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Abstract: To support the increasing number of planned lunar missions, a collaborative international
initiative is underway to conceptualise and establish a lunar satellite constellation for communication and
navigation. In this context, the goal of the current paper is to analyse what the obtainable performance is
for a lunar lander that executes state estimation employing one-way ranging signals from such a Lunar
Navigation Service (LNS). In particular, a small-sized optimised navigation constellation is considered
as the main source of measurements, which, coupled with an accelerometer and an altimeter, is used to
estimate the lander absolute trajectory during the main braking phase. The guidance is extracted on
board by interpolation of a ground-optimised trajectory, followed by a reference-tracking regulator. Two
alternative control tuning cases are presented, one targeting high performance, the other targeting low
propellant mass. Nominal performance and associated sensitivity analyses assessed the feasibility of
supporting such a critical phase with a reduced LNS constellation, reaching final control errors below
500 m, with the better performing one going down to 56 m. Among the two proposed alternatives, the
one targeting low fuel expenditure has proven, however, to also be more robust against time and state
uncertainty, providing much larger success rates.

Keywords: Moon; constellation GNC; autonomous navigation; landing; GNSS

1. Introduction

The International Space Exploration Coordination Group (ISECG) recognises lunar ex-
ploration as a pivotal milestone for advancing crucial technologies necessary for sustained
human presence in space and deep-space exploration. As a result, lunar missions have
regained much interest globally, attracting involvement from both space agencies and pri-
vate companies. While these missions pursue different objectives, they all demand precise
knowledge of spacecraft positioning and trajectory, along with a robust communication
infrastructure for efficient data transmission back to Earth.

Up to now, lunar missions have heavily relied on Direct-to-Earth (DTE) communica-
tions and ranging radiometric measurements from the ground. However, as the number of
missions grows, several space agencies have proposed dedicated lunar communication and
navigation infrastructures to ease the Earth ground-segment load and establish more effi-
cient and reliable communication links [1–3]. In this context, ESA initiated the Moonlight
project, aimed at offering an affordable and high-performance Lunar Communication and
Navigation Service to support upcoming institutional and commercial lunar missions. Such
infrastructure will maintain continuous Earth contact, even during DTE link downtime
(e.g., on the Moon’s far side), and provide high-precision navigation data. Furthermore, a
dedicated Global Navigation Satellite System (GNSS) constellation could enable onboard
autonomous lunar navigation systems for rovers, landers, and spacecraft, meeting the
stringent ISECG requirements for safe Lunar surface operations, such as landing within a
90-metre 3σ uncertainty from the intended location.

Looking instead specifically at the LNS constellation design, the research community
is currently quite active, focusing on different procedures for the definition of the orbital
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configuration. When looking for a global coverage, the well-known principle of Walker
constellation is a possible alternative [4,5]. Such a solution, however, may not be optimal
in terms of cost effectiveness, in particular if an incremental approach is forsaken for the
constellation deployment. A more advanced design proposed in two consecutive publica-
tions [6,7] considered multi-objective optimisation to provide high navigation performance
availability to the lunar global surface, while still also considering other system-level objec-
tives such as costs, station-keeping expenditure, and robustness to failure. Other studies
considered instead constellations deployed in Lagrange Point Orbits (LPO), which provide
many geometrical and dynamical features that classical two-body orbits do not possess [8,9].
A hybrid approach to the design of the architecture was instead followed in [10], where
both Keplerian and LPOs are considered in the optimisation, having performance and
coverage as maximisation indexes.

In any case, looking at an incremental constellation approach, during the initial phases
a primary issue will be the limited availability of navigation signals due to the substantially
fewer LNS servicing satellites compared to consolidated Earth GNSS systems. The smaller
constellation size implies the impossibility of having a continuous view of at least four
satellites from any location on the lunar surface at the same time. For this reason, the initial
LNS architecture will be designed to prioritise enhancing the navigation performance of
surface and Low Lunar Orbital (LLO) users around the South Pole region (which is a
subject of high scientific interest) at the cost of a reduced LNS availability in the northern
hemisphere. Nonetheless, even for these South Pole users, custom navigation algorithms
will need to be developed to meet the mission navigation requirements and cope with the
limited LNS-visibility windows.

To counteract such problems, recent years have seen numerous studies investigating
achievable performance levels for various lunar missions utilising potential LNS constel-
lations. Notably, for the state estimation, ref. [11] utilised a sequential Extended Kalman
Filter (EKF) to highlight the system complexity benefits of implementing the LNS infras-
tructure over traditional visual-based navigation sensors and ground-tracking techniques.
Their work revealed that a formal horizontal dilution of precision below 30 metres can be
achieved with a minimum of three satellites in view. Another case study is provided by [12],
where the LNS system is used coupled with a high-fidelity Digital Elevation Model (DEM)
to navigate a rover under various service availability conditions. Conversely, ref. [13]
employed a Batch filter to fuse LNS signals with IMU and altimeter readings, resulting
in navigation errors below 30 metres. In both cases, the kinematic approach used for the
estimation implies that navigation errors would rapidly diverge during signal outages.
The advantages of a dynamic estimation process were discussed in [14,15]. The attained
performance significantly depends on the accuracy of the onboard dynamical model, ne-
cessitating precise Sun and Earth ephemerides and harmonic coefficients for the spherical
expansion of the lunar gravity field. However, these demands might conflict with low-cost
hardware and Commercial-Off-The-Shelf (COTS) components, especially when the filter
must operate at high frequencies, which is why a proper navigation architecture is funda-
mental (see [16]). Comprehensive introductions to the dynamic state estimation theory,
together with a description of the main algorithms and comparisons between sequential
and batch filtering techniques, can be found in [17–19].

