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A B S T R A C T

In this work, we propose a modelling approach for the intra-granular fission gas behaviour in UO2 under
restructuring process. Leveraging the definition of restructured volume fraction, we consider the fuel matrix
transition from the non-restructured to the restructured phase, together with the evolution of the corresponding
fission gas concentrations retained in the fuel matrix. Firstly, we derive a sweeping term that exchanges fission
gas atoms from the non-restructured to the restructured fuel region. The sweeping term is then included in
the conventional intra-granular fission gas diffusion problem. Secondly, the spectral diffusion algorithm is
employed to solve two spatially-dimensionless problems, properly representing the non-restructured region
with micrometric grains and the restructured region with sub-micrometric grains. The model developed is
implemented in SCIANTIX, a 0D meso-scale code for physics-based modelling of fission gas behaviour in nuclear
oxide fuel and compared with experimental data and semi-empirical models.
1. Introduction

It is known that in the rim region of UO2 nuclear fuel pellets,
the combination of high local burnup and low temperature induces
a UO2 phase transition, or restructuring process, with the formation
of the HBS (Walker et al., 1992; Cunningham et al., 1992; Khvostov
et al., 2005; Veshchunov and Shestak, 2009; Pizzocri et al., 2017; Wiss
et al., 2017; Rest et al., 2019; Barani et al., 2020, 2022; Cappia et al.,
2022). Typical thresholds for initiating the HBS identify local burnups
higher than 45-50 GWd/tU (connected to high radiation damage and
fission product concentration) and temperatures lower than the recov-
ery threshold temperature of 1273.15 K (Wiss et al., 2017; Cappia et al.,
2022; Spino et al., 2006; Cappia et al., 2016; Gerczak et al., 2018; McK-
inney et al., 2023). As reported in previous experimental (Wiss et al.,
2017; Cappia et al., 2022; McKinney et al., 2023; Spino et al., 2005;
Noirot et al., 2008) modelling (Khvostov et al., 2005; Veshchunov
and Shestak, 2009; Pizzocri et al., 2017; Barani et al., 2020, 2022),
the HBS formation involves an accumulation of dislocation defects,
the polygonization/recrystallisation of micrometric grains into sub-
micrometric grains1 without extended defects (Cappia et al., 2022;

∗ Corresponding author.
E-mail address: davide.pizzocri@polimi.it (D. Pizzocri).

1 It is worth recalling that the detailed High Burnup Structure (HBS) formation mechanisms are still debated. As explained in Barani et al. (2020), re-
crystallisation implies the formation and growth of sub-grains (Burke and Turnbull, 1952). Polygonization is the subdivision of original grains into sub-grains.
Recent experimental analyses support the polygonization theory, with the increasing concentration of high-angle grain boundaries in the HBS region (Gerczak
et al., 2018; McKinney et al., 2023).

Spino et al., 2006; McKinney et al., 2023), the decrease of the intra-
granular fission gas concentration (also known as depletion), and the
formation of a novel population of inter-granular spherical pores that
accumulate fission gas. Properly modelling the formation and evolution
of the HBS is critical for fuel rod fuel performance since it impacts
the material properties (e.g., thermal conductivity, elastic modulus).
This represents a potential concern for the safe operation of nuclear
fuel to extended burnups. For instance, slow temperature changes at
burnup values above 60 MWd/kgU can trigger fine fuel fragmentation
phenomenon, posing safety issues during design-basis accidents, such
as reactivity-initiated accidents and loss-of-coolant accidents (Jernkvist,
2019, 2020).

