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Abstract: Bubble columns are used in many different industrial applications, and their design and
characterisation have always been very complex. In recent years, the use of Computational Fluid
Dynamics (CFD) has become very popular in the field of multiphase flows, with the final goal of
developing a predictive tool that can track the complex dynamic phenomena occurring in these types
of reactors. For this reason, we present a detailed literature review on the numerical simulation of
two-phase bubble columns. First, after a brief introduction to bubble column technology and flow
regimes, we discuss the state-of-the-art modelling approaches, presenting the models describing the
momentum exchange between the phases (i.e., drag, lift, turbulent dispersion, wall lubrication, and
virtual mass forces), Bubble-Induced Turbulence (BIT), and bubble coalescence and breakup, along
with an overview of the Population Balance Model (PBM). Second, we present different numerical
studies from the literature highlighting different model settings, performance levels, and limitations.
In addition, we provide the errors between numerical predictions and experimental results concerning
global (gas holdup) and local (void fraction and liquid velocity) flow properties. Finally, we outline
the major issues to be solved in future studies.

Keywords: bubble columns; two-phase flow Computational Fluid Dynamics; momentum exchange;
bubble induced turbulence; population balance model

1. Introduction

Many industrial sectors have to deal with multiphase flows, especially gas–liquid
flows. Bubble columns represent a class of gas-liquid multiphase reactors widely used in
the chemical, biochemical, and petrochemical industries [1] (Table 1).

They offer several advantages due to the absence of moving parts or mechanical
stirring equipment, such a simple and compact structure, excellent heat and mass transfer
properties, low maintenance and operating costs, and high durability.

The simplest bubble column layout consists of a vertical vessel without internals,
where a gas distributor at the bottom disperses the gas phase into bubbles entering the
column (Figure 1). The liquid phase is supplied in batch mode, or may be co-current or
counter-current to the rising bubbles. Despite the simple arrangement of bubble columns,
their fluid dynamics are extremely complex, and a comprehensive understanding of their
properties has not been fully achieved yet despite the significant improvements obtained
over the last few years.

The overall behaviour of the flow is affected by either phenomena occurring at the
macroscale (reactor-scale) or at the the local scale, as many operating variables tend to
influence each other. The main parameters of interest are usually the gas holdup and the
axial liquid velocity, along with the size distribution of the dispersed phase.

Historically, the design of bubble columns has relied on empirical or semi-empirical
correlations:; unfortunately, this approach has severe drawbacks, as the use of correlations is
constrained to specific vessel geometries, fluid properties, and operating conditions similar
to those under which they were derived [2]. The recent increase in interest in Computational
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Fluid Dynamics (CFD) has spurred substantial research efforts into determining numerical
models that can obtain reasonably accurate predictions with limited computational time,
thereby overcoming the limitations of traditional empirical methods.

Figure 1. Bubble column reactor.

The rest of this paper is organised as follows. In Section 2, we discuss the flow
regimes occurring in a vertical pipe, and more in detail in large-diameter bubble columns.
In Section 3, we present numerical approaches to simulating two-phase bubble columns.
In particular, within the context of the Eulerian–Eulerian approach, an overview of the
population balance model used to predict the bubble size distribution follows a description
of the different models used to consider the momentum exchange between the phases.
Finally, models for considering the influence of the dispersed phase on the continuous
phase turbulence are provided. In Section 4, we present different studies concerning
the numerical simulation of two-phase bubble columns and provide their model settings
and performances.

Table 1. Main applications of bubble column reactors [3].

Process Reactants Main Products

Oxidation
Ethilene, butane, toluene,

xylene, ethylbenzene,
cyclohexene, n-paraffins,glucose

Vinyl acetate, phenol, acetone,
methyl ethyl ketone,

benzoic acid, phthalic acid,
acetophenone, acetic acid,

acetic anhydride, cyclohexanol
and cyclohexanone,

adipic acid, sec-alcohols, glutonic acid

Chlorination Aliphatic hydrocarbons,
aromatic hydrocarbons Choloroparaffins, chlorinated aromatics

Alkylation Ethanol, propylene,
benzene, toluene

Ethyle benzene, cumene,
iso-butyl benzene

Hydroformylation Olefins Aldehydes, alcohols

Carbonylations Methanol, ethanol Acetic acid, acitic anhydride,
propionic acid

Hydrogenation

Benzene, adipic acid dinitrile,
nitroaromatics, glucose,

ammonium nitrate,
unsaturated fatty acids

Cyclohexane, hexamethylene
diamine, amines, sorbitol,

hydroxyl amines

Gas to Liquid Fuels (Fischer-=Tropsch) Syngas Liquid fuels

Coal Liquification Coal Liquid fuels

Desulferization Petroleum fractions Desulferize fractions

Aerobic Bio-Chemical Processes Molasses Ethanol
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2. Flow Regimes

In multiphase reactors, the flow regime provides information about the behaviour of
the dispersed phase and its interaction with the continuous phase. In the most general case,
four flow regimes are encountered in vertical pipes when increasing the gas flow rate using
a fixed system design and phase properties (Figure 2): (1) homogeneous regimes, (2) slug
regimes, (3) heterogeneous (churn turbulent) regimes, (4) and annular flow regimes.

Figure 2. Representation of flow regimes in vertical pipes. Reprinted with permission from [4].

The slug flow regime is not observed when dealing with industrial applications owing
to Rayleigh–Taylor instabilities [5] which arise because of large diameter effects. Quantifi-
cation of the Rayleigh–Taylor instabilities at the reactor scale is obtained by comparing the
dimensionless column diameter (D∗H) with a critical value (D∗H,cr):

D∗H =
DH√

σ/g(ρL − ρG)
> D∗H,cr ≈ 52 (1)

In Equation (1), DH is the hydraulic diameter of the column, σ is the surface tension,
g is the acceleration due to gravity, ρL is the liquid phase density, and ρG is the gas phase
density. A bubble column is classified as having a large diameter if D∗H is greater than
D∗H,cr = 52 [6], i.e., when dc ≥ 0.13–0.15 m at ambient conditions.

Under the constraint of Equation (1), the fluid dynamics of large-diameter bubble
columns is explicated in six flow regimes and interpreted by a function of two global fluid
dynamics parameters, namely, the drift flux and the gas holdup [7].

The drift flux (JT) is defined as the volumetric flux of either component relative to a
surface moving at volumetric average velocity, and is expressed as follows:

JT = UG(1− εG)±ULεG (2)

In Equation (2), εG is the gas holdup (defined as the ratio between the volume occupied
by the gas phase and the total volume), UG is the superficial gas velocity, and UL is the
superficial liquid velocity. The sign on the right-hand side depends on the operation mode
of the bubble column, i.e., co-current mode (+) or counter-current mode (−); in batch mode,
UL = 0.

The six flow regimes emerging upon an increase in the gas flow rate are: (1) mono-
dispersed homogeneous flow regimes, (2) poly-dispersed homogeneous flow regimes,
(3) transition flow regimes without coalescence-induced structures, (4) transition flow
regimes with coalescence-induced structures, (5) pseudo-heterogeneous flow regimes,
and (6) pure-heterogeneous flow regimes (Figure 3).

First, the mono-dispersed homogeneous and the pseudo-homogeneous flow regimes
are progressively observed; a mono-dispersed bubble size distribution characterises the for-
mer, while a poly-dispersed one in which large bubbles with a negative lift force coefficient
move through the centre of the column characterises the latter. With an increase in the gas
flow rate, the number of bubbles having a negative lift force coefficient increases, and these
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continue to migrate towards the centre of the column (Figure 4). Then, the transition flow
regime (i.e., the transition flow regime without coalescence-induced structures) begins to
be established by non-stable coalescence-induced structures, which causes oscillations in
the gas holdup. Subsequently, the coalescence-induced structures stabilise, characterising
the transition flow regime with coalescence-induced structures. Despite the presence of
coalescence-induced structures, they are not entirely developed. Indeed, increasing the gas
flow rate leads to a decrease in the gas holdup, thereby unveiling the imbalance between a
higher gas flow rate and the formation of coalescence-induced structures, which indicates
a transition process from the prevailing fluid dynamics.

Finally, stable coalescence-induced structures emerge, leading to the pseudo-heterogeneous
and purely heterogeneous flow regimes. The former is characterised by an equilibrium
between the increase in the flow rate (in terms of drift flux) and the formation of coalescence-
induced structures. This leads to constant holdup with respect to an increase in the drift flux,
indicating that the coalescence-induced structures are well established. On the contrary,
in the pure-heterogeneous flow regime increasing the gas flow rate increases coalescence-
induced structures, and the increase in drift flux is followed by an increase in the gas
holdup; for more details, see the paper by Besagni (2020) [7].

Pure-heterogeneous flow regime

Pseudo-heterogeneous flow regime

Transition flow regime 
with coalescence induced structures 

Transition flow regime without 
coalescence induced structures 

Poly-dispersed homogeneous flow regime

Mono-dispersed homogeneous flow regime

First flow regime transition

Second flow regime transition

Third flow regime transition

Fourth flow regime transition

Fifth flow regime transition

Gas holdup [-]

D
ri
ft

 f
lu

x
 [
m

/
s]

Figure 3. Flow regimes and regime transitions in a large-diameter bubble column. Reprinted with
permission from [7].

Figure 4. Flow pattern evolution in two-phase bubble columns. Reprinted with permission from [8].
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3. Numerical Modelling: The Eulerian–Eulerian Approach

Two main models have been developed to predict the complex fluid dynamics phenom-
ena of a dispersed bubbly flow, namely, the Eulerian–Lagrangian and Eulerian–Eulerian
frameworks. The Eulerian–Lagrangian model couples the Eulerian description of the con-
tinuous phase with a Lagrangian scheme for tracking the individual particulates. The dy-
namics of the surrounding fluid (continuous phase) are solved through the governing
equations, while the particulates (dispersed phase) are tracked independently through the
surrounding fluid by computing their trajectory. While a variety of studies have applied
the Eulerian–Lagrangian approach [4,9–11], these have been limited to the simulation of
small-scale reactors and low gas holdup scenarios. In the Eulerian–Eulerian model, both
phases are treated as interpenetrating continua and an ensemble average is performed on
the balance equations, reducing the computational cost of the simulation. The information
about the precise location of the bubble interface is lost, and only an average description of
the flow is possible; however, this approach is not limited by the number of bubbles to be
modelled. Because industrial flows usually have high gas volume fraction, meaning that a
very large number of bubbles are present, only the Eulerian–Eulerian method is suitable
for CFD implementations.

3.1. Governing Equations

In the Euler–Euler method, all phases share a single pressure field, whereas the
momentum and continuity equations must be solved for each phase. Considering an
isothermal flow without mass transfer, the governing equations for the k-phase read
as follows:

∂

∂t
(αkρk) +∇ · (αkρk~uk) = 0 (3)

∂

∂t
(αkρk~uk) +∇ · (αkρk~uk~uk) = −αk∇p +∇ · (αkτ̄k) + αkρk~g + ~MI,k (4)

where τ̄k is the stress–strain tensor for the k-th phase, defined as

τ̄k = αkµk

(
∇~uk +∇~uT

k

)
+ αk

(
λk −

2
3

µk

)
∇ · ~uk I (5)

Here, µk and λk express the shear and bulk viscosity of the k phase, respectively.
The other terms on the right-hand side of Equation (4) represent the pressure gradient and
the interfacial momentum exchange between the phases, accounting for all the interaction
forces exchanged between the phases (see Section 3.2).