The current paper is intended as a continuation of a series of successive articles in the
framework of lunar constellations. Indeed, the first two studies proposed a method to design
an LNS constellation to provide communication and navigation services to different users,
optimising the orbital configuration considering multiple objectives. In particular, in [20] we
focused on surface users only, and multi-objective optimisation was used to service different
Moon regions. Then, in [14], we focussed our attention on orbital users in polar inclinations.
Also in this case, an optimisation combining different clashing objectives was performed in
order to derive optimal constellation architectures. The deriving navigation performance for
the orbital user was assessed in accordance with a proposed filtering architecture, which has
been tested under different conditions also in [16]. From the set of optimal configurations
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extracted in [14], the best performing one was selected to be used for further assessments,
such as in this current work. In our previous analyses and in the investigated literature,
however, only the navigation task was taken into consideration. Even the works concerning
landers or rovers considered the dynamics of the user as defined independently from the
navigation tasks, thus excluding a complete GNC scheme. The goal of this paper is to evaluate
the behaviour of the LNS architecture when inserted into a more dynamically challenging
scenario. Indeed, testing the final performance of the GNC in closed loop provides a testbed to
understand if, even with a reduced constellation, the critical tasks of a landing operation can
be completed successfully. In particular, the main braking phase of the landing is considered
here, as the last phase in a landing which could be handled with an absolute navigation
strategy, before handover to a relative one for the final (or terminal) descent.

The results in a nominal scenario are presented, after the description of the added
guidance and control algorithms are provided. After that, a Monte Carlo analysis with
dispersion in the initial state is performed and the overall results collected.

After this introduction, the complete modelling environment used for spacecraft
dynamics and sensor simulation is presented in Section 2. The description of the core of
the employed GNC algorithms is provided in Section 3. Section 4 shows the obtained
results for both the nominal scenario and the sensitivity analysis, and the conclusions of
the manuscript are provided in Section 5.

2. Simulation Environment

The simulation environment used to performed the analyses of this study is described in
the following section. In particular, we first present the dynamic environment in which the
servicers and the lander are propagated, together with the associated assumptions. Then, we
provide an overview of the sensor models used in the proposed navigation strategy.

2.1. Ground-Truth Dynamics

To accurately simulate the ground-truth dynamics of the landing user and LNS ser-
vicers, the major gravitational and non-gravitational forces acting in the cislunar environ-
ment have been modelled. The former include the gravitational attraction of the Moon, the
Earth, and the Sun. The remaining solar system bodies have not been included because
their gravitational influence (10−12 m s−2 for Jupiter) is negligible over the short-term.
The irregularities of the lunar gravity field are considered by modelling the lunar gravita-
tional potential, U , in a body-fixed reference frame with a Spherical Harmonic Expansion
(SHE) [21], as in Equation (1):

U =
µ

r
+

µ

r

N

∑
n=2

n

∑
m=0

(
R0

r

)n[
Cnm cos(mλ) + Snm sin(mλ)

]
Pnm(sin φ) (1)

where µ and R0 are the gravitational parameter and radius of the Moon, r is the radial
distance from the center of mass, λ is the east longitude, φ is the latitude, and Pnm are the
fully normalised associated Legendre polynomials. The normalised gravity coefficients
(Cnm and Snm) are based on the LP165P gravity model [22]. The harmonic expansion
is truncated at order and degree 60 and is such that the error introduced by neglecting
the higher-order terms at these altitudes is below the sensitivity of traditional on-board
accelerometers.

For the Sun and Earth contributions, only the point-mass gravitational acceleration
is relevant. In particular, Earth’s J2 term produces an acceleration in the order of only
10−11 m s−2 for a lunar orbiter in a 10 km LLO. According to the Restricted N-Body
Problem formulation [21], the perturbing acceleration induced on the spacecraft, Pi, by the
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point-mass gravitational sources, Pj , as seen by the central body, Pk, is modelled as per
Equation (2):

r̈ki =
N

∑
j=1

j 6=i,k

µj

(
rij

r3
ij
−

rkj

r3
kj

)
(2)

where the generic vector rij is the position of the mass Pi relative to Pj and is computed as:

rji = rkj − rki (3)

In this work, NAIF’s SPICE library (see [23]) is exploited to retrieve the exact Earth and Sun
positions from the DE440 (https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/,
accessed on 20 July 2023) ephemerides. All the remaining field forces, such as general relativistic
effects (∼10−10 m s−2 for a 10 km LLO), can be safely neglected for short-term propagations.

On the other hand, the remaining forces acting on the spacecraft are associated with
non-gravitational perturbations and must be accounted for in a high-fidelity lunar dynam-
ical model. These include contributions such as the Solar Radiation Pressure (SRP), the
spacecraft thermal emissions, the lunar albedo and thermal infrared emissions, and the
navigation antenna thrust for the LNS servicers. In this analysis, only the SRP contribu-
tion is taken into account since it is by far the largest non-gravitational acceleration. A
standard cannonball model, which assumes that the satellite is a homogeneous sphere of
given radius [24], is used to express the magnitude of the SRP acceleration, as shown in
Equation (4):

aSRP =
S�

c
(1AU)2

d2
�

cR
A�
m

(4)

where S� = 1367 W m−2 is the Sun mean flux at 1AU, c = 299,792,458 m s−1 is the speed
of light, d� is the current Sun–spacecraft distance, cR is the reflectivity, and A� is the
cross-sectional area of the satellite exposed to the radiation. Although a traditional box-wing
model provides a more accurate representation of the SRP acceleration [25], by modelling
the spacecraft as a sphere, the cannonball model allows one to decouple the user trajectory
from the geometry and actual orientation of the spacecraft. Additionally, we assume that
throughout the landing mission, the spacecraft is in constant Sun illumination.

2.2. User Navigation Equipment

Dealing with a navigation filter, it is fundamental to correctly analyse the measure-
ments that are exploited by the estimation algorithm in order to simulate the behaviour
of the sensors providing such observations and define the measurement functions used
within the filter itself.

