al.39:

𝐹𝑑 (𝝈𝑞𝑠, 𝑒) = 𝛿1Ψ (𝝈𝑞𝑠, 𝑒) + 𝛿2Φ (𝝈𝑞𝑠) (21)

being 𝛿1 and 𝛿2 two constant parameters.
In Equation (21), Ψ is a generalised version of the state variable introduced by Been et al.50 and Jefferies.40 In fact, as

was mentioned in the introduction, the critical state void ratio for 𝐼𝑞𝑠1𝜎 → 0 axis is given by Equation (12). Therefore, by
linearising the dependence of critical state locus on 𝐼𝑞𝑠1𝜎, as suggested by both Vescovi et al.

39 and 3D-DEMnumerical data,
obtained for steady simple shear flows of monodisperse spherical particles by Sun and Sundaresan8:

Ψ = 𝑒 − 𝑒𝑐 (𝛼𝜎) +
2

3𝑎𝐸𝑝
𝐼
𝑞𝑠
1𝜎. (22)

where 𝑎, as is shown by Redaelli and di Prisco,27 is a dimensionless coefficient related to the interparticle friction
coefficient 𝜇𝑝, as it follows:

𝑎 = 0.75𝜇𝑝 + 1.23. (23)

Function Φ, in Equation (21), is assumed to describe the dependency of dilatancy on the stress level as it follows:

Φ = 3

√
3

2

𝐽
𝑞𝑠
𝑠

𝐼
𝑞𝑠
1𝜎

− 𝑀𝑐𝑠 (𝛼𝜎) , (24)

where𝑀𝑐𝑠(𝛼𝜎), the function describing the dependence on the Lode angle of the stress state obliquity at critical state, is
given in Subsection 3.2.5.
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MARVEGGIO et al. 2423

3.2.4 Hardening rules

With respect to the model of di Prisco et al.,49 in this paper, the hardening variables 𝝌 and 𝑟𝑐 (Equation 15) evolution laws
depend not only on plastic strains and current state of stress but also on Ψ:

�̇� = �̇� [�̂� − 𝝌 (𝝌∶�̂� )] (25)

�̇� = 𝑐𝑝 (Ψ)
√
�̇�𝑝 ∶ �̇�𝑝 (26)

where

𝑐𝑝 (Ψ) = 𝑐𝑝𝑐 − 𝑐𝑝𝜓 Ψ, (27)

being 𝑐𝑝𝑐 and 𝑐𝑝𝜓 two nondimensional constitutive parameters.
This formulation is based on the assumption that �̇� obeys to a saturation rule, so that the higher the distance of 𝝌 from

the limit tensor �̂� , the faster is the rotation.49 �̇� is a sort of activation scalar variable, function of �̇�𝑝 (Equation 26), and 𝑐𝑝,
linearly variable withΨ (Equation 27). �̂� is the limit tensor towards which 𝝌 is assumed to evolve (Equation 25). According
to di Prisco et al.,49 �̂� is individuated by employing the mapping rule defined here below:

𝝌 = cos 𝜃
𝑰√
3
+

𝒅‖𝒅‖ sin 𝜃 (28)

with

𝒅 =
√
3
𝒔qs∗

𝑟
−

(√
3

3

𝒔qs∗

𝑟
∶ 𝑰

)
𝑰 (29)

Differently from the model of di Prisco et al.,49 the limit rotation angle �̂� is assumed not only to depend on 𝛼𝜎, but also
on Ψ, that is:

�̂� (Ψ, 𝛼𝜎) =
1

2
𝜃𝑐𝑐

[(
1 +

𝜃𝑒𝑐
𝜃𝑐𝑐

)
+

(
1 −

𝜃𝑒𝑐
𝜃𝑐𝑐

)
cos 3𝛼𝜎

]
− 𝜃𝜓 Ψ, (30)

where 𝜃𝑐𝑐, 𝜃𝑒𝑐 and 𝜃𝜓 are three non-dimensional constitutive parameters.
The evolution of 𝑟𝑐, tuned by a non dimensional constitutive parameter 𝐵𝑝, is defined as the sum of two contributions:

�̇�𝑐 = 𝑟𝑐

⎡⎢⎢⎣
�̇�𝑝 ∶ 𝝌 + 𝜉 (Ψ, 𝛼𝜎) ([�̇�

𝑝 − (�̇�𝑝 ∶ 𝝌)𝝌] ∶ [�̇�𝑝 − (�̇�𝑝 ∶ 𝝌)𝝌])
1

2

𝐵𝑝

⎤⎥⎥⎦ , (31)

one pseudo-volumetric and one pseudo-deviatoric (in fact, in case 𝝌 = 𝑰∕
√
3, the first contribution coincides with the

plastic volumetric strain rate, while the second with the deviatoric one51,52).
In Equation (31), 𝜉 is not constant, as it was in di Prisco et al.,49 but is assumed to depend linearly on Ψ:

𝜉 (Ψ, 𝛼𝜎) = �̂� (𝛼𝜎) − 𝜉𝜓 Ψ, (32)

being 𝜉𝜓 a non-dimensional constitutive parameter, whereas the expression:

�̂� (𝛼𝜎) = −

√
3

2
tan(𝜃𝑐𝑐)

[(
1 +

tan (𝜃𝑐𝑒)

tan(𝜃𝑐𝑐)

)
+

(
1 −

tan (𝜃𝑐𝑒)

tan(𝜃𝑐𝑐)

)
cos 3𝛼𝜎

]
, (33)

is obtained by imposing �̇�𝑐 = 0 at critical state.
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2424 MARVEGGIO et al.

TABLE 1 Values of micromechanical input data

𝝆𝒑 (kg/m3) 𝒅 (m) 𝑬𝒑 (MPa) 𝝁𝒑 (–) 𝜺𝒏 (–)
2600 0.001 750 0.35 0.90

TABLE 2 Values of the constitutive parameters governing collisional response

𝒆𝒎 (–) 𝒆𝒄𝒄 (–) 𝒆𝒄𝒆 (–)
1.5 0.685 0.692

3.2.5 Critical state locus

According to the model proposed, the critical state locus is a function of (i) state of stress, (ii) void ratio and (iii) five con-
stitutive parameters (two micro, 𝐸𝑝, 𝜇𝑝 and three macro, 𝑒𝑐𝑐, 𝑒𝑐𝑒, 𝛾). Its expression is obtained by nullifying the previously
mentioned Ψ and Φ functions (Equations 22 and 24):

Ψ = 𝑒 − 𝑒𝑐 (𝛼𝜎) +
2

3𝑎𝐸𝑝
𝐼
𝑞𝑠
1𝜎 = 𝑒 −

1

2
[(𝑒𝑐𝑐 + 𝑒𝑐𝑒) + (𝑒𝑐𝑐 − 𝑒𝑐𝑒) cos 3𝛼𝜎] +

2

3𝑎𝐸𝑝
𝐼
𝑞𝑠
1𝜎 = 0, (34)

Φ = 3

√
3

2

𝐽
𝑞𝑠
𝑠

𝐼
𝑞𝑠
1𝜎

− 𝑀𝑐𝑠 (𝛼𝜎) = 0. (35)

In the proposedmodel,𝑀𝑐𝑠(𝛼𝜎) is assumed to coincide withMatsuoka andNakai53 criterion, written in an explicit form
by Lagioia and Panteghini54:

𝑀𝑐𝑠 = 3

[
2

√
𝛾 − 1

𝛾 − 3
cos

[
1

3
arcos

(
𝛾 (𝛾 − 3)

1∕2

(𝛾 − 1)
3∕2

sin 3
(
𝛼𝜎 −

𝜋

6

))]]−1

. (36)