3.2. Interfacial Forces

To properly solve the k-th equation, a feasible set of closure relations must be imple-
mented to include all the possible interactions between primary and secondary phases,
expressed in the form of momentum transfer per unit volume at the phase interface
(Figure 5). Interfacial momentum forces are typically added as source terms in the momen-
tum equation, and can be divided into drag and non-drag components.

The non-drag forces term comprises different physical mechanisms: lift, turbulent
dispersion, wall lubrication, and virtual mass. Thus, the total interfacial force responsible
for momentum exchange is provided by a linear combination of each individual force [12].
Indicating the continuous liquid phase with the subscript “L” and the dispersed gas phase
with the subscript “G”, the source term in the momentum equation reads as follows:

~ML→G = − ~MG→L = ~FD,L→G + ~FL,L→G + ~FTD,L→G + ~FD,WL→G + ~FVM,L→G (6)
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Figure 5. Schematic representation of the interphase forces acting on a bubble. Reprinted with
permission from [13].

3.2.1. Drag Force

The drag force reflects the resistance opposing the bubbles’ motion relative to the
surrounding liquid. Due to rising upward motion through the continuous liquid phase,
the dispersed phase particles are accelerated by buoyancy and slowed down by pressure
effects and viscous friction at the interface. As the drag force accounts for such decelerating
phenomenon, it is always applied in the opposite direction with respect to the bubble
motion; therefore, it is flow region-dependent, and should be formulated with the inclusion
of local flow parameters such as the relative slip velocity, particle diameter, and void
fraction [12]:

~FD,L→G = −3
4

αGρL
CD
db
|~uG − ~uL|(~uG − ~uL) (7)

In Equation (7), CD is the drag coefficient, which depends on the bubble size, shape,
flow field, and contaminations. Therefore, it is a function of the relative bubble Reynolds
number (Reb), Eötvös number (Eo), and Morton number (Mo) [12], defined as follows:

Reb =
ρL| ~uG − ~uL|db

µL
(8)

Eo =
gd2

b
σ

(ρL − ρG) (9)

Mo =
gµ4

L(ρL − ρG)

σ3ρ2
L

(10)

For spherical bubbles without deformation and fully contaminated systems, the func-
tional form of the drag coefficient depends only on the bubble Reynolds number, as deter-
mined by Schiller and Naumann (1935) [14]. They modified the Stokes model, originally
formulated only for creeping flows (Reb << 1), by adding a correction factor to extend its
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validity up to Reb = 1000. A constant value of 0.44 was considered in order to extend the
applicability of the model:

C∞
D =

{
24

Reb

(
1 + 0.15Re0.687

b
)

Reb ≤ 1000

0.44 Reb > 1000
(11)

This model is suitable only for small bubbles, and is commonly used in bubble columns
operated in the homogeneous flow regime.

Similarly to Shiller and Naumann (1935) [14], White (1974) [15] proposed a drag
coefficient correlation highlighting the dependency of the drag coefficient only on the
bubble Reynolds number:

C∞
D = 0.44 +

24
Reb

+
6

1 +
√

Reb
(12)

For deformed bubbles, the drag coefficient is affected by the Eötvös and Morton
numbers. Grace et al. (1976) [16] were among the first to publish a drag law suitable for
deformed bubbles:

C∞
D = max

(
min

(
CD, ellipse , CD, cap

)
, CD, sphere

)
(13)

where

CD, sphere =

{
24

Reb
Reb < 0.01

24
Reb

(
1 + 0.15Re0.687

b
)

Reb ≥ 0.01
(14)

CD, ellipse =
4
3

gdb

U2
t

ρL − ρG
ρL

(15)

CD, cap =
8
3

(16)

In Equation (15), the bubble terminal velocity (Ut) is calculated as follows:

Ut =
µL

ρLdb
Mo−0.149(J − 0.857) (17)

where J is provided by the piecewise function

J =
{

0.94H0.757 2 < H ≤ 59.3
3.42H0.441 H > 59.3

(18)

and

H =
4
3

EoMo−0.149
(

µL
µref

)−0.14
(19)

In Equation (19), µref is set to 0.0009 kg/(m·s).
A model with the same functional form as Equation (13) was proposed by Ishii and

Zuber (1979) [17], who distinguished different shape regimes and found the following:

CD, sphere =
24
Reb

(
1 + 0.1Re0.75

b

)
(20)

CD, ellipse =
2
3

√
Eo (21)

CD, cap =
8
3

(22)
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Except at high values of Eötvös number, this correlation agrees well with experimental
results concerning the terminal velocity of bubbles rising in quiescent liquids.

Grevskott et al. (1996) [18] experimentally studied the drag coefficient considering
the bubble size distribution in pure water by dividing the population of bubbles into
small and large bubbles. Fitting the experimental data, they proposed the following drag
coefficient correlation:

C∞
D =


5.645

1.0
Eo +2.385

db ≥ 2.0 mm
8
3 (1− αG)

2 db < 2.0 mm
(23)

A popular correlation suitable for gas–liquid flows with a range of shapes was derived
by Tomiyama et al. (1998) [19]. The proposed drag coefficient consists of three equations,
respectively corresponding to pure, slightly contaminated, and fully contaminated systems:

C∞
D = max

{
min

[
16
Reb

(
1 + 0.15Re0.687

b

)
,

48
Reb

]
,

8
3

Eo
Eo + 4

}
(24)

C∞
D = max

{
min

[
24
Reb

(
1 + 0.15Re0.687

b

)
,

72
Reb

]
,

8
3

Eo
Eo + 4

}
(25)

C∞
D = max

[
24
Reb

(
1 + 0.15Re0.687

b

)
,

8
3

Eo
Eo + 4

]
(26)

This drag correlation has a wide range of applicability (10−3 < Rb < 106 and
10−2 < Eo < 103) and holds for spherical as well as deformed bubbles.

Zhang et al. (2006) [20] derived a simple relation that provides results comparable
to other models when the bubble diameter is in the range between 4 mm and 10 mm,
for which the rising velocity is weakly dependent on the bubble diameter:

C∞
D =

2
3

√
Eo (27)

Recently, Dijkhuizen et al. (2010) [21] used a DNS front-tracking technique to derive a
correlation valid for both spherical and deformed bubbles:

C∞
D =

√
C2

D(Reb) + C2
D(Eo) (28)

where

CD(Reb) =
16
Reb

[
1 +

Reb

8 + 0.5
(

Reb + 3.315Re0.5
b
)] (29)

CD(Eo) =
4Eo

9.5 + Eo
(30)

The proposed drag closure matches very well with experimental data for ultra-pure
liquids (water/glycerine mixture). A comparison between the different drag coefficient
correlations is presented in Figure 6.
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2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

db [mm]

0.5

1.0

1.5

2.0

2.5
C
D

[-
]

Shiller and Naumann (1935)

Grace et al. (1976)

Ishii and Zuber (1978)

Grevskott et al. (1996)

Tomiyama(1998)

Figure 6. Evolution of the drag coefficient with respect to the bubble diameter at | ~uG − ~uL| = 0.1 m/s
for air bubbles in water. Comparison between the correlations of Schiller and Naumann (1933) [14],
Grace et al. (1976) [16], Ishii and Zuber (1978) [17], Grevskott et al. (1996) [18] and Tomiyama
(1998) [19].

3.2.2. Swarm Factor Definitions

The drag coefficient correlations presented in Section 3.2.1 apply to isolated bubbles
rising in initially quiescent liquids, and can only be used for low gas volume fractions.
In the case of high gas volume fractions, as is common in industrial bubble columns with
high superficial gas velocity, bubbles are very close to each other, resulting in a crowding
effect in which bubbles travel through the column in swarms. The bubble boundary
layers interact, changing the interphase momentum exchange and, importantly, the drag
force. For this reason, a correction factor (h) should be applied to the drag coefficient for
isolated bubbles

h =
CD
C∞

D
(31)

where CD is the actual drag coefficient and C∞
D is the drag coefficient for an isolated bubble.

Several authors have investigated the impact of bubble–bubble interactions on the drag
coefficient. The first approach was proposed by Bridge et al. (1964) [22] and Wallis (1969) [23]:

h =
1

1− α2n
G

(32)

for which Bridge et al. (1964) [22] selected n = 1.39 and Wallis (1969) selected [23] n = 1.
Ishii and Zuber (1979) [17] investigated the drag force over a broad range of gas

volume fractions and Reynolds numbers, establishing the following relation based on a
large sample of experimental data:

h =
1√

1− αG
(33)
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Rusche and Issa (2000) [24] proposed a swarm factor correlation for oblate bubbles,
validated for a local volume fraction αG ≤ 0.45 and 27 ≤ Reb ≤ 960:

h = exp(3.64αG) + α0.4864
G (34)

Roghair et al. (2011) [25], using a DNS front-tracking model, derived a drag-modification
term that can be applied for high Reynolds numbers and oblate bubbles in the range
αG < 0.45, 150 ≤ Rb ≤ 1200, 1 ≤ Eo ≤ 5, 4× 10−12 ≤ Mo ≤ 2× 10−9:

h =

(
1 +

18αG
Eo

)
(1− αG) (35)

Buffo et al. (2016) [26] developed a straightforward power law equation to account
for the crowding effect of bubbles based on many investigations into fluidized beds and
liquid–liquid systems:

h =

{
(1− αG)

CA αG ≤ 0.8
1 αG > 0.8

(36)

The authors concluded from a sensitivity analysis that a value of CA = 1.3 provides
the best agreement with experimental data.

The swarm factor correlations discussed above hinder the rising velocity of the bubbles,
thereby increasing the drag coefficient of isolated bubbles at high gas volume fractions.
They are reported in Figure 7 and compared with the Simmonet et al. (2008) [27] model;
while reasonable agreement is found at low gas volume fractions, the predictions diverge
strongly at high volume fractions. The correction factor proposed by Simmonet et al.
(2008) [27] differs from the other models in highlighting the presence of a critical value
of the gas volume fraction at 0.15. Below this value, the rising velocity of the bubbles
decreases with increasing void fraction; on the contrary, beyond the critical value the wake
acceleration effect of large bubbles is predominant, causing an increase in the bubbles’
rising velocity and a consequent reduction in the swarm factor, which decays rapidly to
zero. For local void fractions less than 0.30 and air–water pure systems, the correlation of
Simonnet et al. (2008) [27] reads as follows:

h = (1− αG)

[
(1− αG)

m +

(
4.8

αG
1− αG

)m]−2/m

(37)

where m is an adjustable coefficient. Simonnet et al. (2008) [27] set m = 25, as this showed
good agreement with their experimental data.

McClure et al. (2014c) [28] suggested that no hindering effect should be taken into
account for bubbles larger than 7 mm, and modified the correlation of Simonnet et al.
(2008) [27] accordingly:

h =

{
min(h′, 1) h′ > 1
0.8h′ h′ < 1

(38)

where h′ is the original swarm factor of Simonnet et al. (2008) [27].
Performing a new experimental study, McClure et al. (2017) [29] criticized their

previous model and observed that the drag correction factor is a function of both the bubble
size distribution and the local gas volume fraction. Thus, they proposed a new empirical
correlation valid for αG > 0.25:

h = min
(
(1− αG)

n + b, 1
)

(39)

where n and b are model constants calculated with least-square fitting of experimental data.
The authors suggested n = 50, while b depends on the gas sparger design (for example,
a value of 0.20 was found in the case of a perforated plate distributor with a 0.5 mm hole
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diameter, while a value of 0.08 was found in the case of a perforated plate with a 3 mm
hole diameter).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
G [-]

0.0

0.5

1.0

1.5

2.0

2.5
h 

[-]

Bridge et al. (1964)
Wallis (1969)
Ishii and Zuber (1979)
Rusche and Issa (2000)

Simonnet et al.(2008)
 Roghair et al. (2011)
 Buffo et al. (2016)

Figure 7. Comparison of published Swarm factor as a function of local void fraction for bubbles with
db of 6.5 mm. Comparison between the correlations of Bridge et al. (1964) [22], Wallis (1969) [23],
Ishii and Zuber (1979) [17], Rusche and Issa (2000) [24], Simonnet et al. (2008) [27], Roghair et al.
(2011) [25] and Buffo et al. (2016) [26]. Note the discrepancy between the correlation proposed by
Simonnet et al. (2008) [27] and the others.