2.2.1. Radiofrequency-Based Measurements

In this work, the user LNS receiver terminal retrieves from any ith visible element
of the constellation the range ρ, the range-rate, ρ̇, and the servicer ephemeris under the
form of the state vector xs,i. When dealing with such measurements, the observable data is
usually defined as pseudorange ρ̃ and pseudorange-rate ˜̇ρ, in order to indicate that the two
measurements are affected by errors. In particular, looking at the range measurement, the
geometric range obtained from the ith servicer can be defined as per Equation (5):

ρi = c∆ti = ‖rs,i − r‖ (5)

where c is the speed of light and ∆ti is the time required for the signal to travel from the
servicer position, rs,i, to the user one, r. To simplify the analysis, the availability of the signal
from the i-th servicer to the user is constrained only by point-to-point and Field-Of-View
(FOV) considerations. In one-way ranging, this time difference is obtained with standard
Time-of-Arrival (ToA) techniques by subtracting the servicer clock-time at signal emission
from the user clock-time at reception, i.e., ∆ti = tu − ts,i. However, this measure is affected

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/
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by errors since both the receiver and servicer clock present some offsets with respect to
the LNS system time. As such, the measured time difference from the user terminal will
provide the pseudorange, as per Equation (6):

ρ̃i = c (tu + δtu − ts,i − δts,i) = ρi + cδtu + εδts,i (6)

where tu is the system time at which the signal would have reached the user in the absence
of errors, δtu is the receiver clock bias, ts,i is the system time at which the signal left the
ith servicer, and δts,i is the offset of the ith servicer clock from the system time. From this
equation, it is clear that a bias in the measurements is present. Additionally, there are
other possible sources of errors in the pseudorange readings, such as interference effects,
receiver noise, instrumental delays, multipath losses, and relativistic effects. With this in
mind, the final pseudorange formulation is reported in Equation (7), where all these error
contributions (including εδts,i ) are collapsed in a single component, ερi .

ρ̃i = ρi + cδtu + ερi (7)

A similar reasoning can be performed for the pseudorange-rate observable, which can
be derived directly from the observed frequency Doppler shift, ∆ fD, but again is inherently
affected by the same effects as in the previous case, summed up in a ε ρ̇i term in addition to
the time bias derivative, δ̇tu, as shown by Equation (8).

˜̇ρi = c
∆ fD
fs,i

+ cδ̇tu + ε ρ̇i (8)

In this work, to simulate these effects and generate the measurements fed to the filter,
we implemented the model in Equations (9) and (10).

ρ̃i = ‖r̃s,i − r‖+ bc + ερi (9)
˜̇ρi = (ṽs,i − v) · (r̃s,i − r)/ρ + dc + ε ρ̇i (10)

x̃s,i =
[
r̃>s,i, ṽ>s,i

]>
= xs,i +

[
ε1×3

r , ε1×3
v
]> (11)

For both the observables, all the error effects are directly collected in single additive
Gaussian noise terms, except for the receiver clock bias, bc, and drift ,dc, contributions,
which are treated as an additional parameter to be estimated. The standard deviations
associated with ερ and ε ρ̇ are σρ = 10 m and σρ̇ = 0.1 m s−1, values assumed in accordance
with the ongoing studies [11,13].

The receiver clock bias and drift, which represent cδtu and cδ̇tu, respectively, are modelled
using the two-state clock model presented in [26], in which the frequency deviation (i.e.,
the clock drift) originates from two types of noise, a White Frequency Modulation (WFM)
and a Random Walk Frequency Modulation (RWFM). The resulting clock bias will then be
represented by a Wiener noise plus an integrated Wiener noise. The dynamical system that
simulates the evolution of these quantities is summarised in Equations (12) and (13), in which
εb and εd are Gaussian white noises, whose standard deviation can be properly tuned to
match the Allan variance of the desired type of receiver clock.

ḃc = dc + εbc (12)

ḋc = εdc (13)

The servicers’ ephemerides are used inside the navigation filter to predict the pseu-
dorange and pseudorange-rate quantities. In this work, the residual errors of the LNS
predictions coming from the Orbit Determination and Time Synchronisation (ODTS) pro-
cess performed on the ground, also known as Signal In Space Error (SISE), are modelled
as simple three-dimensional position and velocity additive Gaussian white noises, with
standard deviations of σr and σv, respectively, here assumed as 15 m and 0.15 m s−1, re-
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spectively, in line with the Galileo Service Definition Document [27] and the expected
Moonlight performance [11].

A good reference to further investigate the details of GNSS systems can be found
in [28].

2.2.2. Accelerometer

Concerning the accelerometers contained in the Inertial Measurement Unit (IMU), it
is fundamental to recall that such sensors are insensitive to volume forces, such as all the
gravitational effects included in the environment of our simulation.

For this reason, they are particularly useful for obtaining an estimate of the real control
acceleration provided by the thrusters, as well as the perturbations induced by the SRP.

A high-fidelity model for an accelerometer typically includes misalignment and cross-
axis sensitivity errors, sensor biases, and scale factor errors [29]. For the purpose of this
work, the model has been simplified and all the errors have been collected into an additive
Gaussian white noise, with a standard deviation that is representative of commercial high-
fidelity accelerometers. As a consequence, the simulated sensor reading is defined as per
Equation (14).

ãIMU,I = aSRP,I + athr,I + εIMU (14)

It is also relevant to recall that the accelerations recorded by the IMU are usually
expressed in the sensor frame, S. However, since in this framework the attitude dynamics
and kinematics are not taken into consideration, the spacecraft attitude is assumed perfectly
known and the accelerations of the IMU are directly expressed in the inertial frame, I.

A consolidated practice to exploit such sensors in the orbital filters is the so-called
Dynamic Compensation Mode [17]. The basic principle is not to use the accelerometer readings
among the measurement vector, but to leverage them within the propagation step of the
filter. This concept, also exploited with gyroscopes, is backed by the high accuracies that
such sensors show. Moreover, some computation savings are thus achievable, avoiding the
evaluation of the non-volume forces, which generally have quite complex mathematical
formulations, e.g., a high-fidelity SRP or propulsive acceleration representation.