4 CONSTITUTIVE PARAMETER CALIBRATION

To calibrate the constitutive model parameters, the authors employed the results of two DEM triaxial tests performed
under constant confining pressure (𝐼1𝜎 =150 kPa) on an initially loose specimen (initial void ratio 𝑒0 = 0.727): one com-
pression (𝛼𝜎 = 0◦, Figure 5) and one extension (𝛼𝜎 = 60◦). In Appendix A, a detailed description of the DEM numerical
model is reported.
As a comparison, in this paper the authors adopt numerical data referred to an ideal dry material characterised by iden-

tical frictional spheres.1 Considering monodisperse materials seems reasonable since the aim of the work is to interpret
and understand the fundamentals of granular material behaviour experiencing phase transitions. Moreover, as kinetic
theories of granular gases have been validated until now for monodisperse media, considering a unitary coefficient of
uniformity bears a discussion on advantages and liabilities of this approach when collisional contribution is dominant.
The response of the collisional contribution is governed by the geometry (grain diameter d) and physical/mechanical

properties of the single particle (grain density 𝜌𝑝, grain Young modulus 𝐸𝑝, friction coefficient 𝜇𝑝 and coefficient of resti-
tution 𝜀𝑛): these are input data (Table 1) not to be calibrated and, for the monodisperse material considered in the paper,
assumed to coincide with those employed to perform DEM numerical analyses (Appendix A).
Thirteen are the constitutive parameters related to the quasi-static contribution (𝐸, 𝜈, 𝛽, 𝛾, 𝛿1, 𝛿2, 𝜃𝑐𝑐, 𝜃𝑒𝑐, 𝜃𝜓, 𝑐𝑝𝑐, 𝑐𝑝𝜓,𝐵𝑝 ,

𝜉𝜓). 𝑒𝑐𝑐 and 𝑒𝑐𝑒 define the dependence of the critical void ratio on Lode angle (Equation 12, Figure 3) and can be estimated
by considering DEM results at critical state (compression and extension) (Table 2).
𝑒𝑚, related to the collisional contribution (Appendix B), is taken from Berzi and Jenkins.43
Among the 13 constitutive parameters governing solely the quasi-static mechanical behaviour:

∙ 𝐸, 𝜈 describe the elastic material stiffness (Subsection 3.2.1).

1 Numerical assemblies composed by monodisperse spheres may experience crystallization, but data that are considered in this paper are not affected
by this phenomenon, since, as was discussed in Redaelli and di Prisco,28 particles are not frictionless.
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MARVEGGIO et al. 2425

(A) (B)

(C)

F IGURE 5 Comparison between discrete element method (DEM) results and model predictions in the (A) 𝐽𝑠 − 𝐽𝑒 plane, (B) 𝑒 − 𝐽𝑒 plane
and (C) 𝜒𝑥𝑥 − 𝐽𝑒 plane

∙ 𝛽 and 𝛾 define the shape of the yield locus (Subsection 3.2.2). The value of 𝛾 is directly connected to the size of the
critical state locus (Subsection 3.2.5).

∙ 𝛿1 and 𝛿2 are related to the flow rule definition (Subsection 3.2.3).
∙ 𝜃𝑐𝑐, 𝜃𝑒𝑐 are the limit values of back-stress rotation under compression and extension respectively, while 𝜃𝜓 defines its
variation with Ψ, whereas 𝑐𝑝𝑐 and 𝑐𝑝𝜓 govern the rotation velocity with strain rate (Subsection 3.2.4).

∙ 𝐵𝑝 and 𝜉𝜓 are parameters governing the isotropic hardening (Subsection 3.2.4).

Here below, the strategy employed to calibrate the 13 parameters listed here above:

1. 𝐸 and 𝜈 have been calibrated by considering the very first part of the triaxial test in the 𝐽𝑠 − 𝐽𝑒 plane (Figure 5A), where
𝐽𝑠 = [

1

3
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑥 − 𝜎𝑧)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
]]1∕2 and 𝐽𝑒 = [

1

3
[(𝜀𝑥 − 𝜀𝑦)

2
+ (𝜀𝑥 − 𝜀𝑧)

2
+ (𝜀𝑦 − 𝜀𝑧)

2
]]1∕2.

2. 𝜃𝑐𝑐, 𝜃𝜓, 𝑐𝑝𝑐 and 𝑐𝑝𝜓 have been calibrated on the 𝜒𝑥𝑥 − 𝐽𝑒 plane (Figure 5C). For the DEM tests 𝝌 is assumed to be equal

to 𝝌 =
�̂�|�̂�| , where �̂� is the fabric tensor calculated from DEM data (Appendix A). In particular 𝜃𝑐𝑐 is related to the

final value of fabric orientation, 𝑐𝑝𝑐 to the initial slope of the curve, while 𝜃𝜓 and 𝑐𝑝𝜓 govern the intermediate evolving
condition.

3. 𝛾, 𝛽, 𝜉𝜓 have been calibrated focusing on the 𝐽𝑠 − 𝐽𝑒 plane (Figure 5A). 𝛾 is calibrated to match the value at steady state,
𝛽 the first part of the curve and 𝜉𝜓 the transient condition.

4. 𝐵𝑝 , 𝛿1 and 𝛿2, have been calibrated on the void ratio 𝑒 − 𝐽𝑒 plane (Figure 5B).
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2426 MARVEGGIO et al.

F IGURE 6 Time evolution of the deviatoric strain rate in case of heating tests (solid line) and cooling tests (dashed line)

5. Finally, 𝜃𝑐𝑒 has been calibrated by considering steady state condition of quasi-static constant pressure triaxial tests
under extension, focusing on the final point of the curve in the 𝜒𝑥𝑥 − 𝐽𝑒 plane.

The procedure employed to generate DEM specimen (Appendix A) determines a strong homogeneity in the specimen
microstructure. In case of quasi-static isotropic consolidation tests, commonly employed in case of real granular materials
to calibrate 𝐵𝑝, the lack of heterogeneity of DEMnumerical specimens seems not to allow the evolution of themicrostruc-
ture under isotropic conditions and their use for calibration purposes. In fact, loading-unloading DEM curves practically
superimpose.13,55 For the same reason, in case of initially dense materials (Subsection 5.1.2), due to the very large number
of interparticle contacts, DEM curves relative to constant pressure triaxial tests, are characterised by a very large initial
stiffness, not easily reproducible by the constitutive model.

5 MODEL VALIDATION

In this section, to test the model capability of simulating the dependence of the material mechanical behavior on the (i)
imposed strain rate, (ii) stress path and (iii) initial void ratio, model predictions are comparedwith DEMnumerical results
(true triaxial monotonic tests). In Appendix A, a detailed description of the DEM numerical tests is reported.
To simulate both inception and arrest of granular flows, two types of tests are considered: (i) heating and (ii) cooling,

respectively (Figure 6).
In case of heating, the material is initially at rest, isotropically consolidated at confining pressure 𝐼1𝜎 and initial void

ratio 𝑒0.
Then, the deviatoric strain rate is imposed to vary with time according to the following function (solid line in Figure 6):

�̇�𝑒 (𝑡) =

⎧⎪⎨⎪⎩
�̇�𝑒,𝑓

𝑡1
⋅ 𝑡 if 𝑡 < 𝑡1

�̇�𝑒𝑓 if 𝑡 ≥ 𝑡1

, (37)

where 𝑡1 =
|�̇�𝑒,𝑓|
̂̈𝐽𝑒

and ̂̈𝐽𝑒[s
−2] are the rate of change in the deviatoric strain rate (strain acceleration).