In particular, in this brief work, we deal with the modelling of the
fission gas depletion problem, this being the fundamental starting point
to provide a solid representation of (i) the distribution of fission gas that
accumulates inside inter-granular cavities and HBS porosity, and (ii) the
smooth phase transition from the non-restructured UO2 matrix to the
restructured one. Both semi-empirical (Lassmann et al., 1995a; Lemes
et al., 2014; Pizzocri et al., 2017) and mechanistic models (Barani et al.,
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2020) are available in the literature, representing the fission gas deple-
tion of HBS in UO2. The most mechanistic approach was provided in the

ork of Barani et al. (2020), in which the authors started from a proper
e-fitting of the restructured volume fraction and then solved two
ntra-granular problems, one for each phase, considering two different
ntegration domains, characterised by their grain size (e.g., micrometric
n the as-fabricated region and sub-micrometric in the restructured
egion). The two intra-granular problems were solved concomitantly
ith an HBS sweeping condition, given by the conservation of the total

oncentration of gas in the considered control volume.
This brief work aims to develop a more natural description of the

ntra-granular gas evolution in uranium dioxide during the restructur-
ng process. Firstly, we derive a sweeping term that exchanges mass
rom the non-restructured UO2 to the restructured UO2. The sweeping

term can be included in the intra-granular gas diffusion problem,
avoiding further constraints. Secondly, by leveraging the spectral dif-
fusion algorithm for the intra-granular fission gas problem, we avoid
dealing with two different integration domains (micrometric and sub-
micrometric grains) and solve a single spatial dimensionless problem
(i.e., considering the same eigenfunctions). The model developed is
implemented in SCIANTIX, a 0D meso-scale code for physics-based
modelling of fission gases in nuclear oxide fuel (Zullo et al., 2023;
Pizzocri et al., 2020), and compared with experimental data (Walker,
1999) and semi-empirical models (Lassmann et al., 1995a).

The work is structured as follows: Section 2 illustrates the model
derivation, Section 3 presents the model application to the fission gas
depletion process, Section 4 deals with the results and corresponding
discussion, and Section 5 draws the conclusion and points out future
applications of the model.

2. Model derivation

The model derivation stems from using the restructured volume
fraction 𝛼 (/) to model the HBS formation rate in uranium diox-
ide. Hence, we consider a unidirectional phase change from a non-
restructured phase (N) to a restructured one (R), with the evolution
of two fission gas concentrations, 𝐶𝑁 and 𝐶𝑅.

2.1. Phase evolution without exchange term

Given a control volume 𝑉 , we label 𝑉𝑅 = 𝛼𝑉 as the restructured
(i.e., developed HBS) volume region, and 𝑉𝑁 = (1 − 𝛼)𝑉 as the non-
restructured one (as-fabricated microstructure). Then, 𝐶𝑇 is the total
concentration of fission gas atoms (i.e., gas in restructured and non-
restructured regions) over the total volume 𝑉 . Similarly, 𝐶𝑁 is the
concentration of gas atoms in the non-restructured volume 𝑉𝑁 , and 𝐶𝑅
is the concentration of gas atoms in the restructured volume 𝑉𝑅. The
link among these quantities is expressed by:

𝐶𝑇 = 𝛼𝐶𝑅 + (1 − 𝛼)𝐶𝑁 (1)

Afterwards, we define the following concentrations:

• 𝐶1 = (1 − 𝛼)𝐶𝑁 , representing the concentration of gas in the
non-restructured region, referred to the total volume 𝑉 .

• 𝐶2 = 𝛼𝐶𝑅, representing the concentration of gas in the restruc-
tured region, referred to the total volume 𝑉 .