2.2.3. Altimeter

In landing applications, altimeters are very relevant sensors since they provide a direct
estimate of the vertical position in a user-centred East–North–Up (ENU) reference frame.
Additionally for this case, there is the possibility to employ fancy models of the sensor,
considering the exploited technology and the considered topography of the Moon. Indeed,
regarding this latter, there is a wide range of possibilities, from assuming a perfect sphere
or using detailed DEM. In the current work, using the simpler spherical Moon model, the
real altitude is obtained as in Equation (15) employing Moon average radius, R%.

ζ = ‖r‖ − R% (15)

The error effects introduced by the sensor are provided by a zero-mean additive white
Gaussian noise, which, to reflect the behaviour of laser altimeter technology, considers
a standard deviation of 1% of the current real height [30]. The resulting measurement
function is thus defined as in Equation (16):

ζ̃ = ζ + εζ(ζ) (16)

with εζ(ζ) = N (0, 1)ζ/100 defined as the noisy component.

3. GNC Algorithms

The Guidance Navigation and Control strategy exploited in this landing scenario relies
on the architecture shown in Figure 1.
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On-Board Algorithms

Navigation

Real World

Guidance & Control

Lander 
Dynamics

Target
trajectory

_
EKFPID

Altimeter
IMU

LNS RX
LNS constellation

Figure 1. Architecture of the GNC scheme used for the landing analysis.

From the real world simulation, the dynamics of the lander and of the servicers is
propagated in a high-fidelity environment, and the sensor readings are generated. These
are fed to the navigation block, whose output is the absolute state estimation. The guidance
and control block employs this state, together with the targeted trajectory, to generate a
control action, uk.

3.1. Navigation

Similarly to our previous work in [14], the navigation is performed through an Ex-
tended Kalman Filter, which employs, as in the previous study, the GNSS/INS strategy. In
the current scenario, however, an altimeter is considered as well, deemed as fundamental
for both state estimation enhancement and safety reason. The work we performed in [16]
already analysed the improvements that can be achieved by combining these sensors for
orbital users. Specifically, it highlighted that by providing a direct estimate of the space-
craft vertical components, the altimeter allows the reduction by one of the actual number
of visible LNS satellites that are requested to reconstruct the user position, and thus be-
comes particularly beneficial for small-sized LNS constellations. The resulting navigation
architecture is schematised in Figure 2.

LNS satellites

User RX
terminal

IMU

LNS ephem

Dynamics Propagation

Kalman update

Sensors EKF

To G&C

Simplified  on-board
dynamical model

Altimeter

Figure 2. Description of the GNSS/INS navigation formulation with the altimeter.
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The presence of the IMU, used in dynamic model replacement, outputs the acceleration,
ãIMU , which is added to the on-board dynamics for the state prediction step in the filter,
providing the a priori estimate, x̂−k+1, at time step k + 1. Such an approach provides the
possibility to directly retrieve a measurement of control acceleration, ũk, to be fed in the EKF
prediction step, avoiding using the acceleration predicted by the controller uk. Indeed, the
measurement error introduced by the accelerometer is much lower than the error between
the commanded and executed actuator action. The accelerometer is employed, however,
only during the thrusted phase, while in the preceding one it is disregarded. Indeed, during
natural motion, the error introduced by the accelerometer is larger than the unmodelled
dynamics of SRP and higher-order irregular mass distribution.

The observables of the LNS are composed of pseudorange, ρ̃i, pseudorange-rate, ˜̇ρi,
and the servicers’ ephemerides. Such measurements are passed to the filter, together
with the altimeter reading, ζ̃, in order to provide, through the Kalman update step, the
a posteriori corrected state, x̂+k+1. Such GNSS/INS formulation, known as tightly coupled,
takes a different approach than the loosely coupled alternative (see [31]), since the GNSS (or
LNS) receiver is not treated as a mere black box that outputs the complete state. Instead,
this approach offers distinct advantages by exploiting LNS signals, even when fewer than
four satellites are visible, a condition which is a likely scenario in our proposed context
due to the limited constellation elements. In scenarios where LNS signals are absent, our
proposed architecture seamlessly continues the onboard propagation of the user’s position,
using only the information provided by the IMU.

Opting to incorporate the clock bias, bc, and drift, dc, as part of the parameter esti-
mation, we augment the spacecraft state, xS/C, by including these components. This is
obtained by considering a stacked filter state, x = [x>S/C, bc, dc]>.

The prediction step of the EKF is characterised by a simplified spacecraft dynamical
model, fS/C(xS/C, ãIMU), and a clock dynamical model governing the propagation and
measurement function, h(x, x̃s,i), outlined respectively in Equations (17) and (18).

fS/C(xS/C, ãIMU) = fS/C(xS/C)% + fS/C(xS/C)♁ + ãIMU (17)

h(x, x̃s,i) =
[
ρ1, ρ̇1, ρ2, ρ̇2, . . . , ρn, ρ̇n, ζ

]> (18)

Equation (17) shows the strategy of dynamic model replacement to leverage the
accelerometer within the navigation filter, encompassing both Solar Radiation Pressure
(SRP) and the thrusters’ acceleration contributions. It is also possible to see that only
gravitational terms of Moon and Earth point mass are introduced. The Moon irregular
mass distribution is then simply modelled by adding the oblateness, J2, contribution, in
order to reduce the computational effort. The spacecraft state is estimated in the Lunar
Mean Equator at J2000 (LME2000) frame, whose origin is the Moon’s centre of mass, and
its X–Y plane is defined by the Moon equator at J2000. In particular, the +Z axis is parallel
to the Moon’s rotation axis, pointing toward the north side of the invariant plane. The +X
axis is defined by the intersection of the Moon’s equator at the J2000 with the Earth Mean
Equator of J2000, and the +Y axis completes the right-handed triad.