During cooling tests, the material is initially flowing under steady triaxial condition, coinciding with the final state
reached at the end of a heating test.
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MARVEGGIO et al. 2427

TABLE 3 Values of the constitutive parameters governing quasi-static response only

Elastic stiffness Yield function Flow rule Kinematic hardening
Isotropic
hardening

𝑬 (MPa) 𝝂 (–) 𝜷 (–) 𝜸 (–) 𝜹𝟏 (–) 𝜹𝟐 (–) 𝜽𝒄𝒄 (–) 𝜽𝒄𝒆 (–) 𝜽𝝍 (–) 𝒄𝒑𝒄 (–) 𝒄𝒑𝝍 (–) 𝑩𝒑 (–) 𝝃𝝍 (–)
500 0.3 0.5 3.185 4.7 0.8 0.145 0.129 0.5 35 640 0.001 3.4

TABLE 4 List of model heating tests

Test name 𝒆𝟎 (–) 𝜶𝝈 (◦) 𝑰𝟏𝝈 (kPa) �̇�𝒆,𝒇 (s–1) ̂̈𝑱𝒆 (s–2)
M_H_0-10_1 0.727 0 150 10 1e6
M_H_0-100_2 0.727 0 150 100 1e6
M_H_0-10_3 0.657 0 150 10 1e6
M_H_0-10_4 0.727 30 150 10 1e6
M_H_0-10_5 0.727 60 150 10 1e6
M_H_0-10_10 0.727 0 15 10 1e6
M_H_0_10_1_CV 0.727 0 150 10 1e6
M_H_0_10_2_CV 0.727 0 150 100 1e6

Then, the strain rate is linearly decreased to zero (dashed line in Figure 6):

�̇�𝑒 (𝑡) =

⎧⎪⎨⎪⎩
�̇�𝑒,0 −

�̇�𝑒,0

𝑡1
⋅ 𝑡 if 𝑡 < 𝑡1

0 if 𝑡 ≥ 𝑡1

, (38)

where 𝑡1 =
�̇�𝑒,0
̂̈𝐽𝑒
and ̂̈𝐽𝑒[s

−2] are the rate of change in the deviatoric strain rate (strain deceleration).
To obtain model predictions, Equations (2, 3, 4, 25, 31) are numerically integrated in time, by imposing a sufficiently

small time-step, to guarantee numerical stability and by imposing: (i) the total mean pressure 𝐼1𝜎 and Lode angle 𝛼𝜎 to be
constant, (ii) the deviatoric strain rate �̇�𝑒 to evolve according to Equations (37) or (38). The nonzero initial conditions for
heating and cooling tests are discussed in Subsections 5.1 and 5.2, respectively.

5.1 Heating tests

Heating tests, whose results are discussed in the following, are listed in Table 4 and are identified by the acronym ‘M_H_
0_�̇�𝑒,𝑓_i’, where i is an identification number. In Table 4, the nonzero initial conditions, the final strain rate, the Lode angle
and the acceleration rate of the eight tests, whose results are discussed here below, are reported.

5.1.1 Influence of 𝛼𝜎

To investigate the influence of Lode angle, three ‘constant pressure’ tests (𝐼1𝜎 = 150 kPa with �̇�𝑒,𝑓 = 10 s–1) characterised
by 𝛼𝜎 = 0◦, 30◦, 60◦, respectively, are considered. In all the three cases (M_H_0-10_1, M_H_0-10_4, M_H_0-10_5), the
material is initially loose (𝑒0 = 0.727).
As is evident in Figure 7, the agreement between model predictions (dashed lines) and DEM data (solid lines), in par-

ticular in the 𝐽𝑠 − 𝐽𝑒 plane (Figure 7A), is quite satisfactory. Initially, the deviatoric stress increases very rapidly and the
material response is independent of 𝛼𝜎. Subsequently, the dependence on 𝛼𝜎 becomes clearer: larger 𝐽𝑠 values correspond
to smaller 𝛼𝜎 values. In Figure 7B, where the volumetric response is shown, the dependence on 𝛼𝜎 is correctly captured,
although at large strains (𝐽𝑒 > 0.1) model simulations seem to overestimate void ratio. According to the authors, this is
mainly due to the DEM data oscillating trend. In fact, at steady state DEM andmodel predictions practically superimpose.
In Figure 7C strain paths for 𝛼𝜎 = 30◦ (imposed load direction) are plotted in the 𝐽𝑠 − 𝛼𝜀 deviatoric plane. As is evident,
strain paths deviate from the imposed stress path and the non-coaxialitly seems to be correctly simulated by the theoretical
model, in particular for large strains.

 10969853, 2022, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3412 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2428 MARVEGGIO et al.

(A) (B)

(C)

F IGURE 7 Influence of Lode angle. Comparison between discrete element method (DEM) results and theoretical model predictions in
(A) 𝐽𝑠 − 𝐽𝑒 , (B) 𝑒 − 𝐽𝑒 and (C) 𝐽𝑠 − 𝛼𝜎 planes

5.1.2 Influence of initial void ratio

Two constant pressure compression tests (𝐼1𝜎 = 150 kPa, 𝛼𝜎 = 0◦), characterised by �̇�𝑒,𝑓 = 10 s–1, are here considered. Test
M_H_0-10_1 corresponds to 𝑒0 = 0.727, whereas test M_H_0-10_3 to 𝑒0 = 0.657.
The theoretical model is capable of capturing, both qualitatively and quantitatively, the dependence of the evolving

response on initial void ratio. As is evident in Figure 8A, the model predicts quite well DEM simulations. The dense
specimen response presents a faint peak in DEM data, predicted also by the model, but the DEM curve is characterised
by an initial stiffer behaviour. As was anticipated in Section 4, this discrepancy is likely to be due to the particular initial
homogeneity of monodisperse DEM specimen, causing, in case of dense conditions, an increase in contacts along vertical
direction even without initial microstructure rearrangement (Figure 8C).
The volumetric behaviour (𝑒 − 𝐽𝑒 plane) is illustrated in Figure 8B: a compacting response is observed for both DEM

andmodel predictions in case of loose initial conditions (again DEMdata are characterised by oscillations at large strains),
in contrast, dense specimens, for both DEM and model predictions, dilate. According to the authors, the DEM specimen,
for the same reason mentioned above (Section 4), cannot initially compact. At steady state, as was expected, the void ratio
is independent of the initial value of 𝑒0. Finally, in Figure 8C, the evolution of fabric orientation (in terms of the first
component of tensor 𝜒) predicted by the model is compared with the corresponding DEM data: the agreement is very
satisfactory.

5.1.3 Influence of strain rate

Two ‘constant pressure’ tests ( 𝐼1𝜎 = 150 kPa, 𝛼𝜎 = 0◦) on loose specimens (𝑒0 = 0.727), characterised by different final
strain rates and coincident initial strain accelerations (Figure 6) are simulated: in one case �̇�𝑒,𝑓 = 10 s–1 (M_H_0-10_1),
while in the other �̇�𝑒,𝑓 = 100 s–1 (M_H_0-100_2).
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MARVEGGIO et al. 2429

(A) (B)

(C)

F IGURE 8 Influence of initial void ratio. Comparison between discrete element method (DEM) results and theoretical model
predictions: (A) 𝐽𝑠 − 𝐽𝑒 , (B) 𝑒 − 𝐽𝑒 and (C) 𝜒𝑥𝑥 − 𝐽𝑒 planes

In Figure 9, model simulations (dashed lines) and DEM results (solid lines) are compared. The model is capable of
capturing the dependence at steady state of 𝐽𝑠 and e values on the imposed strain rate (larger values of �̇�𝑒 correspond to
larger 𝐽𝑠 and e values). As was expected, the initial trend of DEM curve is not correctly reproduced by the model, in which
micro-inertial terms governing the evolution of force chains with time are not accounted for.56–59 For the same reason
in the 𝐽𝑒–𝑒 plane (Figure 9B), the more pronounced dependence of the volumetric response on the strain rate imposed,
exhibited by the DEM specimen, is not fully simulated by the model, since again, according to the authors, this does not
take into account micro-inertia.
Themodel capability of predictingDEMdata in terms of fabric orientation is illustrated in Figure 10,where the evolution

of the first component of tensor 𝜒 is plotted and compared with the corresponding value of fabric predicted by DEM. For
very large values of strain rate, the anisotropy of the fabric tensor increases with the shear rate imposed. This aspect is not
reproduced by the model since no microstructure anisotropy is taken into account by kinetic theories.