Gemello et al. (2018a) [30] modified the correlation proposed by Simonnet et al.
(2008) [27] (validated for αG < 0.3) to obtain a swarm factor feasible for a wide range
of operating conditions. In particular, they noted that the decrease in the swarm factor
proposed by Simonnet et al. (2008) [27] is too strong for high volume fractions; thus,
they added a minimum asymptotic value (hmin) towards which h should tend at high
void fractions:

h = max

(1− αG)

[
(1− αG)

25 +

(
4.8

αG
1− αG

)25
]−2/25

, hmin

 (40)

The authors suggested hmin = 0.5 for industrial scaling-up purposes.
Yang et al. (2018) [31] formulated a drag modification relation for bubble swarms that

accounts for both the hindering effect of small bubbles and the wake accelerating effect of
large bubbles. To model both phenomena, the resulting swarm factor was calculated using
the product of two corrective terms:

h = kb,large · kb,small (41)

kb,large =
1

max
(

1.90αg fb, large

) (42)

kb,small = (1− αG,small)

(
1 +

22αG, small

Eo + 0.4

)
(43)
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where fb, large is the fraction of large bubbles and αG, small = αG

(
1− fb,large

)
. From this

model equation, it is possible to observe that an increasing void fraction means that the drag
correction factor increases to a maximum and then decreases. Drag correction factors that
reduce the drag force in bubble swarms are presented in Figure 8.

0.0 0.1 0.2 0.3 0.4 0.5
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Figure 8. Drag correction factors that reduce the drag force in bubble swarms for bubbles with db of
6.5 mm. Comparison between the correlations of McClure et al. (2014c) [28], McClure et al. (2017) [29],
Gemello et al. (2018) [30] and Yang et al. [31].

3.2.3. Lift Force

A bubble moving through a shear fluid is subjected to a force perpendicular to its
motion. This force results from the action of pressure and stress on the surface of the bubble.
The corresponding momentum source is

~FL,L→G = −CLρLαG(~uG − ~uL)× (∇× ~uL), (44)

where CL is the lift coefficient. Experimental and numerical studies show that the coefficient
is positive for small bubbles and negative for large bubbles. Consequently, the lift force
direction depends on the bubble size and shape. For small bubbles, the lift force acts in
the direction of decreasing liquid velocity, which in the case of batch or co-current mode is
toward the pipe wall. Conversely, when large bubbles are considered, a force assimilated
to the lift force pushes the bubbles towards the centre of the column. In other words, sign
reversal of the lift force is observed for bubbles with a diameter larger than a critical value
(dcr). Smaller bubbles (those with a diameter lower than the critical threshold) tend to move
towards the wall, whereas larger bubbles (those for which db > dcr) are pushed towards
the vessel centre.

Tomiyama et al. (2002b) [32] studied the motion of bubbles in a glycerol–water solution,
deriving the following correlation for the lift coefficient:

CL =


min[0.288 tanh(0.121Reb), f (Eo⊥)] Eo⊥ ≤ 4
f (Eo⊥) 4 < Eo⊥ ≤ 10
−0.27 Eo⊥ > 10

(45)

where
f (Eo⊥) = 0.00105Eo3

⊥ − 0.0159Eo2
⊥ − 0.0204Eo⊥ + 0.474; (46)
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here, Eo⊥ is the modified Eötvös number calculated considering the maximum horizontal
dimension (major axis) of the bubble (d⊥), provided by the empirical correlation for the
aspect ratio (E) proposed by Wellek et al. (1966) [33] for contaminated flows:

Eo⊥ =
g
(
ρL − ρg

)
d2
⊥

σ
(47)

d⊥ = deq

(
1
E

)1/3
= deq

3
√

1 + 0.163Eo0.757 (48)

where deq is the equivalent spherical diameter of the bubble.
This correlation applies to larger-scale deformable bubbles in the ellipsoidal and

spherical cap regimes. The experimental conditions under which Equation (45) was derived
were limited to the ranges of −5.5 ≤ log10(Mo) ≤ −2.8 and 1.39 ≤ Eo ≤ 5.84. Air–water
systems at normal conditions usually have Mo = 2.63× 10−11 ( log10(Mo) = −10.55),
which is quite different from the conditions at which the above correlation was derived;
nevertheless, good results have been reported for this case. When coupled with that of
Wellek et al. (1966) [33] for the calculation of d⊥, the correlation predicts that the change in
sign of the lift coefficient occurs at db = 5.8 mm.

However, Ziegenhein and Lucas (2019) [34] pointed out that the correlation of Wellek
et al. (1966) [33] is not suitable for purified air–water systems and leads to an over-
prediction of the major axis of an elliptic bubble. Besagni et al. (2016) [35] studied the size
distribution and shapes of bubbles in an annular gap bubble column and reached the same
conclusion. Correct estimation of the critical diameter is essential in CFD modelling, as it
allows the bubble population to be divided into a small group and large group, permitting
consideration of the poly-disperse nature of the flow in which bubbles of different sizes
move in different directions.

To overcome this limitation, Ziegenhein et al. (2018) [36] suggested a quadratic
fit correlation for the lift force as a function of the modified Eötvs̈ number and bubble
Reynolds number:

CL =

{
0.002Eo2

⊥ − 0.1Eo⊥ + 0.5 Eo⊥ ≤ 10.5
−0.3295 Eo⊥ > 10.5

(49)

In their model, the correlation for the bubble major axis is modified based on experi-
mental observation of bubble shapes in six column configurations:

d⊥ = deq
3
√

1 + 0.65Eo0.35 (50)

The Ziegenhein et al. (2018) [36] correlations results in a critical diameter of about
5.3 mm, which is lower than that obtained with the Wellek et al. (1966) [33] relation. Figure 9
shows a comparison between the Tomiyama et al. (2002) [32] and the Ziegenhein et al.
(2018) [36] lift models.

To conclude, Behzadi et al. (2004) [37] proposed a model highlighting that the lift coef-
ficient cannot be independent of the local gas void fraction. After fitting their experimental
observations, they proposed the following correlation:

CL = 6.51× 10−4α−1.2
G (51)

It should be pointed out that this simple correlation does not consider the change
of sign of the lift coefficient (i.e., CL does not depend on Eo⊥) and, due to the power law
formulation, the coefficient tends to infinity for αG −→ 0. This is avoided by limiting Cl by
a finite value, which is taken as 0.25 [37].
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Figure 9. Comparison between Tomiyama et al. (2002b) [32] and Ziegenhein et al. (2018) [34] models
for the lift coefficient.

3.2.4. Turbulent Dispersion Force

The turbulent dispersion force accounts for the fluctuations in the liquid velocity
that affect the dispersed phase by scattering it. The turbulent eddies redistribute the
bubbles in the lateral direction from regions with high concentration to regions with
low concentrations. The effect of the turbulent dispersion force is evident in the gas
fraction profiles, as it modulates peaks of small bubbles near the wall pipe and spreads out
large bubbles.

The modelling of the turbulent dispersion force is expressed as a force proportional to
the void fraction gradient. Simonin and Viollet (1990) [38] proposed the following model
for the turbulent dispersion force:

~FTD,L→G = CTDkLG
Dt,LG

σLG

(∇αL
αL
− ∇αG
∇αG

)
(52)

In analogy to the molecular diffusion, σTD is the Schmidt number (a value of σTD = 0.9
is typically used) and CTD is the turbulent dispersion coefficient, while kLG and Dt,LG are
the mixture’s turbulent kinetic energy and the liquid dispersion scalar, respectively.

Burns et al. (2004) [39] derived an explicit formulation for the turbulent dispersion
force by using Favre averaging on the drag force:

~FTD,L→G = −3
4

CTDαL(1− αL)
CD
db
|~uG − ~uL|

µturb
L

σTD

(∇αL
αL
− ∇αG

αG

)
(53)

This model estimates the dispersion scalar of the Simonin and Viollet (1990) [38] model
with the liquid turbulent viscosity µturb

L .
An alternative formulation is the one proposed by Lopez De Bertodano et al. (2004) [40]:

~FTD,L→G = −ρL
1

St(1 + St)
~u′L~u

′
L · ∇αG (54)

where St is the Stokes number and ~u′L~u
′
L represents the normal Reynolds stresses.
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3.2.5. Wall Lubrication Force

The wall lubrication force is caused by the surface tension and prevents the bubbles
from touching the walls, ensuring zero void fraction (as found experimentally) near the
vertical walls.

The wall lubrication force has the general form

~FWL,L→G = − 2
dB

CWLρLαG|(~uG − ~uL)|||2~̂y (55)

where ( ~uG− ~uL)|| is the relative velocity component parallel to the wall, ~̂y is the unit normal
to the wall pointing into the fluid, and CWL is the wall lubrication coefficient.

Different expressions for CWL have been proposed in the literature. The relation
proposed by Antal et al. (1991) [41] states that

CWL = max
(

0,
Cw1

db
+

Cw2

yw

)
(56)

With Cw1 and Cw2 being two non-dimensional coefficients. The Antal et al. (1991) [41]
model is applicable only if the condition yw ≤ 5db is respected; thus, it is only active on
a sufficiently fine mesh. Tomiyama et al. (1995) [42], studying bubble trajectories in a
glycerol–water solution, proposed a different function for the wall lubrication coefficient
by considering an additional dependence on the Eötvös number and pipe diameter (D):

CWL = Cw
db
2

(
1

y2
w
− 1

(D− yw)
2

)
(57)

Cw =


0.47 Eo < 1

e−0.933Eo+0.179 1 ≤ Eo ≤ 5
0.00599Eo− 0.0187 5 < Eo ≤ 33

0.179 33 ≤ Eo

(58)

Although the Tomiyama (1995) [42] model has proven superior to the Antal et al.
(1991) [41] model, it is restricted to flows in pipe geometries.

Hosokawa et al. (2002) [43] reviewed the experimental results of Tomiyama (1995) [42]
and obtained the following functional form for CWL:

CWL = Cw

(
db

2yw

)
(59)

Here, the coefficient Cw depends on the Eötvös number and the phase-relative Reynolds
number (Reb), as indicated below:

Cw = max

(
7

Re1.9
b

, 0.0217Eo

)
(60)

The Hosokawa et al. (2002) [43] model often shows better agreement with experimental
data in both vertical and inclined bubbly flow systems.

Later, Frank et al. (2005) [44] proposed a generalized formulation for the wall lubrica-
tion coefficient:

CWL = Cw(Eo) ·max

0,
1

CWD
·

1− yw
CWCdb

yw ·
(

yw
CWCdb

)p−1

 (61)

where CWC and CWD are the cut-off and the damping coefficient, respectively. The Eötvös
number coefficient Cw is provided by Equation (58). From numerical simulations, the au-
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thors found that good agreement with the experimental data was obtained for CWC = 10,
CWD = 6.8, and p = 1.7.

Figure 10 shows the influence of the above described non-drag forces on the numerical
prediction of the local void fraction profile [45].

Figure 10. Influence of Non-Drag-Forces (NDF), (with the exception of the virtual mass force) on the
local void fraction profile. Reprinted with permission from [45].