Moreover, despite the fact that the broadcast ephemeris of traditional GNSS constella-
tions are provided in the Earth-Centred–Earth-Fixed (ECEF) frame [32], in this scenario it is
further assumed that the retrieved states of the LNS satellites are also directly expressed
in the LME2000 frame, as a proper definition of an official Moon-Centred–Moon-Fixed
(MCMF) frame is still not available.

Additionally, it is worth underlining that the measurement function of Equation (18)
integrates the estimated clock bias and drift to refine the pseudorange and range-rate a
priori predictions, guided by Equations (9) and (10). The propagation model for these
parameters is expressed by fc, as defined in Equation (19).

fc =

{
ḃc = dc

ḋc = 0
(19)
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Combining Equations (17) and (19) results in the comprehensive dynamical model for
the filter, denoted as f = [f>S/C, f>c ]>.

Initialisation of the filter entails setting the initial conditions for the state, x̂0, and the
state covariance matrix, P0, at the beginning of the simulation. For P0, we considered the
values of σr,0 = 1 km and σv,0 = 1 m s−1, which also serve as the standard deviations for x̂0.
Q and R represent the process and measurement noise covariance matrices. If the former
can be regarded as a tuning parameter, the latter is dictated by the accuracy of the sensors.

The evaluation of the innovation vector defined by ỹk+1− h(x̂−k+1, x̃s,i,k+1) is influenced
by two distinct errors: the pseudorange and range-rate errors, resulting from the physics of
signal transmission and RF terminals, along with the errors arising in the ephemerides of
the servicers, an outcome of their individual navigation budgets.

Given the complex and more dynamically challenging scenario with respect to the
natural motion studied in [14], the filter update frequency has been set to 10 Hz.

3.2. Guidance and Control

The guidance and control strategy employed for this paper is to provide an offline
optimised landing trajectory that is interpolated on board and then fed to a reference
tracking controller, based on a PID regulator. Such a strategy is not completely autonomous,
since the guidance optimisation is performed on the ground and uploaded to the lander
just before starting this critical phase. It is, however, performed completely autonomously
during the actual thrusting period.

The trajectory used for the guidance is generated offline through an optimisation
similar to the one presented in [33,34], with the goal of minimising fuel consumption.
The procedure considers an indirect optimisation step to solve a two-point boundary
value problem with prescribed initial and final conditions in a simplified 2D dynamics
on the polar orbital plane. A constant thrust value is considered, and the minimisation
of propellant is obtained by constructing a cost function considering the integral of the
control acceleration, thus including the evolving mass state variable. The solution to the
indirect optimisation consists of finding the unknown initial conditions of the adjoint states
by exploiting a shooting method. The result of this process is a history of the control action
and the associated 2D dynamics, which can be remapped to a 3D trajectory by knowing the
mission scenario geometry.

Such a trajectory is imported only as a sequence of six states, discretised in the sampling
times output of the optimisation. To exploit this sequence, the on-board guidance uses the
offline optimised six states as grid points to perform the interpolation and to retrieve the target
states at any given query point. In such a way, the controller is fed at any instant with a control
error computed between the obtained reference trajectory and the estimated current state,
coming from the navigation. The control action of the optimal guidance is instead not exploited,
since such an action is recomputed using the PID controller described in Figure 3.

 PID    P

   D

0

== 0

   I

Figure 3. Details of the PID scheme used to follow the offline optimised guidance, employing an
anti-windup logic.
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The input of this block, ∆x̂k, is computed as the error between the set-point trajectory
state at time tk and the current estimation of the state, x̂k. This state error is decomposed
into its position and velocity parts, ∆r̂k and ∆v̂k. The former is used for the proportional
and the integral parts of the control, while the latter is used for the derivative one. The sum
of the three components then passes through a saturation block, in order to impose the
maximum thrust constraints. To prevent uncontrollability due to the actuator saturation
caused by the integral term, a simple anti-windup logic [35] is introduced. The computed
control action before passing the saturation step is compared in absolute value to the
output of the limiter. A non-null difference means that the saturation is active, so to avoid
controllability issues, the input to the integral term is driven to zero. In such a way, the
regulator is able to avoid the windup condition, for which a saturated control action would
continue increasing the integral of the error. The anti-windup logic remains active as long
as the control acts to reduce the error and consequently re-enter the saturation limit.

The only available tuning parameters for such a controller are the three PID coefficients,
kP, kI , and kD, representing proportional, integral, and derivative coefficients.

The control action computed by the controller is perturbed before entering the lander
dynamics, in order to simulate both pointing and magnitude zero mean additive Gaussian
errors. The former presents a standard deviation of 1° on each of the two angles defining
the thrusting direction, while the latter is defined with standard deviation equal to 0.1% of
the maximum thrust.

4. Results

After presenting in Section 4.1 the adopted LNS constellation architecture, the consid-
ered GNC strategy is applied to a specific scenario, described in the following Section 4.2.
The results obtained in the nominal landing scenario are reported in Section 4.3. Finally,
the sensitivity of the approach is tested through a Monte Carlo analysis in Section 4.4.

4.1. LNS Constellation Architecture

The LNS constellation considered for this assessment has been obtained in our previ-
ous paper through a multi-objective optimisation, based on maximising the Dilution Of
Precision (DOP) performance for a set of polar LLO users. The details of how we set up
the objectives and the genotype can be found in [14], together with the related navigation
performance for a naturally evolving LLO user. The constellation is composed of six ser-
vicers posed in Elliptic Lunar Frozen Orbits (ELFO, details provided in [36]), considered
as the best candidates for an LNS constellation due to their relatively high stability in the
long-term, thus substantially reducing the associated station-keeping ∆v. The selected
orbital architecture (tagged llo_sgl 6A in the original work) is presented in Figure 4.