5.1.4 Model discussion

In this paragraph, with reference to heating tests, the authors want to discuss phase transitions starting from the analysis
of the constitutive model predictions, by focussing on the role of quasi-static and collisional contributions.
Phase transition, as is predicted by 𝜇 − 𝐼 rheology,26 is favoured by an increase in 𝐼, that is by an increase in deviatoric

strain rate or a reduction in confining pressure.
As far as the role of �̇�𝑒,𝑓 is concerned, apparently, at steady state, the two curves of Figure 9A are very similar. In contrast,

as alreadymentioned in Section 2 (Figures 1 and 2), the authorswant to show that themechanical behaviour of thematerial
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2430 MARVEGGIO et al.

(A) (B)

F IGURE 9 Influence of strain rate. Comparison between discrete element method (DEM) results and theoretical model predictions in:
(A) 𝐽𝑠 − 𝐽𝑒 and (B) 𝑒 − 𝐽𝑒 planes

(A) (B)

F IGURE 10 Comparison between discrete element method (DEM) results and theoretical model predictions in 𝜒𝑥𝑥 − 𝐽𝑒 plane: (A) test
M_H_0-10_1, (B) test M_H_0-100_2

is totally different and governed by two distinct dissipative microstructural mechanisms. In Figure 11, total stresses (solid
line), quasi-static (dashed line) and collisional (dot-dashed line) stresses are compared. The discussion is limited to model
predictions since, as is discussed inRedaelli and di Prisco,28 inDEM, collisional and quasi static (permanent) contributions
cannot be isolated to each other.
In case �̇�𝑒,𝑓 = 10 s–1 (Figure 11A), the collisional stress slightly increases during the test, but the quasi-static contri-

bution prevails and the steady state is reached only for very large values of the deviatoric strain (𝐽𝑒 > 0.8). In case �̇�𝑒,𝑓
= 100 s–1 (Figure 11B), initially, the quasi-static contribution prevails. For 𝐽𝑒 > 0.05, the quasi-static contribution progres-
sively decreases whereas the collisional one increases. When large values of deviatoric strain are reached, the quasi-static
contribution is almost negligible and the total stress coincides with the collisional one. The ‘dry’ liquefaction of the speci-
men sheared at �̇�𝑒,𝑓 = 100 s–1 is evident in Figure 11C, where the quasi-static (line b1) and collisional (line b2) stress paths
are plotted. In contrast, in case �̇�𝑒,𝑓 = 10 s–1, the quasi-static pressure (line a1) remains dominant, almost coinciding with
the total one.
The corresponding evolution of 𝑟𝑐 is plotted in Figure 11D: in case �̇�𝑒,𝑓 = 100 s–1 (line b), 𝑟𝑐 nullifies, meaning that the

effect of the previous strain history ‘survives’ in terms of microstructure orientation (Figure 10), but not in terms of yield
locus size, suggesting a total disruption of the force chains network. In contrast, in case of test M_H_0-10_1 (�̇�𝑒,𝑓 = 10 s–1),
the reduction in rc is marginal (line a), since the quasi-static contribution prevails on the fluctuating one.
To discuss phase transition from an energetic point of view, in Figure 12, the evolution of elastic (𝐸𝑞𝑠,𝑒𝑙 =

1

2
𝑫𝑒𝑙 ∶ 𝜺𝑒𝑙 ∶

𝜺𝑒𝑙, 𝐸𝑓,𝑒𝑙) and kinetic energies (𝐸𝑓,𝑘), normalised by the total energy stored by the system (𝐸𝑠𝑡 = 𝐸𝑓,𝑘 + 𝐸𝑓,𝑒𝑙 + 𝐸𝑞𝑠,𝑒𝑙) is
plotted for both DEM (D_H_0_100_2) and model (M_H_0_100_2). Both DEM and model predict:
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MARVEGGIO et al. 2431

F IGURE 11 Influence of strain rate (M_H_0-10_1 and M_H_0-100_2). Model predictions in (A) 𝐽𝑠 − 𝐽𝑒 plane (test M_H_0-10_1), (B)
𝐽𝑠 − 𝐽𝑒 plane (test M_H_0-100_2), (C) 𝐼

𝑞𝑠
1𝜎–𝐽

𝑞𝑠
𝑠 plane and (D) 𝑟𝑐 − 𝐽𝑒 plane

(i) the energy initially being fully elastically stored in force chains (𝐸𝑞𝑠,𝑒𝑙∕ 𝐸𝑠𝑡𝑜𝑟 = 1 and𝐸𝑓∕ 𝐸𝑠𝑡𝑜𝑟 =0), since the specimen
is initially static;

(ii) during the simulation, the elastic energy (𝐸𝑒𝑙 = 𝐸𝑞𝑠,𝑒𝑙 + 𝐸𝑓,𝑒𝑙) markedly reducing in favour of kinetic fluctuating
energy, due to the high deviatoric strain rate imposed.

(iii) for 𝐽𝑒 = 0.007, the fluctuating energy becoming the main stored energy contribution, exceeding the elastic one, as
the material undergoes phase transition;

(iv) an elastic energy not collapsing to 0, since the system is able to store elastic energy during collisions owing to particle
deformability.

By comparing Figure 11B–D and Figure 12, one can notice that, despite the phase transition occurrence is testified from
an energetic point of view since the very beginning of the test, in terms of stress the phase transition occurrence could
be postponed around 𝐽𝑒 = 0.08. This poses the question on the actual definition of phase transition: due to the different
nature of dissipation mechanism, the collisional contribution is able to store a large amount of energy without exhibiting
large resistance, while on the contrary, the force chain system is able to sustain a large load, without large deformation
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2432 MARVEGGIO et al.

F IGURE 1 2 Stored energy contributions (tests M_H_0-100_2 and D_H_0-100_2): discrete element method (DEM) data and model
predictions

F IGURE 13 Model predictions in 𝐽𝑠 − 𝐽𝑒 plane
(test M_H_0-10_10): collisional, quasi-static and
total contribution

and stored energy. This ‘energetic’ phase transition seems to slightly anticipate the one that can be detected by looking at
the stress contribution.
To demonstrate themodel capability of capturing the role of pressure in the phase transition process, in Figure 13, quasi-

static, collisional and total stress contributions are plotted for test M_H_0_10_10, characterised by �̇�𝑒,𝑓 = 10 s–1 and 𝐼1𝜎
= 15 kPa. As is evident, although the �̇�𝑒,𝑓 value imposed is coincident with that of M_H_0_10_1 (Figure 11A), the response
resembles that of test M_H_0_100_2 (Figure 11B).
As is well known in geotechnical literature,60–62 phase transition takes place in loose granularmediawhen the specimen

is sheared under constant volume conditions (that is undrained conditions if the material is saturated). Static liquefaction
is the term used to describe the phenomenon associated with the nullification of effective pressure. To testify the model
capability of reproducing also such a phenomenon, in Figure 14, the model numerical predictions under constant volume
conditions (M_H_0-10_1_CV and M_H_0-100_2_CV) are illustrated. The model predictions put in evidence that: (i) the
loss of controllability63 (that is the peak in the 𝐽𝑠–𝐼1𝜎 plane, point H) takes place when the material is still behaving like a
solid and the hardening variable 𝑟𝑐 is still increasing,28 (ii) phase transition is testified even by the abrupt reduction of 𝑟𝑐,
that is when the yield function tends to degenerate into a point.
In Figure 14, numerical predictions refer to two different stain rates. Until phase transition does not occur, the numer-

ical simulations perfectly coincide, since strain rate sensitivity does not play any role, as the quasi-static contribution
prevails. In contrast, when phase transition takes place, the collisional contribution governs the mechanical behaviour of
the material and the mechanical response of the two tests are totally different.
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MARVEGGIO et al. 2433