We compute the balance of gas atoms 𝑁 and 𝑅 in their respective
volumes 𝑉𝑁 and 𝑉𝑅, invoking the mass conservation principle:

𝜕
𝜕𝑡 ∫

𝐶𝑁 𝑑𝑉𝑁 = ∫ 𝐷𝑁∇2𝐶𝑁 𝑑𝑉𝑁 + ∫ 𝑆 𝑑𝑉𝑁 (2)

𝜕
𝜕𝑡 ∫

𝐶𝑅 𝑑𝑉𝑅 = ∫ 𝐷𝑅∇2𝐶𝑅 𝑑𝑉𝑅 + ∫ 𝑆 𝑑𝑉𝑅 (3)

n Eqs. (2) and (3), we assume a uniform production rate 𝑆 of gas
toms per unit volume. Also, we assume that in the restructured region
 p

2 
𝑉𝑅, the diffusivity 𝐷𝑅 differs from the one characterising the non-
restructured region 𝐷𝑁 . It must be noted that Eqs. (2) and (3) are
valid in the (initial) assumption of no mass exchanges between the
two regions. In particular, from the non-restructured region 𝑁 to the
restructured region R. This assumption will be removed later in the text
after deriving a suitable exchange term (Section 2.2).

After introducing the restructured volume fraction 𝛼, we can refer
the previous balance over the total volume 𝑉 by substituting 𝑑𝑉𝑁 =
(1 − 𝛼) 𝑑𝑉 and 𝑑𝑉𝑅 = 𝛼 𝑑𝑉 :

𝜕
𝜕𝑡 ∫

𝐶𝑁 (1 − 𝛼) 𝑑𝑉 = ∫ 𝐷𝑁∇2𝐶𝑁 (1 − 𝛼) 𝑑𝑉 + ∫ 𝑆(1 − 𝛼) 𝑑𝑉 (4)

𝜕
𝜕𝑡 ∫

𝐶𝑅 𝛼 𝑑𝑉 = ∫ 𝐷𝑅∇2𝐶𝑅 𝛼 𝑑𝑉 + ∫ 𝑆𝛼 𝑑𝑉 (5)

he arbitrariness of 𝑉 allows us to convert the integral equations into
he local relations, obtaining the following rate equations that are
eferred to the total control volume 𝑉 :
𝜕
𝜕𝑡
((1 − 𝛼)𝐶𝑁 ) = 𝐷𝑁∇2((1 − 𝛼)𝐶𝑁 ) + (1 − 𝛼)𝑆 (6)

𝜕
𝜕𝑡
(𝛼𝐶𝑅) = 𝐷𝑅∇2(𝛼𝐶𝑅) + 𝛼𝑆 (7)

r equivalently:
𝜕𝐶1
𝜕𝑡

= 𝐷𝑁∇2𝐶1 + (1 − 𝛼)𝑆 (8)
𝜕𝐶2
𝜕𝑡

= 𝐷𝑅∇2𝐶2 + 𝛼𝑆 (9)

qs. (8) and (9) represent the evolution of the concentrations 𝐶1 and
2 over the total volume 𝑉 . As anticipated, these two equations lack
n exchange term that should influence both.

Additionally, it is possible to work out Eqs. (6) and (7) by consider-
ng that restructured volume fraction 𝛼 varies with time, to obtain the
ollowing differential equations for 𝐶𝑁 and 𝐶𝑅. First, we develop the
roduct derivatives:

𝜕
𝜕𝑡
((1 − 𝛼)𝐶𝑁 ) = − 𝜕𝛼

𝜕𝑡
𝐶𝑁 + (1 − 𝛼)

𝜕𝐶𝑁
𝜕𝑡

(10)

𝜕
𝜕𝑡
(𝛼𝐶𝑅) =

𝜕𝛼
𝜕𝑡

𝐶𝑅 + 𝛼
𝜕𝐶𝑅
𝜕𝑡

(11)

Then, we combine Eqs. (6), (7) with Eqs. (10), (11), to get:
𝜕𝐶𝑁
𝜕𝑡

= 𝐷𝑁∇2𝐶𝑁 + 𝑆 + 1
1 − 𝛼

𝜕𝛼
𝜕𝑡

𝐶𝑁 (12)
𝜕𝐶𝑅
𝜕𝑡

= 𝐷𝑅∇2𝐶𝑅 + 𝑆 − 1
𝛼
𝜕𝛼
𝜕𝑡

𝐶𝑅 (13)

where the last terms represent:

• + 1
1−𝛼

𝜕𝛼
𝜕𝑡 𝐶𝑁 : the increase of 𝐶𝑁 after the decrease of volume 𝑉𝑁 .