The six orbits share the same value of semi-major axis, eccentricity, inclination, and
argument of pericentre. The former is imposed in order to have a period of 24 h, which
is a prominent feature for operative reasons for such an asset. In addition, the argument
of pericentre is imposed a priori, with a value of 90° in order to have the aposelene
above the South Pole and prioritise the visibility of such a scientifically relevant location.
The eccentricity of 0.489 is instead an output of the optimisation procedure. With the
previous parameters fixed, the ELFO constraint leads to an inclination of 47.5°. The right
ascension of the ascending nodes and the true anomalies are instead the other optimised
parameters, different per each element of the constellation. As visible in Figure 4, this
architecture presents a clear clustering of the servicers, with only two planes considered,
with right ascension values of approximately ±90°. The true anomalies instead are almost
equally distributed.
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Figure 4. Representation of the constellation orbits in the LME_2000 inertial frame.

As thoroughly described in [14], this constellation is able to provide around-metre nav-
igation accuracy when more than three servicers are visible. Such a feature is fundamental
for a landing scenario, in which satisfying the accuracy requirements is often extremely
challenging. Indeed, in this case, a complete closed-loop GNC strategy is considered,
adding propulsion to the orbital user, which introduces more complex navigation needs.

4.2. Landing Mission Overview

The case of a South Pole lander is analysed here considering only the main braking phase
of the landing. Starting from the apocentre of an elliptical orbit (100× 15 km altitude), the
lander follows a natural path up to the periselene, at half of its orbital period, i.e., after roughly
3400 s. Here it starts the thrusted arcs from an altitude of 15 km, which ends at 1 km, before
relative navigation hand-over. The terminal landing phase is not included in this analysis,
since it cannot be separated from the exploitation of a fully relative navigation strategy.

The trajectory followed by the lander can be seen in Figure 5, superposed to the
landing guidance trajectory. A zoomed trajectory of the propelled arc is instead shown
in Figure 6, with the view taken directly on the landing trajectory plane. The lander is
assumed to have a mass of 1600 kg, a ballistic coefficient of 150 kg m−2, a maximum thrust
of 2.5 kN, and a specific impulse of 320 s.

4.3. Nominal Scenario Performance

The current analysis entails and compares two different controllers in the presented
scenario. In particular, these two controllers have been obtained through two separated
tuning procedures: a minimisation of the final trajectory control error (case A) and a
minimisation of the propellant expenditure (case B), whilst maintaining a final error below
the threshold of 500 m. Such a threshold is considered enough for the main braking phase,
which is targeted by this study, before handling the final descend where a precision below
90 m is targeted.

The results from a GNC point of view are displayed for the two cases in Figures 7 and 8,
where both the estimation and control errors are plotted over the simulated time on a
logarithmic scale. The total number of LNS satellites in view by the lander is plotted
in Figure 9. Note that the control error plot starts slightly before t = 1 h, i.e., when the
propulsive leg begins.
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Figure 5. Representation of the trajectory in the IAU_MOON reference frame. The trajectory followed
by the spacecraft is plotted in blue, overlapped on the guidance for the thrusted arc in red.

Figure 6. Zoomed view of the natural and thrusted arcs, on the plane of the trajectory.
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Figure 7. Navigation and control error of the landing trajectory for case A, plotted at logarithmic scale.
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Figure 8. Navigation and control error of the landing trajectory for case B, plotted at logarithmic scale.
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Figure 9. Number of LNS satellites in visibility.

The navigation errors depend on the number of satellites visible (see Figure 9), for
both cases, evolving practically identically for the non-propelled phase. Indeed, for the first
part of the trajectory the error remains quite high, until a new servicer enters the visibility
of the lander, just before t = 0.4 h. At that instant, the navigation error drops to the order of
∼100 m and then reduces even more as soon as the number of satellites in view increases
up to a peak of five servicers. The reached estimation accuracy stabilises in the order of a
few metres in this part. When the control action starts, the initial oscillatory behaviour of
the thrust acceleration is reflected on both the navigation and control errors. The former
recovers the accuracy of a few metres after stabilisation. It is useful to remark that the filter
is in a stable and converged state just before the start of the control phase, which is reflected
by the low values in the covariance matrix, P. This effect gives a high stiffness to the filter,
which prevents its convergence to the new correct status at the beginning of the thrusting
phase. In order to overcome this issue, the covariance matrix is re-initialised to 10% of its
initial condition, P0, at the beginning of the thrusted arc. In such a way, the filter is made
more flexible and driven to convergence to the new state.

The control error instead behaves differently in the two cases, as seen in both
Figures 7, 8, and 10, where such errors are plotted in a Local Vertical Local Horizontal
(LVLH) frame relative to the set-point trajectory alongside the propellant mass expenditure.

Case A, tuned for best control error performance, after the initial oscillating behaviour,
is able to reach a final error of 55.6 m, which is kept stable during the whole phase, at the
expense of 13.3 kg of propellant mass. On the other hand, case B reaches a coarser value
of 380.4 m, using only less than half of the propellant mass, with a value of 6.6 kg. The
performance of the two controllers is summarised in Table 1, where the values of the PID
coefficients are also displayed.
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Figure 10. Control errors of the landing trajectory, decomposed on the three components in a
guidance-fixed LVLH frame, and propellant mass expenditure, for both cases A and B.

Table 1. Collection of performance for the two proposed controllers in the nominal landing scenario. Final
navigation and control errors are reported, with total propellant mass and the three PID tuning coefficients.

CTRL δrN AV (m) δrCTRL (m) δxCTRL (m) δyCTRL (m) δzCTRL (m)

A 1.4 55.6 48.6 27.0 0.2
B 1.3 380.4 331.1 186.7 12.2

mPROP (kg) kP kI kD

A 13.3 250 70 1000
B 6.6 70 7 693.7

It is possible to see, in particular by the vertical component of the error in Figure 10,
how case A presents higher frequency oscillations, reflecting the more aggressive behaviour
of this tuning condition. This high responsiveness of the controller impacts largely the
propellant mass expenditure, where it is possible to see that the difference in propellant
mass between the two cases is reached in the first minute of controlled action.