(C) (D)

(A) (B)

F IGURE 14 Influence of strain rate (M_H_0-10_1_Cv and M_H_0-100_2_Cv). Model predictions in (A) 𝐽𝑠 − 𝐽𝑒 plane, (B) 𝐽𝑠 − 𝐽𝑒 plane
(magnified), (C) 𝐼1𝜎 − 𝐽𝑠 plane and (D) 𝑟𝑐 − 𝐽𝑒 plane

5.2 Cooling tests

In this section, the model is tested in case the granular specimen, starting from a steady shearing condition, is arrested
(freezed to �̇�𝑒,𝑓 = 0).
Cooling tests are identified by the acronym ‘M_C _�̇�𝑒,ℎ_0_i’, where i is an identification number.
In Table 5, the initial deviatoric strain rate and the deceleration rate of the four tests, whose results are discussed here

below, are reported. The initial condition of each test coincides with the steady one of the corresponding heating test,
reported in Table 5, for the sake of clarity.
Cooling tests M_C_100_0_7 and M_C_100_0_8 are characterised by the same initial steady condition with �̇�𝑒,ℎ = 100

s–1, but they differ for the deceleration imposed: the former one decelerates more rapidly. In Figure 15, DEM results
are compared with model predictions in both 𝐽𝑠 − 𝐽𝑒 and 𝑒 − 𝐽𝑒 planes. The cooling tests seem to experience a sort of
reconsolidation, tuned by the energy fluctuation balance (Equation 4), governing the granular temperature evolution
with time. In the 𝐽𝑠 − 𝐽𝑒 plane (Figure 15A, B), the model is shown to be capable of predicting DEM results. Most of the
reduction in stress takes place at the end of cooling: the agitation stored energy (collisional) seems to require additional
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2434 MARVEGGIO et al.

TABLE 5 List of cooling tests performed

Test name
Test for initial
conditions �̇�𝒆,𝒉 (s–1) ( ̂̈𝑱𝒆𝒔

−𝟐)

M_C_10-0_6 M_H_0_10_1 10 1e6
M_C_100-0_7 M_H_0_100_2 100 1e6
M_C_100-0_8 M_H_0_100_2 100 1e5
M_C_100-0_9 M_H_0_100_2 100 1e4

(A) (B)

(C) (D)

F IGURE 15 Comparison between discrete element method (DEM) results and theoretical model predictions in: (A) 𝐽𝑠 − 𝐽𝑒 plane
(D_C_100_0_7 and M_C_100_0_7), (B) 𝐽𝑠 − 𝐽𝑒 plane (D_C_100_0_8 and M_C_100_0_8), (C) 𝑒 − 𝐽e plane (D_C_100_0_7 and M_C_100_0_7),
(D) 𝑒 − 𝐽𝑒 plane (D_C_100_0_8 and M_C_100_0_8)

time to dissipate. The volume (Figure 15C, D) does not vary remarkably during the process, although a compaction is
slightly more evident in test M_C_100-0_7.
As was already mentioned in Subsection 5.1.3, kinetic theories do not consider the material anisotropy, that is in the

collisional regime the model back stress tensor is ‘freezed’. This justifies the evolution of 𝜒𝑥𝑥 in Figure 16A, B, that does
not mimic the DEM results, showing a progressive reduction during the arrest. Nevertheless, at rest the agreement is
satisfactory, as was expected since the collisional contribution nullifies.
The granular material, which has ‘dry-liquefied’ in the heating test M_H_0_100_2 (path A–B of Figure 17A), ‘recon-

solidates’ according to different stress paths (B–C, B–D, B–E of Figure 17A) during the arrest process. Since collisional
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MARVEGGIO et al. 2435

(A) (B)

F IGURE 16 Comparison between discrete element method (DEM) results and theoretical model predictions in 𝜒𝑥𝑥 − 𝐽𝑒 plane: (A);
𝐽𝑒,𝑓 = 106 s–2 (D_C_100_0_7 and M_C_100_0_7), (B) 𝐽𝑒,𝑓 = 106 s–2 (D_C_100_0_8 and M_C_100_0_8)

(A) (B)

F IGURE 17 Influence of arrest time: theoretical model predictions on: (A) 𝐽𝑞𝑠𝑠 − 𝐼
𝑞𝑠
1𝜎 and (B) 𝑟𝑐 − 𝐽𝑒 planes

contribution is initially not negligible, they do not all belonging to the critical state line (dashed line in Figure 17A) and
the final obliquity is indeed a function of the arrest time.
In Figure 17B, the ‘reconsolidation’ process is described by focusing on the evolution of 𝑟𝑐. Larger values of decelerations

cause a reduction in the accumulation of irreversible strains: this justifies the dependence of the final value of 𝑟𝑐 on the
imposed value of deceleration.
The model also seems to be capable of satisfactory reproducing DEM results even in case the initial strain rate value

is smaller (M_C_10_0_6): in this case, during the test, 𝐽𝑠 reduces (Figure 18A), whereas void ratio remains constant
(Figure 18B).

5.3 Model predictions: Influence of both initial strain rate and arrest time on the state
of stress at rest

According to DEM data and in agreement with model predictions, the final state of stress (at rest) is a function of the
previous strain rate history (�̇�𝑒,ℎ). This dependency is illustrated in Figure 19 in terms of 𝜂∕𝑀𝑐𝑠(𝛼𝜎) versus the arrest time
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2436 MARVEGGIO et al.

(A) (B)

F IGURE 18 Comparison between discrete element method (DEM) results and theoretical model predictions (test M_C_10_0_6) in: (A)
𝐽𝑠 − 𝐽𝑒 and (B) 𝑒 − 𝐽𝑒 planes

F IGURE 19 Model predictions: normalised
stress level versus arrest time for both compression
(𝜂∕𝑀𝑐𝑠(0

◦)) and extension (𝜇∕𝑀𝑐𝑠(60
◦)) loading

paths

𝑡1 (Equation 38), where 𝜇 = 3
√

3

2

𝐽𝑠

𝐼1𝜎
and the critical state obliquity𝑀𝑐𝑠 is given by Equation (36). Each curve in Figure 19

corresponds to a different value of �̇�𝑒,ℎ. In case the material is initially flowing under large strain rates, rapid arrest times
leads to small values of obliquity at rest, that is to an almost isotropic state of stress. This effect tends to disappear when the
initial strain rate �̇�𝑒,ℎ reduces. This confirms the dependence of the state of stress acting against obstacles under residual
conditions on the velocity of the flowing mass, already numerically shown in Redaelli et al.,64 where impacts of flowing
masses on rigid obstacles were simulated by using a DEM code.