• − 1
𝛼
𝜕𝛼
𝜕𝑡 𝐶𝑅: the decrease of 𝐶𝑅 after the increase of volume 𝑉𝑅.

evertheless, Eqs. (12) and (13) have one singularity each, 𝛼 and (1−𝛼),
hat may pose some problems in a rigorous numerical implementation.
or this reason, later in the text, we will show that it is preferable to
ork with the variables 𝐶1 and 𝐶2.

We also compute the time derivative of the total concentration 𝐶𝑇
o analyse its behaviour:
𝜕𝐶𝑇
𝜕𝑡

= 𝜕
𝜕𝑡
((1 − 𝛼)𝐶𝑁 ) + 𝜕

𝜕𝑡
(𝛼𝐶𝑅) (14)

esulting in the sum of Eqs. (10) and (11):
𝜕𝐶𝑇
𝜕𝑡

= − 𝜕𝛼
𝜕𝑡

𝐶𝑁 + (1 − 𝛼)
𝜕𝐶𝑁
𝜕𝑡

+ 𝜕𝛼
𝜕𝑡

𝐶𝑅 + 𝛼
𝜕𝐶𝑅
𝜕𝑡

(15)

By substituting Eqs. (12) and (13) into the previous Eq. (15), it results
that:
𝜕𝐶𝑇
𝜕𝑡

= (1 − 𝛼)𝐷𝑁∇2𝐶𝑁 + 𝛼𝐷𝑅∇2𝐶𝑅 + 𝑆 (16)

q. (16) states that the rate of change of the total concentration 𝐶𝑇 over
he control volume 𝑉 is governed by two diffusional leakage terms (one
er volume region), and the global production rate 𝑆. In particular:
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• 𝜕𝐶𝑇
𝜕𝑡

is referred to the total volume 𝑉 .

• (1 − 𝛼)𝐷𝑁∇2𝐶𝑁 is referred to the volume 𝑉 , thanks to the (1 − 𝛼)
term.

• Likewise, 𝛼𝐷𝑅∇2𝐶𝑅 is referred to the volume 𝑉 thanks to the 𝛼
term.

• The source 𝑆 is the production rate per unit volume.

2.2. Sweeping exchange term

In this Section, we apply a discrete approach to derive an exchange
term of gas atoms from the non-restructured region 𝑁 to the restruc-
tured one 𝑅. Given the control volume 𝑉 , we suppose it is formed
by a number 𝑛 of volumes 𝑉𝑁 and a number 𝑚 of volumes 𝑉𝑅. Each
volume 𝑉𝑁 contains 𝑁𝑁 atoms, and each 𝑉𝑅 containing 𝑁𝑅 atoms. We
simplify the derivation by neglecting previously considered production
and leakage terms.

Then, we assume a discrete increase of 𝛼 during a single time step.
Labelling with 𝑖 the initial values:

𝐶𝑁𝑖 =
𝑛𝑁𝑁
𝑛𝑉𝑁

=
𝑁𝑁
𝑉𝑁

(17)

and

𝐶𝑅𝑖 =
𝑚𝑁𝑅
𝑚𝑉𝑅

=
𝑁𝑅
𝑉𝑅

(18)

e suppose that during the considered time step, a certain number 𝑘
f volumes, together with the corresponding atoms, have transformed
rom 𝑉𝑁 to 𝑉𝑅. Hence, labelling 𝑓 the final values:

𝑁𝑓 =
(𝑛 − 𝑘)𝑁𝑁
(𝑛 − 𝑘)𝑉𝑁

=
𝑁𝑁
𝑉𝑁

(19)

and

𝐶𝑅𝑓 =
𝑚𝑁𝑅 + 𝑘𝑁𝑁
𝑚𝑉𝑅 + 𝑘𝑉𝑁

(20)