The navigation error during the thrusted phase is characterised by a Root Mean
Squared Error (RMSE) of around 2.5 m in the vertical component, 9.7 m and 2.7 m in the
along-track and cross-track components respectively. The associated control errors show
122.6 m, 1273.5 m, and 259.5 m for case A and 172.1 m, 3049.9 m, and 37.6 m for case B, in
the vertical, along-, and cross-track components, respectively. It is possible to highlight
that, in both cases, most of the error is present in the along-track component, due to the
larger velocities involved by the orbital motion in this direction.

Overall, we may say that the GNC performance is satisfactory for the nominal scenario
under study, giving with both tuning cases the possibility to follow the prescribed guidance,
with errors below 500 m, a threshold considered reasonable for the end of the main braking
phase, before the terminal descent.

4.4. Monte Carlo Analysis

To consolidate the landing scenario, the sensitivity of the filter performance and the
robustness of the two controllers are assessed with a Monte Carlo analysis on a set of
500 trajectories. These sample trajectories are generated by perturbing both the initial
condition and the start time of the landing phase, tS. In particular, by changing tS, the
visibility condition of the LNS constellation is slightly changed as well, modifying the
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observability level accordingly. On the other hand, the error in the initial condition is added
to perturb the nominal scenario and test the robustness of the GNC chain.

The landing starting time, tS, is sampled from a uniform distribution in the range
3000÷ 5000 s, recalling that the nominal scenario sees a tS equal to 3400 s. In practice,
this is imposed by shifting the initial true anomaly of the orbit backward or forward
in time, such that, in the nominal case, at t = tS, the lander is at the periselene of its
orbit when the thrusting begins. The error dispersion in the initial condition is instead
introduced as additive zero-mean white Gaussian terms with a standard deviation of 100 m
and 0.1 m s−1 in magnitude per each position and velocity component, respectively. This
small perturbation of the state at the beginning of the simulation becomes quite high when
propagated forward up to t = tS. This directly impacts the control error with respect to the
prescribed guidance that the PID regulator will face at the beginning of the thrusted arc,
hence making convergence more and more difficult.

A summary of the simulation settings is reported in Table 2, where both stochastic
variables and Monte Carlo dispersed parameters are summarised.

Table 2. Summary of the navigation simulation settings.

Parameter Value

LCNS SISE (1σ)

Position εr (x, y, z): 15 m
Velocity εv (x, y, z): 0.15 m/s
Clock bias ερ: 10 m
Clock drift ε ρ̇: 0.1 m/s

User clock Allan variance h0: 2× 10−25

h−2: 6× 10−25

Altimeter noise (1σ) 1% of ζ
IMU noise (1σ) 1 µg

Initial filter uncertainty (1σ)

Position σr (x, y, z): 1 km
Velocity σv (x, y, z): 10 m/s
Clock bias σbc : 100 m
Clock drift σdc : 1 m/s

Filter rate 10 Hz

Landing start time tS Uniform distribution in (3000 s, 5000 s)

Initial state perturbation (1σ) Position (x, y, z): 100 m
Velocity (x, y, z): 0.1 m/s

When the 1 km altitude threshold is reached, the simulations are stopped and the
final position errors with respect to the prescribed guidance trajectory are recorded. In
order to evaluate the quality of the provided GNC architecture and compare the two
controllers, each sample of the Monte Carlo analysis is labelled as a successful or failed
sample in accordance with its final error. Considering a threshold of 500 m of control
error, all samples with a larger final control error are classified as failed samples, while the
remaining ones as successful.

Figures 11 and 12 provide the logarithmic evolution of the navigation (upper plot)
and control (lower plot) position errors for the successful samples during the thrusted arc
only, for case A and B, respectively. The colour of the lines reflects the value of tS, from the
lowest in dark violet to the highest in yellow. The cyan lines represent the average (solid)
and the 3σ upper bound (dashed), considering the represented lines. Table 3 presents the
aggregated results for navigation and control errors in the two cases.
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Figure 11. Case A. Navigation (top) and control (bottom) errors of the successful landing trajectories,
with average and upper 3σ bound in logarithmic scale.

Figure 12. Case B. Navigation (top) and control (bottom) errors of the successful landing trajectories,
with average and upper 3σ bound in logarithmic scale.

Table 3. Collection of performance for the two proposed controllers in the Monte Carlo analysis.
Statistical distribution of navigation and control errors are reported for successful samples, alongside
the success rate.

CTRL Success Rate µδrN AV (m) 3σδrN AV (m) µδrCTRL (m) 3σδrCTRL (m)

A 51.2% 1.8 2.8 56.5 20.1
B 86.0% 1.7 2.8 388.9 22.8

As we can see by looking first at the line colour distribution, in both cases there is not
a specific correlation between the landing start time, tS, and the navigation and control
errors, δrNAV and δrCTRL. Overall, the control error in particular is quite uniform once
convergence is reached.
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δrNAV is, as expected, comparable for the two cases, providing final errors below 5 m,
also in the worst cases. The control error instead varies in accordance with the nominal
performance. As one can see in Table 3, the average values are very close to the nominal
values for both case A and case B. Both cases also show a similar value for the standard
deviation, around ∼20 m.

Regarding case A (Figure 11), a quite unsatisfactory success rate of 51.2% is reached,
while a much larger value of 86.0% is obtained with the milder controller of case B. This
reflects how the larger gains of the more aggressive tuning are less reliable and robust when
a dispersion from the nominal scenario is introduced.