6 CONCLUDING REMARKS

In this paper, the authors introduce a constitutivemodel capable of simulating themechanical behaviour of ideal granular
materials under quasi-static and dynamic evolving conditions. In particular, the model has been shown to be suitable for
simulating the phase transition observed when the material is rapidly perturbated. The mathematical model is based on
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MARVEGGIO et al. 2437

both kinetic theories of granular gases and elastic-plasticity. The reinterpretation of the critical state as a steady condition
ideally reached for vanishing values of inertial numbers has been considered to be fundamental for unifying the two
theoretical worlds: one developed in the last thirty years within the hydraulics/physicists community, focused on steady
agitated regimes and the other one, popular in the solid/geomechanics community, interpreting themechanical behaviour
of granular materials under quasi-static evolving conditions. The model is based on the assumption that total stresses
are obtained, according to a parallel scheme, by adding quasi-static and collisional contributions. With respect to the
previous constitutive models, already conceived by the authors, all defined under simple shear conditions, in this new
3D version, three additional ingredients have been introduced: (i) the dependence of steady state on Lode angle, (ii) the
mixed isotropic-anisotropic elastoplastic strain hardening and (iii) a closed-shape yield function. According to the authors,
fundamental is the role of the isotropic hardening defining the size of the yield function when a phase transition has to be
modelled. In fact, when phase transition takes place, the yield locus has to shrink and elastic locus has to nullify, since the
material under fluidised conditions cannot store elastic energy by means of the development of a network of permanent
force chains. In themodel this result is obtained bymodifying standard hardening rules according to critical state theories.
Original is also the calibration/validation strategy of the model on DEM numerical results, according to which even the
hardening rule of the fabric tensor is derived from the information relative to the description of the evolution of the
microstructure.
The model is validated on both heating and cooling constant pressure true triaxial monotonic tests, on both loose and

dense specimens under different imposed deviatoric strain rates. The comparison between DEM data and model simula-
tions is quite satisfactory; this implies that the approach proposed is promising even for the simulation of the mechanical
behaviour of natural granular materials, characterised for instance by not spherical shaped particles and a graded grain
size. The comparison between model predictions and DEM data has also allowed to put in evidence some limitations of
the model, very instructive for further developments.
Owing to the parallel scheme and the reinterpretation of the critical state in the light of kinetic theories of granular

gases, the model seems to be suitable for describing from solid to fluid and vice versa phase transition phenomena, ruled
by the evolution of void ratio and granular temperature.
As was previously mentioned, the solid-to-fluid transition is simulated by themodel bymeans of the nullification of the

isotropic-hardening variable, partially deleting the material memory, but without any change in the directional character-
istic testified by the back-stress evolution. This constitutive hypothesis seems to be correct since DEM numerical results
clearly show that, when phase transition takes place, the second invariant of the fabric tensor deviator does not nullify,
but, in contrast, increases for very large values of strain rate. This theoretical observation put in evidence a limitation of
kinetic theories that do not account for microstructure anisotropy, as they consider as state variables only void ratio and
granular temperature.

NOMENCLATURES
𝝈 total stress tensor

𝝈qs quasi static stress tensor
𝝈col collisional stress tensor

𝜺 total strain tensor
𝜺el elastic strain tensor
𝜺pl plastic strain tensor
𝑫el quasi static elastic 4th order tensor
𝑫qs quasi static elasto-plastic 4th order tensor
𝑫vep visco-elasto-plastic 4th order tensor
𝑯col viscous collisional 4th order tensor
𝒉col bulk collisional second order tensors

𝑒 void ratio
𝑇 granular temperature
𝜌𝑝 grain density
𝑑 grain diameter
𝐸𝑝 grain stiffness
𝜇𝑝 interparticle friction coefficient
𝜀𝑛 restitution coefficient

𝐹𝑖=1,4, 𝑓𝑟, 𝑓𝑖=1,4 functions governing collisional response
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2438 MARVEGGIO et al.

Γ𝑐𝑜𝑙 rate of dissipated energy due to particle collsions
𝐸𝑓, 𝐸𝑓,𝑒𝑙, 𝐸𝑓,𝑘 total, kinetic and elastic fluctuating energy

𝑒𝑐𝑐, 𝑒𝑐𝑒, 𝑒𝑐, jamming void ratio for compression, extension and general stress state
𝛼𝜎 Lode angle
Λ̇ plastic multiplier
𝒏 second order tensors governing plastic strain direction
𝐻 hardening modulus
𝑟 = 𝝈𝑞𝑠∶𝝌 ,

𝒔𝑞𝑠∗ = 𝝈𝑞𝑠 − 𝑟𝜒,

𝐽∗2𝜎 = 3𝒔𝑞𝑠∗∶
𝒔𝑞𝑠∗

𝑟2

𝐽∗3𝜎 = 9
√
3 det(𝒔𝑞𝑠∗)∕𝒓3

𝛾, 𝛽 parameters governing yield function

𝒔𝑞𝑠 = 𝝈𝑞𝑠 −
1

3
𝐼
𝑞𝑠
1𝜎𝑰

𝒒 hardening variables vector
𝝌 back stress tensor
𝐹𝑑 function governing the dilatancy of the material

Ψ,Φ functions governing function 𝐹𝑑
𝑀𝑐𝑠 limit obliquity at critical state function
�̇� = 𝑐𝑝(Ψ)

√
�̇�𝑝 ∶ �̇�𝑝

�̂� limit tensor of back stress orientation
�̂� limit rotation angle of back stress orientation

𝒅 =
√
3
𝒔𝑞𝑠∗

𝑟
−

(√
3

3

𝒔𝑞𝑠∗

𝑟
∶𝑰

)
𝑰

𝑟𝑐 yield locus cap size
𝜉 weight function governing �̇�𝑐
�̂� limit value of 𝜉 at critical state

𝐼1𝜎 = 𝜎𝑥 +𝜎𝑦 +𝜎𝑧

𝐽𝑠 =
[
1

3

[
(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑥 − 𝜎𝑧)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
]]1∕2

𝐽𝑒 =
[
1

3

[(
𝜀𝑥 − 𝜀𝑦

)2
+ (𝜀𝑥 − 𝜀𝑧)

2
+

(
𝜀𝑦 − 𝜀𝑧

)2]]1∕2
𝐸, 𝜈 elastic material stiffness parameters

𝛿1 and 𝛿2 flow rule parameters
𝜃𝑐𝑐, 𝜃𝑒𝑐, 𝜃𝜓, 𝑐𝑝𝑐 and 𝑐𝑝𝜓 parameters governing �̇�

𝐵𝑝 and 𝜉𝜓 are parameters governing the isotropic hardening
�̂� the fabric tensor calculated from DEM code data
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APPENDIX A
The DEM numerical campaign consisted in performing constant pressure true-triaxial tests on isotropically consolidated
cubical numerical specimens. The 3Dopen-source softwareYADE,65 has been employed. In all analyses, the representative

 10969853, 2022, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3412 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1080/19648189.2008.9693050
https://doi.org/10.1002/nag.3412


MARVEGGIO et al. 2441

F IGURE A1 RVE: (A) DEMmodel; (B)
reference axis, principal stresses and strains.
DEM, discrete element method; RVE,
representative volume element

TABLE A1 List of micro-mechanical parameters of the grains

Density 𝜌𝑝 (kg/m3) 2600
Diameter 𝑑 (m) 0.001
Young modulus 𝐸𝑝 (MPa) 750
Poisson ratio 𝜈𝑝 0.17
Friction coefficient 𝜇𝑝 0.35
Coefficient of restitution 𝜀𝑛 0.9

elementary volume (REV) is a cubical assembly of𝑁𝑝 = 5000 identical particles of diameter 𝑑 and density 𝜌𝑝 (Figure A1),
free of rotating. In Figure A1, the cubical element with the reference axis is sketched, being 𝜎𝑥∕𝜀𝑥, 𝜎𝑦∕𝜀𝑦 and 𝜎𝑧∕𝜀𝑧 the
corresponding maximum, intermediate and minimum, respectively, principal stresses/strains.
The contact force𝑭 is computed by employing a linear visco-elastic model along the normal direction and a liner model

set in series with a frictional slider obeying the Coulomb law, along the tangential direction.
The contact law is thus defined once the normal and shear contact stiffnesses 𝑘𝑛 and 𝑘𝑡, respectively, the viscous normal

coefficient 𝑐𝑛 and the interparticle friction coefficient 𝜇𝑝 are assumed. These constants can be calculated from particle
Young modulus 𝐸𝑝, Poisson ratio 𝜈𝑝, restitution coefficient 𝜀𝑛, diameter 𝑑 and density 𝜌𝑝 as is described in Redaelli and
di Prisco.27,28 The micro-mechanical parameters adopted in the numerical simulations coincide with those employed in
Redaelli and di Prisco27,28 and are representative for quartz grains (Table A1).
As in Redaelli and di Prisco.27,28 to prevent boundaries effects and to apply a homogeneous strain field, periodic

boundary conditions have been imposed.