3.2.6. Virtual Mass Force

The virtual mass force arises from the acceleration of an immersed moving object
relative to the surrounding fluid. This effect is significant when the continuous phase
density is much higher than that of the dispersed phase.

~FVM,L→G = CVMαGρL

(
DG~uG

Dt
− DL~uL

Dt

)
(62)

Here, Dj/Dt, Dk/Dt denote the total derivative with respect to time for the indicated
phase. As reported by Tabib et al. (2008) [46], the contribution of virtual mass is negligible
for large-diameter bubble columns (D > 0.15 m). A common practice is to set a constant
value CVM = 0.5, which has been obtained experimentally for isolated spherical bubbles,
as the virtual mass coefficient.

3.3. Population Balance Modelling

Most of the interfacial correlations defined in Section 3.2 require the equivalent di-
ameter of the bubbles as an input; in this regard, three approaches can be used to model
the dispersed phase: (1) the mono-dispersed model, (2) the homogeneous Multiple Size
Group model (MUSIG), and (3) the inhomogeneous Multiple Size Group model (iMUSIG).
The mono-dispersed approximation considers two separate continuity and momentum
equations for the gas and liquid phases. The MUSIG model applies to poly-dispersed sys-
tems, with the bubble population divided into two groups with different sizes. This model
solves a separate continuity equation for each size group and a single momentum equation
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for all sizes together. Conversely, the iMUSIG model considers several velocity groups and
solves a separate momentum equation for each [47].

An uncertainty in bubble column design and scale-up arises from a lack of under-
standing of the phenomena governing bubble size distribution (BSD), and consequently
the column fluid dynamics and interfacial area. Bubble size distributions depend on many
phenomena occurring in the bubble column, including the balance between the coalescence
and breakup rate, the pressure change, and the gas–liquid mass transfer. In particular,
the bubble size distribution mainly results from the coalescence and breakup phenomena
occurring in the bubble column.

Consequently, the dispersed phase characteristic properties vary in time and space,
meaning that a constant bubble size distribution represents a strong assumption. To account
for the changes in the particle population, a balance equation can be included in addition
to the mass, momentum, and energy balances within the contest of MUSIG and iMUSIG
models. This concept is referred to as the Population Balance Model (PBM).

A population balance model can be described by a transport equation reflecting
particles entering or leaving a control volume via several mechanisms. The bubble number
density function, called the population balance equation (PBE), reads [48]:

∂

∂t
n(~x, Vb, t) +

∂

∂z
[n(~x, Vb, t)ub(~x, Vb)] +

∂

∂Vb

[
n(~x, Vb, t)

∂

∂t
Vb(~x, Vb)

]
= S(~x, Vb, t) (63)

where n(~x, Vb, t) is the bubble density distribution function that specifies the probable
number density of bubbles at a given time (t) in the spatial range (d(~x)) about a position ~x
for a bubble volume between Vb and Vb + d(Vb) at time t. Finally, S(~x, Vb, t) is the following
source term:

S(~x, Vb, t) = Sb + Sc + Sph + Sp + Sm + Sr (64)

where Sb, Sc, Sph, Sp, Sm, and Sr are the bubble source/sink terms due to breakup, coales-
cence, phase change, pressure change, mass transfer, and reaction, respectively.

The breakup source term (Sb) reads

Sb =
∫ ∞

v
m(V′b)β(Vb, V′b)g(V′)n(V′b , t)− g(Vb)n(Vb, t) (65)

where the first term is the birth rate of bubbles of volume Vb due to the breakup of bubbles
with volumes larger than Vb, the second term is the death rate of bubbles of volume Vb due
to breakup, m(V′b) is the mean number of daughter bubbles produced by the breakup of a
parent bubble with volume V′b , g(V′b) is the breakage frequency (the fraction of particles of
volume V′b breaking per unit time), and β(Vb, V′b) denotes the daughter distribution factor
of a particle of volume Vb breaking from a parent bubble of volume V′b .

The coalescence source term (Sc) reads

Sc =
1
2

∫ v

0
Γ
(
Vb −V′b , V′b

)
n
(
Vb −V′b , t

)
n
(
V′b , t

)
dV′b − n(Vb, t)

∫ ∞

0
Γ
(
Vb, V′b

)
n
(
V′b , t

)
dVb (66)

where the first term is the birth rate of bubbles of volume Vb due to the coalescence of
bubbles of volume Vb −V′b and V′b , the second term is the death rate of bubbles of volume
Vb due to coalescence with others bubbles, and Γ(Vb, V′b) is the coalescence rate between
bubbles of volume Vb and V′b .

Neglecting the interfacial mass transfer, the reaction contribution, the phase variations,
and the changes due to pressure gradients, the coalescence and breakup phenomena are
the only items of interest. Considering a steady state, it follows that

ub,i
∂ni
∂z

= Si(~x, Vb) = Sc + Sb (67)
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Which can be rewritten in terms of bubble diameter as

ub,i
∂ni
∂z

= Si(~x, db) = Sc + Sb (68)

where Sc and Sb are determined by modelling the breakup and coalescence rates.

3.3.1. Bubble Breakup Phenomena Modelling

The breakup of fluid particles in the dispersed phase depends on the hydrodynamics
of the continuous phase and interface interactions. The phenomenon of rupture can be
expressed as a balance between two opposite effects, namely, the external stresses of the
continuous phase, which attempt to destroy the bubble, and the surface stress of the particle
plus the viscous stress of the fluid inside it, which opposes the deformation of the bubble.
Therefore, breakage is caused by the hydrodynamic conditions in the surrounding liquid
and the properties the bubble itself [49].

The breakage mechanism can be classified into four categories [49] (Figure 11):

1. Turbulent fluctuations and collisions, in which breakage is mainly caused by turbulent
pressure fluctuations along the surface or by particle-eddy collisions. The dominant
external force is the dynamic pressure difference around the bubble, meaning that the
breakage process can be studied as the balance between the dynamic pressure and
surface stresses.

2. Viscous shear stresses, which cause a velocity gradient around the interface that can
deform or break the bubble. In addition, wake effects may be responsible for the
formation of shear stresses. Breakage can be modeled as the balance between external
viscous stresses and surface tension forces as expressed by means of the capillary
number Ca.

3. Shearing-off processes, which occur when small bubbles are sheared off from a large
bubble through erosive breakage.

4. Interfacial instabilities, which arise in the absence of a continuous phase net flow. If a
significant density difference is present, as in the case of a light liquid accelerated into
a heavy fluid, Rayleigh–Taylor instabilities are found; on the other hand, if the density
ratio is close to unity Kelvin–Helmholtz instabilities exist.

In general, the most common causes of breakage are associated with turbulent fluctua-
tions and the other mechanisms are often neglected.

Figure 11. Breakup mechanisms.
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Modelling of breakup phenomena requires definition of the breakage frequency (g)
and daughter size distribution function. Applicable breakup models for bubble columns
are reported in Table 2.

Table 2. Applicable breakup models for simulated bubble column.

Author Breakage Frequency (g) Daughter Size Distribution (β)

Prince and Blanch (1990) [50]

g =∫ db,j

0.2db,j

0.07π4

λε

(
db,j + λε

)2(
d2/3

b,j + λ2/3
ε

)0.5
ε1/3

× exp
(
− 1.18

λ2/3
ε

σ
ρLdb,jε2/3

)
dλε

Uniform

Luo and Svendsen (1996) [51]

g = 1
2
∫ 1

0 0.923(1− αG)n
(

ε
d2

b,j

)1/3

×
∫ 1

ξmin

(1+ξ)2

ξ11/13 exp
(
− 12c f σ

cβρLε2/3d5/3
b,j ξ11/13

)
dξd fbv

with ξ = λε
db

, c f = f 2/3
bv + (1− fbv)

2/3 −
1, fbv =

d3
b,i

d3
b,i+d3

b,j
, cβ = 2

β =
2
∫ 1

ξmin
(1+ξ)2ξ−11/3 exp(−χc)dξ

Vi
∫ 1

0

∫ 1
ξmin

(1+ξ)2ξ−11/3 exp(−χc)dξd fbv

with χc =
12c f σ

cβρ1ε2/3d5/3
b,i ξ11/3

Martïnez and Bazän (1999) [52,53] g = Kgn

√
β′(εdb,j)

2/3−12σ/(ρcdb,j)
db,j

with

β′ = 8.2 [54], Kg = 0.25

β =
[D∗2/3−Λ5/3]

[
(1−D∗3)

2/9−Λ5/3
]

∫ Dmax
D∗min

[D∗2/3−Λ5/3]
[
(1−D∗3)2/9−Λ5/3

]
d(D∗)

with D∗ = db,j
db,i

, Λ = ( 12σ
β′ρL

), β′ = 8.2 [54]

Lehr et al. (2002) [55] g = 0.5
d5/3

b,j ε19/15ρ7/5
L

σ7/5 exp
(
−

√
2σ9/5

ρLd9/5
b,j ε6/5 L3

)
β = 1√

π fbv

exp

− 9
4

[
ln

(
22/5db,j ρ3/5

L ε2/5

σ3

)]2


1+erf
[

3
2 ln
(

21/15db,i ρ3/5
1 ε2/5

σ3/5

)]
db,i and db,j refer to the parent and daughter bubble diameters, respectively [m]; λε is the turbulent eddy size [m].

3.3.2. Bubble Coalescence Phenomena Modelling

According to Chesters (1991) [56], the coalescence process is more complex than
breakup, as it involves interactions of bubbles with the surrounding liquid phase as well
as those between bubbles themselves when they are brought into contact by the external
flow or body forces [48]. Coalescence can be modelled by using empirical or physical
models. The former are much easier to implement in CFD simulations, as they typically
take the form of power law functions with adjustable coefficients. However, because these
models depend on the experimental facility geometrical aspects, the results cannot be
extended to other setups. The latter models attempt to describe the underlying physics
of the phenomenon by identifying specific physical parameters capable of detailing the
bubble collision mechanism. In this approach, the coalescence kernel is determined as the
product of the collision frequency (Γ(db, d′b)) and coalescence efficiency λ(db, d′b):

Γ(db,i, db,j) = h(db,i, db,j)λ(db,i, db,j) (69)

where db,i and db,j are the diameters of the two colliding bubbles.
The collision frequency represents the number of collisions between bubbles per unit

of time. For a turbulent bubbly flow, there are five mechanisms of collision (Figure 12):

1. Turbulence-induced collisions occur as a result of the random motion of bubbles
caused by turbulent fluctuations.

2. Viscous shear-induced collisions are generated by global liquid velocity gradients,
meaning that bubbles in a location of high liquid velocity may collide with those in a
region of low liquid velocity.
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3. Eddy-capture, in which collision events are produced by the shear rate of the flow in
the turbulent eddy.

4. Bouyancy-induced collisions, in which collisions may occur because bubbles of differ-
ent size have different rising velocities.

5. Wake entrainment collisions, which may result when bubbles are accelerated by the
wake region behind a large spherical-cap bubble.

Figure 12. Coalescence mechanisms.

Thus, the overall rate of collision events is determined by the sum of the effects of
all the listed mechanisms. Typically, only turbulence-induced collisions are assumed to
be predominant. The others are frequently insignificant except at very high superficial
gas velocities (where, for example, wake entrainment effects cannot be ignored due to the
formation of large spherical-cap bubbles).

Bubble collisions do not always lead to coalescence, as bubbles may bounce off each
other or separate after the collision. Hence, the efficiency term (h(db, d′b)) is introduced in
the definition of the coalescence kernel. Three models for calculation of the coalescence
efficiency have been introduced:

1. Film drainage model: first proposed by Shinnar and Church (1960) [57], this is a
widely used model of coalescence efficiency. When two bubbles collide, a thin liquid
film is trapped between their surfaces and is progressively drained. If the contact
time is sufficiently high, the liquid film reaches a minimum thickness, then ruptures,
causing coalescence.