This discrete representation clearly shows how a pure restructuring
operation does not influence 𝐶𝑁 but only 𝐶𝑅. Eq. (20) can be worked
out giving:

𝐶𝑅𝑓 =
𝐶𝑅𝑖 +

𝑘
𝑚

𝑁𝑁
𝑁𝑅

1 + 𝑘
𝑚

𝑉𝑁
𝑉𝑅

(21)

In the reasonable hypothesis that during a single time step, the restruc-
turing process transforms a limited portion of the control volume 𝑉 ,
we can consider 𝑘 ≪ 𝑛 and 𝑘 ≪ 𝑚 and linearise the previous term to
get 𝑑𝐶𝑅 = 𝐶𝑅

𝑓 − 𝐶𝑅
𝑖 as:

𝑑𝐶𝑅 = −𝐶𝑅𝑖
𝑘
𝑚

𝑉𝑁
𝑉𝑅

+ 𝑘
𝑚

𝑁𝑁
𝑉𝑅

− 𝑘2

𝑚2
𝑁𝑁𝑉𝑁
(𝑉𝑅)2

(22)

where again, the last term can be neglected, providing:

𝑑𝐶𝑅 = −𝐶𝑅𝑖
𝑘
𝑚

𝑉𝑁
𝑉𝑅

+ 𝑘
𝑚

𝑁𝑁
𝑉𝑅

(23)

y grouping 𝑘
𝑚

𝑉𝑁
𝑉𝑅

, the following equation is obtained:

𝐶𝑅 = 𝑘
𝑚

𝑉𝑁
𝑉𝑅

(𝐶𝑁 − 𝐶𝑅𝑖) (24)

f we introduce the discrete 𝛼 terms.

𝑖 =
𝑚𝑉𝑅
𝑉

, 𝛼𝑓 =
𝑚𝑉𝑅 + 𝑘𝑉𝑁

𝑉
= 𝛼𝑖 + 𝑘

𝑉𝑁
𝑉

(25)

we get:
𝛼𝑓 − 𝛼𝑖

𝛼𝑖
= 𝑘

𝑚
𝑉𝑁
𝑉𝑅

(26)

esulting in the following exchange term:

𝐶𝑅 = 𝑑𝛼 (𝐶𝑁 − 𝐶𝑅) (27)

𝛼𝑖 𝑖

3 
r, in the continuous limit:
𝜕𝐶𝑅
𝜕𝑡

= 1
𝛼
𝜕𝛼
𝜕𝑡

(𝐶𝑁 − 𝐶𝑅) (28)

ence, Eq. (28) represents the pure sweeping term that transfers gas
toms from the non-restructured region 𝑁 to restructured one 𝑅 after a
irtual step of the restructuring process. To express the exchange term
Eq. (28)) for 𝐶1 and 𝐶2, we must consider that during the restructuring
rocess 𝑑𝐶𝑁 = 0 (𝐶𝑁𝑖 = 𝐶𝑁𝑓 ), while 𝑑𝐶𝑅 ≠ 0. Namely:

⎧

⎪

⎨

⎪

⎩

𝜕𝐶𝑁
𝜕𝑡

= 0
𝜕𝐶𝑅
𝜕𝑡

= 1
𝛼
𝜕𝛼
𝜕𝑡

(𝐶𝑁 − 𝐶𝑅)
(29)

n terms of 𝐶1 and 𝐶2, we obtain:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕 𝐶1
1−𝛼
𝜕𝑡

= 0

𝜕 𝐶2
𝛼
𝜕𝑡

= 1
𝛼
𝜕𝛼
𝜕𝑡

(

𝐶1
1 − 𝛼

−
𝐶2
𝛼

)