A.1 | Specimens preparation
The numerical specimens are generated by employing the following standard procedure66:

I. 𝑁𝑝 non-contacting spherical particles are randomly generated in a sufficiently large periodic cubic cell.
II. The system is isotropically compressed by imposing sufficiently low strain rates until a small pressure value (𝐼1𝜎 =

𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 = 15 kPa) is got. A time period is waited for long enough to reach static conditions (i.e., unbalanced
forces are lower than 1e-5).
During this stage, an interparticle friction coefficient 𝜇𝑝, ranging between 0 and 0.35, is assigned. The smaller the
friction coefficient, the denser the specimen. Three specimens characterised by two different initial void ratios (0.727,
0.657), have been generated by imposing 𝜇𝑝 (II) = 0.1 and 0.3, respectively.

III. 𝜇𝑝 is set equal to 0.35 (see Table 1) and the isotropic compression is continued under quasi-static conditions, by
imposing a very small strain rate (�̇�𝑥 = �̇�𝑦 = �̇�𝑧 = 10e-3 s–1) until the desired final value of pressure 𝐼1𝜎 = 150 kPa is
achieved.

A.2 | Triaxial loading paths
To simulate heating and cooling described in Section 5, the following servo-control algorithm is applied.
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F IGURE A2 Stress paths in the deviatoric plane

The isotropically compressed DEM specimen is deformed under true triaxial conditions by assigning at each time step,
the strain rate tensor:

�̇�𝑡 =

⎡⎢⎢⎢⎣
�̇�𝑡𝑥 0 0

0 �̇�𝑡𝑦 0

0 0 �̇�𝑡𝑧

⎤⎥⎥⎥⎦ .
During the true triaxial tests, both pressure 𝐼1𝜎 and intermediate stress ratio 𝑏𝜎 (or stress Lode angle𝛼𝜎) are kept constant

during the simulation by adjusting at each time step �̇�𝑡𝑦 and �̇�𝑡𝑧 as it follows:

�̇�𝑡𝑦 = �̇�𝑡−Δ𝑡𝑦 + 𝑔
(
𝜎
𝑟𝑒𝑞
𝑦 − 𝜎𝑡𝑦

)
and

�̇�𝑡𝑧 = �̇�𝑡−Δ𝑡𝑧 + 𝑔
(
𝜎
𝑟𝑒𝑞
𝑧 − 𝜎𝑡𝑧

)
,

where

∙ 𝜎𝑡𝑦 and 𝜎𝑡𝑧 are the current calculated value of the stress along the y- and z-direction, respectively;
∙ 𝜎

𝑟𝑒𝑞
𝑦 and 𝜎𝑟𝑒𝑞𝑧 are the required values for 𝜎𝑦 and 𝜎𝑧, respectively, equal to

𝜎
𝑟𝑒𝑞
𝑦 = 𝑏𝜎 𝜎

𝑡
𝑥 +

1−𝑏𝜎

2−𝑏𝜎
[𝐼1𝜎 − 𝜎𝑡𝑥(1 + 𝑏𝜎)], 𝜎

req
𝑧 =

𝐼1𝜎−𝜎
𝑡
𝑥(1+𝑏𝜎)

2−𝑏𝜎
;

∙ 𝑔 is a positive gain parameter, evaluated by trial and error, controlling the speed of convergence of the calculated stresses
𝜎𝑡𝑦 and 𝜎𝑡𝑧 to the required stress 𝜎

𝑟𝑒𝑞
𝑦 and 𝜎𝑟𝑒𝑞𝑧 .

�̇�𝑡𝑥 is calculated by imposing the deviatoric strain rate �̇�𝑒:

�̇�𝑡𝑥 =
1

2

(
�̇�𝑡𝑦 + �̇�𝑡𝑧

)
−

√
3

2

(
2�̇�2𝑒 − �̇�𝑡𝑦

2
− �̇�𝑡𝑧

2
+ 2�̇�𝑡𝑦�̇�

𝑡
𝑧

) 1

2
.

In Figure A2, the stress paths in the deviatoric stress plane are shown for 𝛼𝜎 = 0◦, 30◦ and 60◦(corresponding to 𝑏𝜎 =
0, 0.5 and 1, respectively).
TheDEM tests described in the paper are listed in TableA2 and are identified by the acronym ‘D_X_ �̇�𝑒0 − �̇�𝑒𝑓_i’, whereX
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MARVEGGIO et al. 2443

TABLE A2 List of DEM numerical simulations

Test name 𝒆𝟎 𝜶𝝈 �̇�𝒆,𝟎,𝒉 (s–1) �̇�𝒆𝒇 (s–1) ̂̈𝑱𝒆 (s–2)
D_H_0-10_1 0.727 0 0 10 1e6
D_H_0-100_2 0.727 0 0 100 1e6
D_H_0-1_3 0.697 0 0 10 1e6
D_H_0-10_4 0.657 0 0 10 1e6
D_H_0-10_5 0.727 30 0 10 1e6
D_H_0-10_6 0.727 60 0 10 1e6
D_C_10-0_7 0.685 0 10 10 1e6
D_C_100-0_8 0.698 0 100 100 1e6
D_C_100-0_9 0.698 0 100 100 1e5

denotes the test type (H for heating and C for cooling), �̇�𝑒0 − �̇�𝑒𝑓 indicates the deviatoric strain rate history and i represents
an identification number.

A.3 | Macroscopic quantities
To interpret the DEM response from a macroscopic point of view, the following averaged quantities have been monitored
during the tests:

(1) the current logarithmic strain tensor 𝜺 given by:

𝜺 = log

𝑡∕Δ𝑡∑
𝑖=1

�̇�𝑖Δ𝑡Δ𝑡 ,

where t denotes the current time instant and Δ𝑡 is the timestep employed in the explicit integration of the particle law
of motion.

(2) the stress tensor, calculated as follows67,68:

𝝈 =
1

𝑉

⎡⎢⎢⎣
𝑁𝑐∑
𝑖=1

𝐅𝑖 ⊗ 𝐝𝑖 + 𝑚

𝑁𝑝∑
𝑖=1

𝐕′
𝑖
⊗ 𝐕′

𝑖

⎤⎥⎥⎦ ,
where𝑁𝑐 is the number of contacts within REV,𝑉 the periodic cell volume,𝑚 = 𝜌𝑑 𝜋𝑑

3∕6 is the particle mass, 𝐝𝑖 the
vector joining the centres of two contacting particles and 𝐕′

𝑖
the particle velocity fluctuation.

The first term represents the contribution deriving from contact forces, while the second term is the inertial effect
associated with particle streaming. This latter is negligible under quasi-static conditions, when inertial forces are
largely smaller than contact forces.8,68

(3) the void ratio 𝑒 defined as

𝑒 =
𝑉𝑣

𝑉𝑠
,

where 𝑉𝑠 is the volume of the solid fraction and 𝑉𝑣 the current volume of voids.
(4) the coordination number 𝑍, measuring the average number of contacts per particles

𝑍 =
2𝑁𝑐

𝑁𝑝

(5) the fabric tensor �̂� according to Oda70 and Satake,2 calculated as it follows:

�̂� =
1

𝑁𝑐

𝑁𝑐∑
𝑖

𝐧𝑖 ⊗ 𝐧𝑖,

being 𝐧𝑖 the unit contact normal vector pointing from centre to centre of two spherical particles in contact.
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2444 MARVEGGIO et al.