2. Energy model: first proposed by Howarth (1964) [58], this model is based on the
concept of collision energy, in which a higher collision energy indicating a higher
probability of coalescence.

3. Critical approach velocity model: in this model, collisions result in coalescence phe-
nomena if the approach velocity of the bubbles exceeds a certain critical value; other-
wise, they bump into or bounce off of each other, and do not coalesce.

Several different coalescence frequency and efficiency models have been proposed; the
ones most commonly used in bubble column simulations are presented in Table 3.
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Table 3. Applicable coalescence models for bubble column simulations.

Author Collision Frequency (h) Collision Efficiency (λ)

Coulaloglou and
Tavlarides (1977) [59] h = ch

ε1/3

1+αG

(
db,i + db,j

)2(
d2/3

b,i + d2/3
b,j

)0.5
λ = exp

{
−cλ

µLρLε

σ2(1+αG)
3

(
db,idb,j

db,i+db,j

)4
}

Prince and Blanch
(1990) [50] h = 0.089πε1/3

(
db,i + db,j

)2(
d2/3

b,i + d2/3
b,j

)0.5
λ = exp

[
− r5/6

eq ρ0.5
L ε1/3

4σ0.5 ln
(

h0
h f

)]

Chesters (1991) [60] h = 0.618
(

db,i
2 +

db,j
2

)3√
ε/ν

λ = exp
{
−cλ

(
We
2

)1/2
}

with We =
ρc(εdij)

2/3
dij

2σ ,

dij =
[

1
2

(
1

db,i
+ 1

db,j

)]−1

Luo (1993) [61] h = π
4

√
2
(

db,i + db,j

)2
ε1/3

(
d2/3

b,i + d2/3
b,j

)0.5 λ = exp

−cλ

0.75

(
1+
(

db,i
db,j

)2
)

(
ρG
ρL

+CVM

)
(

1+
(

db,i
db,j

)3
)0.5

(
1+

db,i
db,j

)3 We0.5
ij


with Weij =

ρLdb

(
u2

bi+u2
bj

)
σ , ub =

(
2.14σ
ρLdb

+ 0.505gdb

)0.5

db,i and db,j refer to the diameter of colliding bubbles; h0 is the initial liquid film thickness [m]; h f is the critical
liquid film thickness [m].

3.3.3. Solution Methods

Many numerical schemes are available in the literature to solve the population balance
in Equation (63). These can be classified into four main categories:

1. Class (or Sectional) Method (CM): the internal coordinate domain is divided into a
finite number of intervals (or bins), transforming the population balance equation into
a set of balance equations in the physical domain. Any coalescence and/or breakup
event is accompanied by the migration of particles from one class to the adjoining
classes. The advantages of this method are its robust numerics and that it computes
the Particle Size Distribution directly [62].

2. Monte Carlo Method: this method solves the population balance equation based
on the statistical ensemble approach, accurately tracking particulate changes in a
multidimensional system. Nevertheless, the method accuracy strongly depends on
the number of simulation particles, and requires an extensive computational time
to track large numbers of particles. This makes the Monte Carlo method poorly
compatible with the conceptual framework of Computational Fluid Dynamics [47].

3. Standard Method of Moments (SMM): the population balance equation is turned into
a set of transport equations for the moment of the particle size distribution. The pri-
mary advantage is numerical economy, as it is sufficient to solve a limited number of
moment equations. Mathematically, the transformation from the space of particulate
size distribution to the space of moments is extremely rigorous, and fractional mo-
ments, representing the Sauter mean diameter of the bubbles, present a serious closure
problem [47]. This closure constraint can be overcome by resorting to a Quadrature
Method of Moments (QMOM) approach.

4. Quadrature Method of Moments (QMOM): first suggested by McGraw (1997) [63] for
modelling aerosol and coagulation problems, QMOM was later applied by Marchi-
sio et al. (2003) [64] for solving the population balance equation, becoming an at-
tractive alternative. Compared to the SMM method, this approach solves only the
transport equations of the low-order moments; however, it is able to overcome the
closure problem of the SMM method [64]. With the QMOM, the integral terms in the
momentum transport equations are approximated by employing an N-node Gaus-
sian quadrature formula. This quadrature approximation requires knowledge of N
weights (ωi) and N nodes of abscissas Li, and determines a sequence of polynomials
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orthogonal to the unknown number density function. The functional form (for a
univariate problem with φ as internal coordinate) reads as follows:

∫ ∞

0
f (φ)n(φ)dφ ≈

N

∑
i=1

f (Li)wi (70)

where the weights (ωi) and abscissas (Li) are determined through the Product–
Difference (PD) algorithm from the lower-order moments [64]. When the weights
and abscissas are known, the source term due to coalescence and breakup can be
calculated and the transport equation for moments can be solved. Finally, starting
from the moments of the distribution, it is possible to solve the inverse problem of
reconstructing the bubble size distribution [62].
When dealing with a multivariate population balance equation, for which the product–
difference algorithm can not be applied, other extensions of QMOM are available,
such as the Conditional Quadrature Method of Moments (CQMOM) or the Direct
Quadrature Methods of Moments (DQMOM). In DQMOM, the transport equations are
directly solved for the weights and nodes of the quadrature approximation, whereas
CQMOM represents the multivariate extension of QMOM. Moreover, in CQMOM
closure is achieved by means of multivariate quadrature approximation, and the
transport equations for the moments of the distributions are solved [65].

From the above discussion, it is clear that for univariate problems (which is the
case for bubble columns when the mass transfer is not modelled) the class method and
quadrature method of moments are the only viable candidates for solving the population
balance equation.

In the class method, a high number of bubble classes (i.e., 12–18) are required to de-
scribe the evolution of the particle population accurately, which incurs high computational
costs. On the contrary, in the quadrature method of moments approach it is sufficient to
solve a limited number of moments (i.e., 4–8), yielding a reduction in the dimensionality
of the problem compared to the class method, in turn leading to lower computational
costs [62].

3.4. Turbulence Modelling

Turbulence modelling in bubbly flows has predominant importance due to its sig-
nificant influence on the local distribution of the dispersed phase and in determining the
coalescence and breakage phenomena. The description of the effects of turbulent fluctua-
tions of velocities and other scalar quantities in multiphase simulations is complex, as the
number of terms to be modelled in the momentum equations is larger compared to the
case of single-phase flows. Moreover, turbulent mixing occurs in bubble columns over a
wide range of length and time scales [66]; the largest turbulent scales are of the same order
of magnitude as the characteristic scales of the mean flow, and depend on the geometry
and boundary conditions, the smaller turbulence scales depend on bubble dynamics and
are proportional to the bubble diameter, and the smallest scales are associated with the
Kolgomorov scale and are responsible for the dissipation of the turbulent kinetic energy.
Considering the importance of turbulence, a variety of numerical methods have been
developed to address this issue, which can be grouped into the three following categories:
(1) Reynolds-Averaged Navier–Stokes (RANS) models; (2) Large Eddy Simulation (LES);
and (3) Direct Numerical Simulation (DNS).

In RANS turbulence models, attention is focused on the mean flow characteristics;
the instantaneous flow equations are time-averaged through a Reynolds decomposition
approach applied to both pressure and velocity components in the continuity and momen-
tum equations. Six extra terms involving the products of fluctuating velocity components,
called Reynolds stresses, appear after performing this time-averaging process. Appropriate
closure relations, namely, k− ε and k−ω, are required to solve the system of mean flow
equations, making use of the Boussinesq hypothesis based on the assumption of isotropic
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turbulence. This approximation considers the Reynolds stresses proportional to the mean
rates of deformation of the fluid elements. The generic component of the viscous stress
tensor τ for a Newtonian fluid results in the following expression:

τij = −ρu′ıu′ = µt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
− 2

3
ρkδij (71)

where δij is the Kronecker delta and k = 1
2

(
u′2 + v′2 + w′2

)
is the turbulent kinetic energy

per unit mass. The first term on the right-hand side of Equation (71) contains the turbulent
eddy viscosity µk. For k− ε models, the turbulent viscosity is provided by

µt = ρCµ
k2

ε
(72)

where Cµ is a dimensionless constant, often taken as 0.09. With RANS models, the com-
putational resources needed for reasonably accurate flow simulations are modest, making
them the mainstay of many engineering flow calculations. Multiphase turbulence RANS
models are derived directly from their single phase equivalents.

The isotropic turbulence assumption for the core of the flow in RANS models is not
strictly satisfied for bubble columns, as the velocity fluctuations in the gravity direction
are normally twice those in the other directions [67]. As a result, the turbulence generated
by the rising bubbles is mainly anisotropic. RANS models fail to exactly represent the
directional effects of the Reynolds stress field; the Reynolds Stress Model (RSM) can be
used to address these problems adequately, as it incorporates anisotropy by solving the
transport equation of each Reynolds stress component. This increases the computer storage
and run time, and as a result has found little success in the simulation of bubbly flows.
Nonetheless, RSM seems a promising tool to provide more realistic numerical prediction
of turbulence quantities that can be used as inputs in bubble coalescence and breakage
models [68,69].

A further option is the use of Large Eddy Simulation (LES), an approach that uses an
unsteady flow computation to resolve only the turbulent structures that have a length scale
larger than a certain cutoff, then describes the smaller eddies and their effects on the larger
scales by means of Sub-Grid-Scale (SGS) models. By resolving only large portions of the
turbulent motion, LES appears to be more suitable for accounting for anisotropic structures
in bubble columns; however, this comes at the cost of a much larger volume of calculations
compared to RANS methods. Another issue is selection of the proper mesh size, which
when using LES should be bounded within a certain range in order to obtain a correct
filter cutoff width; a very dense grid is commonly required. Thus, LES may be unable to
consistently represent the correct sub-grid-scale stress for various flow situation [46].

DNS does not include any turbulence modelling, and directly resolves the instanta-
neous Navier–Stokes equations while considering all turbulence scales of motion and even
the fastest fluctuations. Unfortunately, its enormous computational and memory storage
requirements make its applicability to industrial-scale reactors unfeasible.

Bubble-Induced Turbulence

Experimental observations have found that the sources of the bulk liquid turbulence
can be divided into two categories, namely, (1) Shear-Induced Turbulence (SIT) and (2)
Bubble-Induced Turbulence (BIT). The former is independent of the bubble size, whereas
the presence of gaseous bubbles generates the latter. When a bubble rises in a pool of liquid
in a turbulent flow regime, a portion of its pressure energy is converted into liquid phase
turbulence, then into internal energy at the level of the Kolmogorov scale [70].

Within the context of the RANS k − ε and k − ω models, it is common practice to
account for the influence of the dispersed phase on the liquid phase turbulence by adding
extra source terms (Sk,L, Sε,L, or Sω,L) to the transport equations for the turbulence quantities.
A plausible approximation is that all energy lost by bubbles due to the drag force is
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converted to turbulent kinetic energy (k) in the wake of the bubble [71]. Hence, the k-
source becomes

Sk,L = ~FD,L→G|~uG − ~uL| (73)

The ε-equation source term is obtained by dividing the k-equation source term by a
characteristic time scale (τp):

Sε,L = CεB
Sk,L

τp
(74)

The ε-source term can be transformed into into an equivalent ω-source term as follows:

Sω,L =
1

CµkL
Sε,L −

ωL
kL

Sk,L (75)

Modelling of the time scale (τp) proceeds largely based on dimensional analysis [71].
The time scale factors commonly used in numerical simulation of bubble columns are
presented in Table 4.