(30)

fter expanding the product derivatives, the isolated exchange terms
re:
⎧

⎪

⎨

⎪

⎩

𝜕𝐶1
𝜕𝑡

= − 1
1 − 𝛼

𝜕𝛼
𝜕𝑡

𝐶1
𝜕𝐶2
𝜕𝑡

= 1
1 − 𝛼

𝜕𝛼
𝜕𝑡

𝐶1

(31)

Because of the linearity of the operations involved so far, we can use
the superposition principle and incorporate Eq. (29) into Eqs. (12) and
(13):
𝜕𝐶𝑁
𝜕𝑡

= 𝐷𝑁∇2𝐶𝑁 + 1
1 − 𝛼

𝜕𝛼
𝜕𝑡

𝐶𝑁 + 𝑆 (32)

𝜕𝐶𝑅
𝜕𝑡

= 𝐷𝑅∇2𝐶𝑅 − 1
𝛼
𝜕𝛼
𝜕𝑡

𝐶𝑅 + 1
𝛼
𝜕𝛼
𝜕𝑡

(𝐶𝑁 − 𝐶𝑅) + 𝑆 (33)

r similarly, we can include Eq. (31) into Eqs. (8) and (9):

⎧

⎪

⎨

⎪

⎩

𝜕𝐶1
𝜕𝑡

= 𝐷𝑁∇2𝐶1 −
1

1 − 𝛼
𝜕𝛼
𝜕𝑡

𝐶1 + (1 − 𝛼)𝑆
𝜕𝐶2
𝜕𝑡

= 𝐷𝑅∇2𝐶2 +
1

1 − 𝛼
𝜕𝛼
𝜕𝑡

𝐶1 + 𝛼𝑆
(34)

he last system of equations gives a simple and consistent representa-
ion of the mass balances due to production, leakage, and gas sweeping
rom phase 𝑁 to phase 𝑅 in the volume 𝑉 .

. Application to fission gas depletion in HBS

In this Section, Eq. (34) is applied in the SCIANTIX code (Zullo
t al., 2023; Pizzocri et al., 2020) to assess the prediction of the
ission gas depletion process. In particular, with the SCIANTIX code, we
onsider the state-of-the-art representation of the fission gas diffusion
roblem (Rest et al., 2019; Barani et al., 2020; Booth, 1957; Pastore
t al., 2013). Summarising, the working hypotheses are the following:

• The single fuel grain is modelled as a spherical domain.
• In line with the new SCIANTIX 2.0 code structure, we con-

sider two phases of the UO2. The non-restructured and restruc-
tured UO2 (i.e., UO2-HBS). Each phase features its properties,
e.g., different grain sizes.

• Each UO2 phase forms a dedicated system (e.g., Xe-in-UO2 and
Xe-in-UO2-HBS), each one with its specific properties (e.g., the
diffusivity of xenon in the fuel matrix).

With the conventional symmetry boundary conditions at the centre
of the spherical domain and perfect sink boundary conditions at the
border of the spherical domain (Booth, 1957; Speight, 1969; Forsberg
and Massih, 1985a,b; Pastore et al., 2013; Pizzocri et al., 2016; Pastore
et al., 2018; Zullo et al., 2022). On top of the fission gas behaviour
operated by SCIANTIX (e.g., the evolution of the intra-granular bubble
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Table 1
Values of the model parameters.