(6) the internal stored energy 𝐸𝑠𝑡𝑜𝑟, defined as the sum of the elastic strain energy 𝐸𝑒𝑙 and the fluctuating kinetic energy
𝐸𝑘𝑓38:

𝐸𝑠𝑡𝑜𝑟 = 𝐸𝑒𝑙 + 𝐸𝑘𝑓.

(7) the elastic stored energy, that is the strain energy stored at all contacts:

𝐸𝑒𝑙 =
1

2

𝑁𝑐∑
𝑖

⎛⎜⎜⎜⎝
|||𝐅𝑛𝑖 |||2
𝑘𝑛

+

|||𝐅𝑠𝑖 |||2
𝑘𝑠

⎞⎟⎟⎟⎠ ,
being 𝑭𝑛 and 𝑭𝑠 the normal and tangential components of the contact force, respectively.

(8) the kinetic fluctuating energy, associated with grain agitation, given by:

𝐸𝑘𝑓 =
3

2

𝜌𝑝

(1 + 𝑒)
𝑇,

being 𝑇 the granular temperature, calculated as33,70,72):

𝑇 =
1

3

1

𝑁𝑝

𝑁𝑝∑
𝑖

𝐕′
𝑖
⋅ 𝐕′

𝑖
,

where symbol ⋅ stands for scalar product.

APPENDIX B
Functions 𝑓𝑖and 𝑓𝑖 appearing in Equation (11) are here defined according to Garzo and Dufty,34 Berzi and Jenkins,43,74
and Redaelli et al27:

𝑓1 = 4
𝐺𝐹

1 + 𝑒

𝑓2 =
4

3𝜋1∕2
𝑄𝐺

1 + 𝑒

𝑓3 =
8

5𝜋1∕2
𝐽𝐺

(1 + 𝑒)

𝑓4 =
12𝐺

𝜋1∕2

(
1 − 𝜀2𝑟

)
(1 + 𝑒)

𝑓𝑖 = 𝑓𝑖
5

24

𝜋1∕2

𝐺
𝐸
1∕2
𝑝

where

𝐺 (𝑒) =
𝑔0 (𝑒)

1 + 𝑒

𝑔0 (𝑒) = 𝑞 (𝑒)
(2𝑒 + 1) (1 + 𝑒)

2

2𝑒3
+ [1 − 𝑞 (𝑒)]

2 (1 + 𝑒𝑐) (1 + 𝑒)

𝑒 − 𝑒𝑐

𝑞 (𝑒) =

⎧⎪⎪⎨⎪⎪⎩

1 if 𝑒 ≥ 𝑒𝑚

(1 + 𝑒𝑚)
[
(1 + 𝑒𝑚) (1 + 𝑒𝑐)

2
− 2 (1 + 𝑒) (1 + 𝑒𝑐)

2
+ (1 + 𝑒)

2
(1 + 2𝑒𝑐 − 𝑒𝑚)

]
(1 + 𝑒)

2
[
2 (1 + 𝑒𝑐) (1 + 𝑒𝑚) − (1 + 𝑒𝑐)

2
+ (1 + 𝑒𝑚)

2
] if 𝑒 < 𝑒𝑚

.

𝐹 (𝑒) =
1 + 𝜀𝑛
2

+
1

4𝐺 (𝑒)
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MARVEGGIO et al. 2445

𝐽 (𝑒) =
25𝜋

768

(1 + 𝑒) 𝜂∗ (𝑒)

𝐺 (𝑒)

𝑄 (𝑒) =
5𝜋

128

(1 + 𝑒) Γ∗ (𝑒)

𝐺 (𝑒)

𝜂∗ (𝑒) =

(
1 +

4

5
(1 + 𝜀𝑛) 𝐺 (𝑒)

)
𝜂∗
𝑘
(𝑒) +

3

5
Γ∗ (𝑒)

Γ∗ (𝑒) =
128𝜋

5
(1 + 𝜀𝑛)

(
1 −

1

32
𝑐∗
)
𝑔0 (𝑒)

1 + 𝑒

𝜂∗
𝑘
(𝑒) =

[(
1 −

1

4
(1 − 𝜀𝑛)

2
)(

1 −
1

64
𝑐∗
)
𝑔0 (𝑒) −

5

24

(
1 − 𝜀𝑛

2
)(

1 +
3

32
𝑐∗
)
𝑔0 (𝑒)

]−1 [
1 −

2

5
(1 + 𝜀𝑛) (1 − 3𝜀𝑛)

𝑔0 (𝑒)

1 + 𝑒

]
𝑐∗ = 32 (1 − 𝜀𝑛)

(
1 − 𝜀2𝑛

) [
81 − 17𝜀𝑛 + 30𝜀2𝑛 (1 − 𝜀𝑛)

]−1
𝜀𝑟 = 𝜀𝑛 − 𝜇𝑝𝜀

−3∕2 𝜇𝑝
𝑛

The correlation length 𝐿 is calculated by employing the formula proposed by Redaelli and di Prisco27 and depends on
void ratio, granular temperature, and anisotropy of the stress tensor:

𝐿 = max

{
𝑑,

𝑑2𝑔1 (𝑒) 𝑔2 (𝛼𝜎) �̇�𝑒

𝑇1∕2

}
,

where 𝑔1(𝑒) is a function of the void ratio

𝑔1 (𝑒) =

(
4𝐽

15
(
1 − 𝜀2𝑟

))1∕2 [
2 (1 − 𝜀𝑛)

15

(
𝑔0 − 𝑔0,𝑓

)
+ 1

]3∕2
,

and 𝑔2(𝛼𝜎) is a function of the Lode angle

𝑔2 (𝛼𝜎) =
36

25

√
6√
𝜋3

𝐽2(𝑒𝑐(𝛼𝜎))

𝐹3(𝑒𝑐(𝛼𝜎))𝑔1(𝑒𝑐(𝛼𝜎))

1 − 𝜀2𝑟

𝑀3
𝑐𝑠(𝛼𝜎)

.

𝑔0 is a function of the void ratio, reported in Table 3 , and 𝑔0,𝑓 is the value of 𝑔0 at the freezing point (𝑒 = 𝑒𝑓 = 1.04, i.e.,
the highest value of the void ratio for which correlated motion under simple shear conditions is possible). 𝑔0 depends on
the parameter 𝑒𝑚and the random close packing void ratio 𝑒𝑟𝑐𝑝 = 0.57 (representing the void ratio of the densest possible
packing of randomly distributed monodisperse spheres):

𝑔0 (𝑒) = 𝑞 (𝑒)
(2𝑒 + 1) (1 + 𝑒)

2

2𝑒3
+ [1 − 𝑞 (𝑒)]

2
(
1 + 𝑒𝑟𝑐𝑝

)
(1 + 𝑒)

𝑒 − 𝑒𝑟𝑐𝑝

𝑞 (𝑒) =

⎧⎪⎪⎨⎪⎪⎩

1 if 𝑒 ≥ 𝑒𝑚

(1 + 𝑒𝑚)
[
(1 + 𝑒𝑚)

(
1 + 𝑒𝑟𝑐𝑝

)2
− 2 (1 + 𝑒)

(
1 + 𝑒𝑒𝑐𝑝

)2
+ (1 + 𝑒)

2 (
1 + 2𝑒𝑟𝑐𝑝 − 𝑒𝑚

)]
(1 + 𝑒)

2
[
2
(
1 + 𝑒𝑟𝑐𝑝

)
(1 + 𝑒𝑚) −

(
1 + 𝑒𝑟𝑐𝑝

)2
+ (1 + 𝑒𝑚)

2
] if 𝑒 < 𝑒𝑚

.

The ratio between collision time and flight time 𝑓𝑟(𝑇, 𝑒), appearing in Equation (11) is defined as:

𝑓𝑟 (𝑇, 𝑒) = 1 +
5

24

𝜋1∕2

𝐺

√
𝐸𝑝

𝜌𝑝𝑇
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