Table 4. Time scale factors commonly used in numerical simulation of bubble columns.

Author 1/τp CεB

Morel (1997) [72] ∝
(
εL/d2

b
)1/3 2

Troshko et al. (2001) [73] ∝ | ~uG − ~uL|/db 0.45
Pfleger and Becker (2001) [74] ∝ εL/kL 1.44

Politano et al. (2003) [75] ∝ εL/kL 1.92
Rzehak et al. (2012) [76] ∝

√
kL/db 2

Unlike the model presented in Table 4, Sato and Sekoguchi (1975) [77] did not explicitly
add source terms in the turbulence transport equations, rather, they tried to incorporate the
effects of bubble-induced turbulence in the turbulent viscosity, proposing the relation

νL = Cµ
k2

L
εL

+ 0.6αGdb|~uG − ~uL|. (76)

4. Literature Survey

Tables 5–8 collect different studies regarding CFD simulations of bubble columns vali-
dated with experimental data; Tables 5–7 refer to the operating conditions, physical settings,
and numerical settings, respectively. Conversely, Table 8 focuses on model performance.
To derive a consistent comparison between different studies, the values in Table 8 have
been computed by extracting published values using a consistent procedure. The CFD
accuracy is assessed by computing the relative error (δ) between numerical (ωCFD) and
experimental (ωEXP) data, as follows:

δ =

∣∣ωCFD −ωExp
∣∣

ωExp
(77)

When local validation wis performed with N local quantities (i.e., local void fraction
profile and local liquid velocity profile), the error (δ) is computed as follows:

δ =
1
N

N

∑
i=1

∣∣ωCFD,i −ωExp,i
∣∣

ωExp,i
(78)

Pfleger and Becker (2001) [74] performed 3D transient simulations of a 0.288-m inner di-
ameter bubble column operating in the homogeneous flow regime using a mono-dispersed
approach. Concerning the interfacial forces, they considered only the drag force with a
constant drag coefficient CD = 0.44. The standard k− ε model was used for turbulence in
the liquid phase. Their main aim was to study the effect of BIT on the correctness of CFD
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predictions. The local liquid velocity and local void fraction showed the positive impact
of the BIT model, with δ = 30.29% (δ = 51.75% without BIT) and δ = 4.21% (δ = 11.14%
without BIT), respectively. The simulation results, including BIT or not, were found to
over-predict the global gas holdup, which the authors attributed to the simplified gas
inlet modelling.

Chen et al. (2005) [78] carried out 2D axisymmetric transient simulations in a 0.19-m
inner diameter bubble column operating in the heterogeneous flow regime. The main focus
was studying the influence of different coalescence and breakup models. In particular, they
compared the coalescence efficiency of Prince and Blanch (1990) [50], Chesters (1991) [60],
and Luo (1993) [61] and the breakup kernels of Luo and Svendsen (1996) [51] and Martinez
and Bazan (1999) [52,53]. The authors found that different bubble breakup and coalescence
closures did not significantly impact the simulation results. However, the best agreement
with the experimental values was provided by the breakup model of Luo and Svendsen
(1996) [51] coupled with the coalescence efficiency of Prince and Blanch (1990) [50] concern-
ing the local void fraction (δ = 22.74%) and the breakup model of Martinez–Bazan [52,53]
coupled with the coalescence efficiency of Luo (1993) [61] regarding the local liquid velocity
(δ = 51.44%).

Ekambara et al. (2010) [79] compared several different turbulence models: standard
k − ω, standard k − ε, k − ε RNG, RSM, and LES. They considered a mono-dispersed
approach including all the non-drag forces; turbulent dispersion was considered only
for the RANS methods. Concerning the local void fraction profile, LES provided the
best agreement with the experimental data in the near-sparger region (δLES = 18%,
δRSM = 29.55%, δk−εRNG = 31.44%, δk−ε = 34% and δk−ω = 36.24%), where the flow
is more anisotropic. The same was found for the local liquid velocity (δLES = 32.08%,
δRSM = 53.59%, δk−εRNG = 57.06%, δk−ε = 46.05%, and δk−ω = 50.65%). No remarkable
differences were found in the fully-developed region, indicating that the RANS approaches
perform well when the objective is to understand the steady and time-averaged features of
the flow.

Ziegenhein et al. (2013) [45] simulated a cylindrical bubble column operating in the
homogeneous flow regime considering mono-dispersed and iMUSIG (two bubble classes
without coalescence and breakup) approaches. Moreover, they analysed the influence of
non-drag forces, with the exception of the virtual mass, which was not included in the
simulations. Considering a superficial gas velocity of 0.15 cm/s, the mono-dispersed and
poly-dispersed approaches with non-drag forces performed similarly, with δ = 22.02%
and δ = 20.89%, respectively. The poly-disperse approach neglecting the non-drag force,
despite the error being slightly lower than the other cases (δ = 18.79%), predicted an overly
strong centre-picked void fraction profile. When increasing the superficial gas velocity,
the poly-disperse models with and without non-drag forces provided similar results (at
UG = 0.5 cm/s, δwithout NDF = 32.41%, and δwith NDF = 15.56%, respectively). How-
ever, the model including the non-drag forces performed better near the walls; conversely,
neglecting the non-drag forces resulted in better predicting the void fraction in the col-
umn centre.

Ziegenhein et al. (2013) [71] carried out transient simulations considering non-drag
forces and a swarm factor, fixed poly-dispersity (modelled using the iMUSIG model), and
BIT. In particular, they compared the BIT models of Morel (1997) [72], Troshco (2001) [73],
Politano (2003) [75], Rezehak (2012) [76], and Sato (1975) [77]. Regarding the void fraction
profile at UG = 0.3 cm/s, the results provided by the mono-dispersed model without
swarm factor matched very well with the experimental data (δ = 4.19%), and the inclusion
of BIT did not improve model prediction. When increasing the superficial gas velocity to
UG = 1.3 cm/s, the mono-dispersed treatment was not able to reproduce the gradient of
the gas volume fraction near the wall, which was better reproduced by the poly-dispersed
treatment (δMONO = 14.42% and δPOLY = 6.48%; BIT of Rzehak (2013) [76]). The same
was found for the superficial liquid velocity (δMONO = 44.27% and δPOLY = 30.20%; BIT
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of Rzehak (2013) [76]). Regarding the different BIT models, the Rzehak (2013) [76]) model
performed better than the others.

Xu et al. (2013) [80] simulated a large-diameter bubble column operating in the hetero-
geneous flow regime using mono-dispersed, MUSIG, and iMUSIG approaches. In the latter
two cases, coalescence and breakup were considered by applying the coalescence model
of Luo (1993) [61] and the breakup kernel of Luo and Svendesen (1996) [51]. Moreover,
they studied the influence of the lift force by adopting the correlation of Tomiyama et al.
(2002) [32]. The Shiller and Naumann (1933) [14] drag coefficient was used in the single-size
model, and the Ishii and Zuber (1979) [17] drag coefficient was used for the MUSIG and
iMUSIG simulations. None of the mono-dispersed, MUSIG, and iMUSIG models neglect-
ing the lift force were able to reproduce the radial distribution of the local gas holdup,
with δ = 21%, δ = 21.44%, and δ = 21.53%, respectively. When the lift force was included,
the best agreement with the experimental data was provided by the iMUSIG model with
the drag coefficient of Ishii and Zuber (1979) [17] (δ = 9.68%). No remarkable differences
between the models were found in predicting the local liquid velocity profile.

McCLure et al. (2013) [81], simulating a cylindrical bubble column with a mono-
disperse approach, investigated the influence of the mean bubble diameter, lift force,
and BIT. Considering the void fraction profile at a superficial gas velocity of UG = 8 cm/s
and a bubble diameter of db = 4 mm, the inclusion of the lift force resulted in a bet-
ter agreement with the experimental data (δLIFT = 15.37% and δNO LIFT = 23.31%).
The lift force slightly influenced the results when db = 6 mm (δLIFT = 20.46% and
δNO LIFT = 22.29%). Regarding the BIT, the CFD prediction of the void fraction profile was
in reasonable agreement with experimental data when the BIT was incorporated into the
model (δBIT = 20.80%, δNO BIT = 75.80%).

Masood at al. (2014) [82] studied the hydrodynamics of a square bubble column and
tested different drag closures. In particular, they considered the models of Shiller and
Naumann (1933) [14], Grace et al. (1976) [16], and Ishii and Zuber (1979) [17], with a
constant drag coefficient of CD = 0.44. Turbulence was modelled using the k − ε RNG
model, including BIT of Sato (1975) [77]. The constant drag coefficient was the worst in
predicting the global gas holdup curve (δ = 22.75%), followed by the simplistic correlation
proposed by Schiller and Naumann (1933) [14] (δ = 14.76%). The Ishii and Zuber (1979) [17]
model was found to be slightly superior to that of Grace et al. (1976) [16], with δ = 6.18%
and δ = 9.45%, respectively.

Liu et al. (2014) [83] performed 2D-axisymmetric simulations of a bubble column
operating in the heterogeneous flow regime with a MUSIG model considering coalescence
and breakup. They included only the drag (Tomiyama et al. (1998) [19] model with the
swarm factor of Ishii and Zuber (1979) [17]) and lift forces (Tomiyama et al. (2002) [32]
and Behzadi et al. (2004) [37] models); the other forces were neglected. For the turbulence,
they compared the standard k− ε and RSM models. The authors performed a sensitivity
analysis on the number of bubble classes through 10 and 20 classes for the k− ε and RSM
models with BIT. They found that increasing the number of classes did not significantly
increase agreement with the experimental data; for example, concerning the void fraction
profile and considering the k− ε turbulence model, δ = 8.66% and δ = 5.17% for 10 classes
and 20 classes, respectively. However, much more computational time was needed when
increasing the number of bubble classes to 20. Regarding the comparison between the
lift correlations, a much better agreement with the experimental void fraction profile was
achieved using the Tomiyama et al. (2002) [32] lift model. For example, considering the
RSM turbulence model, δTOMIYAMA = 9.60% and δBEHZADI = 27.70%. Such an increment
in the relative error can be explained by the fact that the model of Behzadi et al. (2004) [37]
does not predict the change in the sign of the lift coefficient, resulting in a flat profile
of the void fraction. No remarkable differences were found between the k− ε and RSM
turbulence models.

Syed at al. (2017) [84] carried out 2D-axisymmetric simulations of a bubble column
operating in the homogenous flow regime. They performed a sensitivity analysis on the Luo
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(1993) [61] coalescence kernel by changing the coalescence parameter cλ; see Table 3 from
0.1 to 1.1. Moreover, they compared the breakup kernels of Luo and Svendsen (1996) [51]
and Lehr et al. (2002) [55]. The results showed that the radial profiles of void fraction and
local liquid velocity were significantly affected by these parameters. Considering the local
void fraction profile at UG = 0.38 cm/s and the Luo and Svendsen (1996) [51] breakup
kernel, δc0=0.1 = 10.5% and δc0=1.1 = 23.14%; consequently, a lower coalescence parameter
(cλ) led to better prediction of the experimental data. The same was found for the global
gas holdup and local liquid velocity profile. Comparing the two breakup models, it was
found that the Lehr et al. (2002) [55] model improved prediction of the local void fraction
as compared to the Luo and Svendsen (1996) [51] model (δcλ=0.3,LUO and SVENDSEN = 13.3%
and δcλ=0.3,LEHR = 3.65%). Moreover, when the breakup model of Lehr et al. (2002) [55] was
considered, the results regarding the local void fraction profiles were slightly influenced
by cλ; on the contrary, the authors found that a decrease in the coalescence parameter
negatively influenced the prediction of the local liquid velocity profiles.