Matrix Parameter Value Reference

UO2 𝐷 𝐷 = 𝐷1 +𝐷2 +𝐷3 Turnbull et al. (1989)
UO2 𝑎1, grain size 5 μm Olander (1976)
UO2 𝑔, trapping rate 𝑔 = 4𝜋𝐷𝑁ig𝑅ig Ham (1958)
UO2 𝑏, re-solution rate 𝑏 = 2𝜋𝜇ff𝐹̇ (𝑅ig + 𝑅ff)2 Olander and Wongsawaeng (2006)
UO2-HBS 𝐷 𝐷 = 4.5 × 10−42𝐹̇ Pizzocri et al. (2017), Barani et al. (2020)
UO2-HBS 𝑎2, grain size 150 nm Ray et al. (1997), Barani et al. (2020)
population (Zullo et al., 2023; Pizzocri et al., 2020, 2018)), we consider
the following fission gas diffusion problem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝐶1
𝜕𝑡

=
𝐷1

𝑎21
∇2𝐶1 − 𝑔𝐶1 + 𝑏𝑚1 −

1
1 − 𝛼

𝜕𝛼
𝜕𝑡

𝐶1 + (1 − 𝛼)𝑆

𝜕𝑚1
𝜕𝑡

= 𝑔𝐶1 − 𝑏𝑚1 −
1

1 − 𝛼
𝜕𝛼
𝜕𝑡

𝑚1
𝜕𝐶2
𝜕𝑡

=
𝐷2

𝑎22
∇2𝐶2 +

1
1 − 𝛼

𝜕𝛼
𝜕𝑡

(𝐶1 + 𝑚1) + 𝛼𝑆

(35)

With 𝑎1 and 𝑎2 the radius of the fuel grain in non-restructured UO2
and in restructured UO2, respectively. Numerical values are given in
Table 1. Eq. (35) represent the extended intra-granular problem that
we solve in SCIANTIX, tailored to represent a smooth transition from
UO2 to UO2-HBS phase. In particular,

• 𝐶1 represents the concentration of fission gas in dynamic solution
within the non-restructured matrix.

• 𝑚1 represents the concentration of fission gas trapped in intra-
granular bubbles within the non-restructured matrix.

• 𝐶2 represents the concentration of fission gas in dynamic solution
within the restructured matrix.

Since the intra-granular diffusion problem we consider with SCIANTIX
is discretised with a spectral diffusion algorithm, we avoid solving the
first two differential equations on the non-restructured micron-sized
fuel grain and the third one on the restructured nanometric fuel grain
by non-dimensionalising the Laplace operator. In other words, we solve
the diffusion problem on the unit-radius sphere without changing the
system eigenvalues 𝜋2𝐷

𝑎2
𝑘2 (Zullo et al., 2022).

We consider the restructured volume fraction proposed by Barani
and co-workers (Barani et al., 2020, 2022):

𝛼 = 1 − exp
(

−2.77 × 10−7𝛽3.54eff
)

(36)

The restructured volume fraction 𝛼 is proportional to the local effective
burnup 𝛽eff, used as a virtual threshold to define the HBS formation
at temperature lower than the healing temperature threshold (𝑇th =
1273.15 K):

𝛽eff = ∫ 𝐻(𝑇th) d 𝛽 (37)

where 𝛽 (MWd kgU-1) is the fuel local burnup, and 𝐻 is the Heaviside
function (Khvostov et al., 2005; Holt et al., 2014; Pizzocri et al., 2017).

4. Results and discussion

We applied the previous modelling approach to simulate the be-
haviour of a representative Light Water Reactor (LWR) fuel pellet
rim portion with SCIANTIX. Namely, we considered a steady-state
irradiation history up to 200 GWd/tU at low temperature (723 K) and
high fission rate (2 × 1019 f issm−3 s−1). Figs. 1 and 2 show the results
obtained from solving Eq. (35). To evaluate the impact of the sweeping
term (Eq. (31)), Fig. 1 is obtained by neglecting such term while it is
considered in Fig. 2.

Moreover, Figs. 1 and 2 include separate contributions for xenon
concentrations retained in UO2 matrix:

• The contribution from the xenon retained in non-restructured
UO grains (𝐶 + 𝑚 ).
2 1 1

4 
Fig. 1. Intra-granular xenon concentration calculated with the present model, without
the sweeping term, as a function of local effective burnup. The comparison with the
model from Lassmann et al. (1995b), is reported (purple dotted line), together with
experimental data measured by EPMA on several samples (black dots, from Walker,
1999).

Fig. 2. Intra-granular xenon concentration calculated with the present model, including
the sweeping term, as a function of local effective burnup. The comparison with the
model from Lassmann et al. (1995b), is reported (purple dotted line), together with
experimental data measured by EPMA on several samples (black dots, from Walker,
1999).

• The contribution from the xenon retained in restructured UO2
grains (𝐶2)

and their sum. We stress again that the only purpose of Fig. 1 is
to clarify the impact of the sweeping term which ensures a more
realistic representation of the xenon depletion process together with
advantages of numerical and implementation-wise nature. In particular,
moving from Figs. 1 to 2, it can be noted that the mass transfer
between the two matrix phases is responsible for the smooth decrease
of the retained gas in reasonable agreement with available measured
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data (from Walker, 1999). Moreover, the tail of the calculated intra-
granular xenon concentration depends on the grain size of the UO2-HBS
matrix (i.e., asymptotic gas concentration). We use a value of 150 nm
( Table 1), that is in line with experimental observations (Cappia et al.,
2016, 2022; McKinney et al., 2023; Noirot et al., 2008; Khvostov et al.,
2005) and previous modelling approaches (Lassmann et al., 1995a;
Veshchunov and Shestak, 2009; Veshchunov et al., 2006; Pizzocri et al.,
2017; Barani et al., 2020), and that agrees with the experimental
data considered in Fig. 2. On the other hand, such grain size has its
degree of intrinsic uncertainty (Pizzocri et al., 2017; Barani et al.,
2020). The experimental data in Fig. 2 comes from different irradiation
conditions and initial fuel characteristics. Considering the scattering of
the considered data, the agreement can be regarded as acceptable (Lass-
mann et al., 1995b). Some degree of uncertainty must be necessarily
taken into consideration, for instance, in the single-atom diffusivities
of the xenon in the fuel matrices (reported in Table 1), regarding
the experimental characterisation, which in principle could allow us
to consider different (but reasonable) initial fuel grain sizes. Most
importantly, some uncertainty must be ascribed to the 0-dimensional
simulation we are performing with the SCIANTIX code, considering
that a constant temperature and constant fission rate are not fully
representative of the local temperature and burnup gradients. For
instance, uncertainty is brought to the predicted position of the peak
of the retained xenon (∼ 60 GWd/tU in the considered simulation),
which depends on the restructured volume fraction 𝛼, and on the local
burnup itself. Further refinement of this feature is to be considered
in a more detailed representation of the restructured volume fraction,
possibly including other quantities like the dislocation density as it
was done in other works (Veshchunov et al., 2006; Veshchunov and
Shestak, 2009). Issues of this kind have been addressed and detailed
in previous works (Pizzocri et al., 2017; Barani et al., 2020), and a
similar examination and comparison are valid for the present work.

5. Conclusions

This work outlines a modelling approach to describe the intra-
granular fission gas behaviour in UO2, considering the evolution of the
non-restructured and restructured fuel matrices. The model leverages
the definition of the restructured volume fraction, which currently de-
pends on the local effective burnup. The primary outcome of the model
is a simple yet effective description of two intra-granular gas diffusion
problems interconnected by an exchange term, sweeping gas atoms
from one phase to the other. In addition, by leveraging the spectral dif-
fusion algorithm for the intra-granular fission gas problem, we avoided
dealing with two different integration domains (micrometric and sub-
micrometric grains) and solved a single spatial dimensionless problem.
The model developed has been implemented in SCIANTIX, a 0D meso-
scale code for physics-based modelling of fission gases in nuclear oxide
fuel and compared with experimental data and semi-empirical models.
The model results are consistent with the experimental data and past
semi-empirical models, with the sweeping term providing a smooth
representation of the xenon depletion in forming HBS.
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