Gemello et al. (2018) [30] proposed an interesting modification of the Simonnet et al.
(2008) [27] swarm factor that was suitable for very high volume fractions while avoiding
stability problems encountered in the original formulation. The results obtained with the
proposed swarm model matched very well with the experimental data. Considering the gas
holdup, the relative error was δ = 2.83% (δ = 29.82% with the Simonnet et al. (2008) [27]
swarm factor). The authors obtained good prediction of the local void and liquid velocity
profiles, with a relative error at UG = 16 cm/s of δ = 4.07% and δ = 25.18%, respectively.

Zhang et al. (2020) [85] studied the influence of non-drag forces and BIT by simulating
a cylindrical bubble column operating in the heterogeneous flow regime with a MUSIG
model coupled with the coalescence kernel of Luo (1993) [61] and the breakup model of Luo
and Svendsen (1996) [51]. Considering the local void fraction profile, good agreement with
the experimental data was obtained considering all the non-drag forces and BIT (δ = 8.07%).
When the lift force was not considered, the relative error increased to δ = 42.69%, indicating
that the lift force could not be neglected. Furthermore, neglecting the turbulent dispersion
and wall lubrication forces reduced the model’s predictive capacity, increasing the relative
error with respect to the experimental data ( δ = 23.26% and δ = 12.69%, respectively). No
evident differences were found when neglecting the BIT and virtual mass force.

As can be observed from Table 8, the accuracy of CFD models has been determined
by comparing the numerical results against global gas holdup, local void fraction, and
in a few cases the local liquid velocity, without providing any information about model
performance with respect to turbulent quantities. Indeed, measuring the local liquid
velocity and turbulence in large-scale bubble columns with optical methods is complex,
and is usually limited to low gas holdups and thin geometries. To overcome this issue,
Deen et al. (2000) [86] used Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry
(LDA) to study turbulent quantities in a square bubble column. Similarly, Ziegenhein et al.
(2019) [87] designed a Particle Shadowgraph Velocimetry (PSV) technique and tested it in a
large-diameter bubble column to provide data for CFD model validation.

The main conclusion that emerges from the above literature survey is that several
different methods have been applied when dealing with the numerical simulation of two-
phase bubble columns. As can be noted from Tables 2 and 3, different strategies in terms
of physical models, interfacial momentum exchange, turbulence models, and numerical
settings have been adopted, with the result that while certain models perform better than
others, no general conclusion can be reached. Moreover, available numerical studies are of-
ten limited to air–water systems, with the consequence that a model which has outstanding
performance on air–water systems may not be suitable in other cases. Consequently, fully
predictive CFD models for bubble columns are far from being developed, and more effort
must be spent in order to overcome the lack of knowledge regarding numerical simulation
of bubble columns.
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Table 5. Literature survey: column characteristics and operating conditions.

Ref. Year Code D * [m] Sparger AR [-] Fluids UG [m/s] Flow Regime

[74] 2001 Ansys CFX-4.3 0.288
Ring **

d0 = 0.7 mm 8.68 Air/water 0.5 Homogeneous

[78] 2005 Ansys FLUENT 0.19
Perforate plate

d0 = 3.3 mm 5.05 Air/water 12 Heterogeneous

[46] 2008 Ansys CFX-10.0 0.60 Perforated plate *** - Air/water 1.2→ 9.6
Homogeneous→

heterogeneous

[79] 2010 Ansys CFX-10.0 0.15
Perforated plate ***

d0 = 1.96 mm 6 Air/water 0.2 Homogeneous

[45] 2013 Ansys CFX-13.0 0.288
Perforate plate

d0 = 0.7 mm 8.68 Air/water 0.15→ 1 Homogeneous

[80] 2013 Ansys FLUENT-14.0 0.44
Perforate plate **

d0 = 0.77 mm 4 Air/water 10 Heterogeneous

[81] 2013 Ansys CFX-14.5 0.19
Perforated plate ***

d0 = 1 mm 2.63 Air/water 8→ 12 Heterogeneous

[71] 2014 Ansys CFX-13.0 0.24 × 0.72 Needle ** 5.08 Air/water 0.3→ 1.3 Homogeneous
[82] 2014 Ansys CFX-14.0 0.15 × 0.15 Full opening ** 2.74 Air/water 5→ 12

[83] 2014 OpenFOAM 0.2
Perforate plate **

d0 = 1.2 mm 5 Air/water 10 Heterogeneous

[88] 2014 Ansys CFX-14.5 0.24 × 0.72 Needle ** 5.08 Air/water 13

[89] 2016 Ansys FLUENT-14.5 0.4 Perforate plate ** 4 Air/water 3→ 25 Heterogeneous

[84] 2017 Ansys FLUENT-17.2 0.138
Perforate plate

d0 = 4 mm 6.52 Air/water 19→ 38 Heterogeneous

[90] 2017
Ansys CFX (1)

Ansys FLUENT (2) 0.39
Tree **

d0 = 0.5 mm 5.13 Air/water 14→ 28 Heterogeneous

[91] 2018 Ansys CFX-15.0 0.156
Perforate plate **

d0 = 1 mm 1.9→ 5.11 Air/water 2.1 Homogeneous

[30] 2018 Ansys FLUENT-15.0 0.40
Perforate plate **

d0 = 2 mm 4 Air/water 0.03→ 35
Homogeneous→

heterogeneous

[85] 2020 Ansys FLUENT-17.2 0.15
Perforate plate **

d0 = 1.5 mm - Air/water 23 Heterogeneous

* In the case of a non-cylindrical column, depth and width are provided. ** Modelled as a uniform inlet.
*** Modelled with mass source points
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Table 6. Literature survey: model description.

Ref. Dispersed Phase
Model

Coalescence Model

Breakup Model

Momentum Exchange

Frequency Efficiency Drag Swarm
Factor Lift Turbulent

Dispersion
Wall

lubrication
Virtual
Mass

[74] Mono-dispersed No No No CD = 0.44 No No No No No

[78] MUSIG 16 classes
Prince and

Blanch

Chesters (A)
Luo (B)

Prince and
Blanch (C)

Luo and Svendsen (1)
Martinez-Bazan (2)

Schiller and
Naumann

No No No No No

[46] Mono-dispersed No No No

Schiller and
Naumann (A)

Grace (B)
Ishii and Zuber

sphere (C)
Ishii and Zuber

ellipse (D)
Grevskott (E)

White (F)

No Tomiyama Lopez No No

[79] Mono-dispersed No No No Ishii and Zuber No Tomiyama
Lopez

(only for
RANS)

Antal -

[45]
Mono-dispersed (A)
iMUSIG 2 classes (B) No No No Ishii and Zuber No Tomiyama Burns Hosokawa No

[71]
Mono-dispersed (1)
iMUSIG 2 classes (2) No No No Ishii and Zuber

No (α)
Riboux (β) Tomiyama Burns Hosokawa No

[80]
Mono-dispersed (A)

MUSIG (B)
iMUSIG (C)

Luo Luo Luo and Svendsen Shiller and
Naumann (1)

No
Tomiyama (α)

No (β) No No No

[81]
Mono-dispersed

db = 4 mm (A)
db = 6 mm (B)

No No No Grace Simonnet
Tomiyama (1)

No (2) Burns No No
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Table 6. Cont.

Ref. Dispersed Phase
Model

Coalescence Model

Breakup Model

Momentum Exchange

Frequency Efficiency Drag Swarm
Factor Lift Turbulent

Dispersion
Wall

lubrication
Virtual
Mass

[82] Mono-dispersed No No No

Schiller and
Naumann (A)

Grace (B)
Ishii and Zuber (C)

CD = 0.44 (D)

No CL = 0.5 No No No

[83]
MUSIG 10 classes (A)
MUSIG 20 classes (B)

Prince and
Blanch Luo Luo and Svendsen Tomiyama

Ishii and
Zuber

Tomiyama (1)
Behzadi (2) Burns No No

[88] iMUSIG 2 classes No No No Ishii and Zuber No Tomiyama Burn Hosokawa CVM = 0.5

[89] Mono-dispersed No No No
Shiller and

Naumann (A)
Tomiyama (B)

Simonnet (A)
Simonnet * (B)

No (C)
No No No No

[84] MUSIG 14 classes

Luo
C0 = 0.1 (A)
C0 = 0.2 (B)
C0 = 0.3 (C)
C0 = 0.5 (D)
C0 = 0.9 (E)
C0 = 1.1 (F)

Coulaloglou and
Tavlarides

Luo and Svendsen (1)
Lehr (2) Ishii and Zuber No Tomiyama

Simonin and
Viollet Antal No

[90] Mono-dispersed No No No Grace No No Burns No No

[91] Mono-dispersed No No No Ishii and Zuber No Tomiyama Lopez Antal CL = 0.5

[30] Mono-dispersed No No No Tomiyama

No (A)
Simonnet (B)

McClure, 2014 (C)
McClure, 2017b (D)

Gemello (E)

No No No No

[85] MUSIG Luo Luo Luo and Svendsen Ishii and Zuber No Tomiyama Burns Frank CVM = 0.25

* Modified.
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Table 7. Literature survey: numerical settings.

Ref.
Turbulence Modelling

BIT
Numerical Aspects

Geometry Mesh Size
Continuous Phase Dispersed Phase P-V Coupling Spatial Discretization Time Discretization

[74] k− ε No Pfleger and Becker (1)
No (2)

SIMPLEC - - 3D cylindrical
6150 (A)

12,300 (B)
62,400 (C)

[78] k− ε No - - - - 2D axisymmetric 36,000

[46] k− ε No Sato SIMPLE - - 3D cylindrical 90,000

[79]

k−ω (A)
k− ε (B)

k− ε RNG (C)
RSM (D)
LES (E)

No Sato - Second-order implicit First-order implicit 3D cylindrical 52,330

[45] k−ω SST No - - - - 3D cylindrical 30,000

[71] k−ω No

Rzehak (A)
No (B)

Sato (C)
Morel (D)

Troshco (E)
Politano (F)

Politano varied (E)

- - Second-order implicit 3D rectangular 200,000

[80] k− ε RNG No - -
Volume fraction: QUICK

Others: second-order upwind - 3D cylindrical 67,392

[81] k− ε No Pfleger and Becker (α)
NO (β)

- High resolution schemes Second-order implicit 3D cylindrical 58,800

[82] k− ε RNG No Sato - - - 3D rectangular 46,080

[83]
k− ε (α)
RSM (β)

k− ε (α)
RSM (β) Sato PISO - - 2D axisymmetric -

[88] k−ω SST No
Rzehak (A)

Sato (B)
No (C)

- High resolution schemes second-order implicit 3D rectangular 200,000

[92] k− ε RNG k− ε RNG - SIMPLE - - 3D cylindrical 342,230
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Table 7. Cont.

Ref.
Turbulence Modelling

BIT
Numerical Aspects

Geometry Mesh Size
Continuous Phase Dispersed Phase P-V Coupling Spatial Discretization Time Discretization

[89] k− ε RNG No No - High resolution schemes - 3D cylindrical

[84] Mixture k− ε RNG No Coupled

Continuity: QUICK
Momentum: second-order upwind
Turbulence: second-order upwind

PBM: second-order upwind

Second-order implicit 2D axisymmetric 10,422

[78] k− ε No -

Ansys CFX:
coupled

Ansys FLUENT:
PC-SIMPLE
with NITA

Ansys CFX:
Turbulence: first-order

Others: second-order bounded
Ansys FLUENT:

Momentum: QUICK
Volume fraction: QUICK

Scalar: second-order upwind
Turbulence: first-order upwind

Ansys CFX:
second-order implicit

Ansys FLUENT:
first-order implicit

3D cylindrical 36,000

[91] k− ε No Sato SIMPLE Second-order upwind - 3D cylindrical 605,802

[30] k− ε RNG No - PC-SIMPLE

Momentum: QUICK
Volume fraction: QUICK

Scalar: second-order upwind
Turbulence: first-order upwind

First-order implicit 3D cylindrical 40,000

-: information not provided.
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Table 8. Literature survey: model performance.

Ref. Bench-
Mark

Errors [%]

Gas Holdup Local Void Fraction Local Liquid Velocity

[74] [74]

(1B) 39.73
(2A) 28.77
(2B) 17.12
(2C) 7.53

(1B) 4.21
(2A) 12.21
(2B) 11.14
(2C) 13.36

(1B) 30.79
(2A) 38.62
(2B) 51.75
(2C) 64.63

[78] [93]
-

(1A) 28.01
(1B) 30.47
(1C) 22.74
(2B) 26.04

(1A) 61.61
(1B) 59.99
(1C) 53.01
(2B) 51.44

[46] [94]

(A) 21.12
(B) 24.57
(C) 17.21
(D) 15.65
(E) 22.84
(F) 6.41

Evaluated at UG = 1.2 cm/s:
(D) 4.40
(E) 4.19
(G) 5.96

Evaluated at UG = 9.6 cm/s:
(D) 12.53
(E) 10.67
(G) 5.18

Centerline values:
(A) 15.61

(B) 33
(C) 25.52
(D) 10.85
(E) 16.78
(F) 15.56
(G) 1.16

[79] [95] -

Near sparger region:
(A) 36.24

(B) 34
(C) 31.44
(D) 29.55

(E) 18
Fully developed region:

(A) 17.84
(B) 17.72
(C) 14.17
(D) 12.69
(E) 12.67

Near sparger region:
(A) 50.65
(B) 46.05
(C) 57.06
(D) 53.59
(E) 32.08

Fully developed region:
(A) 17.04
(B) 19.64
(C) 15.77
(D) 18.17
(E) 18.48

[45] [74]

Without NDF:
(B) 26.65

With NDF:
(A) 10.38
(B) 9.46

Without NDF
Evaluated at UG = 0.15 cm/s:

(B) 18.79
Evaluated at UG = 0.5 cm/s:

(B) 15.56
Evaluated at UG = 1 cm/s:

(B) 19.01
With NDF

Evaluated at UG = 0.15 cm/s:
(A) 22.02
(B) 20.89

Evaluated at UG = 0.5 cm/s:
(A) 21.68
(B) 14.03

Evaluated at UG = 1 cm/s:
(A) 21.7
(B) 17.60

Without NDF
Evaluated at UG = 0.15 cm/s:

(B) 32.67
Evaluated at UG = 0.5 cm/s:

(B) 32.41
Evaluated at UG = 1 cm/s:

(B) 30.48
With NDF

Evaluated at UG = 0.15 cm/s:
(A) 33.02
(B) 13.74

Evaluated at UG = 0.5 cm/s:
(A) 20.80
(B) 36.39

Evaluated at UG = 1 cm/s:
(A) 15.30
(B) 27.31
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Table 8. Cont.

Ref. Bench-
Mark

Errors [%]

Gas Holdup Local Void Fraction Local Liquid Velocity

[71] [96] -

Evaluated at UG = 0.3 cm/s:
(1Aα) 4.19

(1Aβ) 12.22
(1Bα) 4.19
(1Cα) 4.19
(1Dα) 4.19
(1Eα) 9.43
(1Fα) 6.98

Evaluated at UG = 1.3 cm/s:
(1Aα) 14.42
(2Aα) 6.48

(2Aβ) 20.34
(2Bα) 8.95
(2Cα) 6.73
(2Dα) 7.49
(2Eα) 8.31
(2Fα) 7.85
(2Gα) 9.36

Evaluated at UG = 0.3 cm/s:
(1Aα) 44.27
(1Aβ) 44.27
(1Bα) 44.45
(1Cα) 44.45
(1Dα) 48.18
(1Eα) 43.27
(1Fα) 40.32

Evaluated at UG = 1.3 cm/s:
(1Aα) 47.48
(2Aα) 30.20
(2Aβ) 39.28
(2Bα) 41.57
(2Cα) 57.50
(2Dα) 41.67
(2Eα) 47.58
(2Fα) 45.75
(2Gα) 80.64

[80] [56] -

(1Aβ) 21
(2Bα) 9.96

(2Bβ) 21.44
(2Cα) 9.68

(2Cβ) 21.53

(1Aβ) 21.25
(2Bα) 29.89
(2Bβ) 32.31
(2Cα) 22.26
(2Cβ) 37.05

[81] [97] -

Evaluated at UG = 8 cm/s:
(1Aα) 15.37
(1Bα) 23.31
(2Aα) 20.46
(2Bα) 22.29

Evaluated at UG = 12 cm/s:
(1Aα) 20.80
(1Aβ) 75.80

-

[82] [98]

(A) 14.76
(B) 9.45
(C) 6.18

(D) 22.75

- -

[83] [99] -

(1Aα) 8.66
(2Aα) 10.96
(1Aβ) 9.60
(2Aβ) 27.70
(1Bα) 5.17

(1Bβ) 11.67

[88] [96] -
(A) 9.44
(B) 8.88
(C) 8.65

(A) 31.31
(B) 63.34
(C) 53.57

[89] [89]

(1C) 42.01
(2C) 39.55
(2A) 35.87
(2B) 7.99

Evaluated at UG = 16 cm/s:
(2B) 6.67

-
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Table 8. Cont.

Ref. Bench-
Mark

Errors [%]

Gas Holdup Local Void Fraction Local Liquid Velocity

[84] [100]

(1A) 3.32
(1B) 12.63
(1C) 15.02
(1F) 32.53
(2F) 3.87

Evaluated at UG = 1.9 cm/s:
(1A) 10.85
(1B) 13.39
(1C) 13.3

(1D) 15.93
(1E) 20.57
(1F) 23.15
(2C) 3.65
(2D) 3.69
(2E) 4.11
(2F) 6.82

Evaluated at UG = 3.8 cm/s:
(1A) 16.6
(1B) 29.54
(1C) 34.91

(1F) 50
(2F) 9.9

-

[90] [101] (1A) 6.69
(2B) 7.78

Evaluated at UG = 16 cm/s:
(1B) 12.48
(2B) 8.94

Evaluated at UG = 16 cm/s:
(1B) 35.25
(2B) 33.78

[91] [91] 13.67 - -

[30] [89]

(A) 84.77
(B) 44.40
(C) 54.91
(D) 29.82
(E) 2.83

Evaluated at UG = 3 cm/s:
(E) 5.70

Evaluated at UG = 16 cm/s:
(E) 4.07

Evaluated at UG = 3 cm/s:
(E) 38.39

Evaluated at UG = 16 cm/s:
(E) 25.18

[20] [102] -

8.07
No lift:
42.99

No turbulent dispersion:
23.86

No wall lubrication:
12.64

No virtual mass:
8.99

No BIT:
9.32

-

5. Conclusions

This paper has presented a detailed review of CFD modelling of two-phase bubble
columns. The models most commonly adopted for interfacial momentum exchange, bubble-
induced turbulence, coalescence, and breakup are described. A quantitative comparison
between the different modelling approaches is presented in Section 4, considering various
studies from the literature and computing the relative errors between the CFD predictions
and the experimental data.

On the basis of the literature review presented in this work, the following recommen-
dations are made for future studies:

1. Concerning the interfacial forces, the momentum transfer between the phases is domi-
nated by the drag force. For a proper description of the drag coefficient, the models of
Tomiyama et al. (1998) [19], Grace et al. (1976) [16], and Ishii and Zuber (1978) [17]
can be implemented; however, they should be corrected with a swarm factor. When
presenting numerical studies, a sensitivity analysis among the different models should
be performed.
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The lift, wall lubrication, and turbulence dispersion forces should be added to the
model to obtain more accurate solutions. In particular, a correlation that predicts the
change in the sign of the lift coefficient should be considered.

2. Concerning the turbulence modelling, RANS models, in particular the k− ε RNG and
the k−ω SST models, provide satisfying results in terms of average quantities. The
LES turbulence model provides better results in the near-sparger region, where the
flow is more anisotropic. However, no remarkable differences compared to the RANS
methods have been highlighted in the fully developed region.

3. The modelling approach of the dispersed phase (i.e., mono-dispersed, MUSIG, iMUSIG,
PBM) should always be related to the simulated flow regime. A mono-dispersed
approximation applies at very low superficial gas velocities. Conversely, multiple-size
models that include coalescence and breakup should be considered.

4. Regarding the numerical settings, high-order resolution discretization schemes should
be used in order to prevent or reduce numerical discretization errors as much
as possible.

Finally, it can be concluded that detailed comprehension of the phenomena governing
multiphase flows remains needed, and additional effort should be spend on developing a
fully predictive a priori CFD model.
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Nomenclature
BIT Bubble-Induced Turbulence
CFD Computational Fluid Dynamics
CM Class Method
DNS Direct Numerical Simulation
LDA Laser Doppler Velocimetry
LES Large Eddy Simulation
NDF Number Density Function
PBM Population Balance Model
PBE Population Balance Equation
PIV Particle Image Velocimetry
PSV Particle Shadowgraph Velocimetry
QMOM Quadrature Method of Moment
RANS Reynolds-Averaged NavierStokes
RSM Reynolds Stress Models
~u Local velocity [m/s]
CD Drag coefficient [-]
CL Lift coefficient [-]
CTD Turbulent dispersion coefficient [-]
CWL Wall lubrication coefficient [-]
CVM Virtual mass coefficient [-]
db Bubble diameter [m]
deq Equivalent bubble diameter [m]
D∗H Non-dimensional diameter [-]
D∗cr Critical non-dimensional diameter [-]
DH Hydraulic diameter [m]
E Bubble aspect ratio [-]
Eo Eötvös number [m]
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FD Drag force [kg/m2s2]
FL Lift force [kg/m2s2]
FTD Turbulent dispersion force [kg/m2s2]
FWL Wall lubrication force [kg/m2s2]
FVM Virtual mass force [kg/m2s2]
g Acceleration due to gravity [m/s2]
g(Vb) Breakup frequency [1/s]
h Swarm factor [-]
h(db,i, db,j) Collision frequency [1/s]
JT Drift flux [m/s]
k Turbulent kinetic energy [m2/s2]
~MI Momentum exchanges [kg/m2s2]
Mo Morton number [-]
p Pressure [Pa]
Reb Bubble Reynolds number
S Total source/sink term in the population balance equation [m2/s]
Sb Total source/sink term due to breakup [m3/s]
Sc Total source/sink term due to coalescence [m3/s]
Sm Total source/sink term due to mass transfer [m3/s]
Sp Total source/sink term due to pressure change [m3/s]
Sph Total source/sink term due to phase change [m3/s]
Sr Total source/sink term due to reaction [m3/s]
UG Superficial gas velocity [m/s]
UL Superficial liquid velocity [m/s]
Vb Bubble volume in population balance equation [m3]
αG Local gas volume fraction [-]
β Daughter distribution function [-]
εG Global gas holdup [-]
ε Turbulent dissipation rate [m2/s3]
λ(db,i, db,j) Coalescence efficiency [-]
µ Dynamic viscosity [kg/m/s]
µt Turbulent viscosity [m2/s]
ω Specific dissipation rate [1/s]
ρ Density [kg/m3]
σ Surface tension [kg/m2s2

τ̄ Viscous stress tensor [kg/m/s2]
G Gas phase
L Liquid phase
k k-th phase
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