An interesting visualisation of the successful trajectories is obtained by looking at the
final points observed on the horizontal plane of the Moon-fixed IAU_MOON frame at 1 km
altitude. This is what the scatter plots in Figure 13 represent, together with two sets of
covariance ellipses.
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Figure 13. Covariance ellipses of the successful Monte Carlo samples, taken on the 1 km altitude
horizontal plane. Both case A (red) and case B (blue dots) are displayed: together in the upper plot,
individually in the two lower plots.

The upper plot reports the distributions of the two cases together, with the aim point
of the South Pole visible. The two lower plots instead present the distribution of each
case individually. In all representations, the grey ellipses represent the 3σ covariance
of the estimated trajectory in the nominal scenario, while the remaining three ellipses
represent the three sigma levels of the successful Monte Carlo samples. The aspect ratio
and the orientation of nominal scenario covariance ellipses (the grey ones) are comparable
with those of the samples, thus providing a sensible expectation of the landing mission
dispersion ratios among the various components. The additional increment of the area is
associated with the introduced control error.

The 3σ uncertainty ellipses of these sample is characterised by a semi-major and semi-
minor axes of 11.7 m and 4.2 m for case A, and 14.0 m and 1.9 m for case B. In both cases,
the semi-major axis is mostly aligned with the XIAU_MOON axis.

This elongation is consistent with the nominal scenario errors presented in the previous
section, where most of the errors and dispersion were in the along-track component.
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Such effects, reflected in the navigation error as well, are also caused by the geometry
involving the user and some of the servicers that are visible in this specific time-frame.
Their LoS with respect to the South Pole (where the lander is practically placed) during
the few minutes of thrusted arc have a relatively large variation along the YIAU_MOON axis
and a practically null one along the XIAU_MOON axis, causing the y component to be much
more observable, thus with a reduced error.

Analysing instead the different failed samples, it is possible to say that the vast majority
of them failed by crossing the 1 km altitude prematurely. Even though such an outcome
is not desirable, it is possible to say that the failure is due to very high state discrepancies
between the desired and actual conditions at the beginning of the thrusted phase. Indeed,
by looking at Figure 14, it is possible to see the distribution of such an error at tS.

Figure 14. Histogram representation of the trajectory error at the beginning of the propelled phase
(t = tS) for case A (top, successful samples in dark violet, failed ones in pink) and case B (bottom,
successful samples in purple, failed ones in orange).

In particular, the two plots, the upper for case A and the lower for case B, present
histograms with differentiation between successful and failed samples with respect to
the control error at the start of the landing phase. Such errors are the consequence of
the imposed initial state dispersion to each Monte Carlo sample, which, as previously
highlighted, build up to high values quite easily. The outcome of this visualisation is able
to assess that, for the more aggressive controller, the basin of convergence is limited to an
initial error between 50 km, while for the milder controller of case B, such a boundary is
much larger, around 130 km. Both boundary values are very large, hinting that the proposed
approach is in any case feasible to provide reliable navigation to landing missions, even
though further optimisations in the control algorithms are still possible.

The histogram presented in Figure 15 reports instead the propellant mass consumption
of the successful samples for case A and case B, stressing again how the tuning parameters
of case B provide less expensive manoeuvres, with an upper boundary of approximately
∼30 kg, in contrast to the ∼50 kg of case A.

With such Monte Carlo analysis, we gained clear insights on the statistical behaviour
of the landing GNC strategy for both cases, which provide reasonable alternatives in the
trade-off between landing precision and robustness. In order to widen the robustness
analysis of such a GNC strategy, the Monte Carlo samples could be generated to include
other additional dispersed parameters. In particular, the presented analysis, with the goal
of being representative of a safe landing operation, considers only scenarios with very good
LNS visibility, with a total number of servicers reaching five before starting the propelled
phase. Such conditions are obviously forsaken when operationally such a critical stage
is planned; however, looking at the behaviour of this GNC architecture also at different
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epochs, thus with a worse visibility, could help in understanding the limitations of such an
approach and how to improve it.

Figure 15. Histogram representation of the required propellant mass for case A (dark violet) and case
B (purple).

5. Conclusions

The current paper analysed the performance obtained by a GNC scheme employing GNSS-
like signals from a Lunar navigation constellation to assist a landing mission. The current work
is presented as a continuation of previous manuscripts analysing the topic of Lunar navigation
constellations [14,16,20], where the specific case under study considers a landing mission to the
Lunar South Pole, a target of many programmed and identified space missions.

In particular, the lunar constellation optimised in [14] was exploited as a baseline
service for the navigation task of a South Pole landing mission. The presented GNC chain
comprises an offline optimised guidance to be used as a set-point for a reference tracking
PID controller. Two different controller tunings have been considered, one targeting
high landing precision (case A) and the other low propellant expenditure (case B). The
nominal results provided in both cases demonstrate very good performance, with final
navigation errors below 2 m and control errors around 56 m and 380 m for case A and case B,
respectively. Naturally, given the much larger control errors with respect to the navigation
ones, in both cases further improvements in the final landing precision can be obtained
with alternative and more refined control laws. A Monte Carlo analysis was performed to
assess the robustness of the proposed solutions and verify their success rate, considering
a 500 m accuracy threshold in the horizontal plane at 1 km altitude. The high-performing
case A provided a relatively low success rate of 51%, against the 86% of case B, which
also resulted in the lowest fuel mass expenditure. For this reason, it is overall advisable to
exploit the lower-performing tuning parameters.

Future works should look in the direction of improving the guidance and control
strategy, with the goal of combining the good pinpoint landing performance of case A with
the low propellant mass expenditure and the high robustness of case B.
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Abbreviations
The following abbreviations are used in this manuscript:
DEM Digital Elevation Model
DOP Dilution Of Precision
DTE Direct-to-Earth
ELFO Elliptic Lunar Frozen Orbits
EKF Extended Kalman Filter
ENU East–North–Up
GNC Guidance Navigation Control
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INS Inertial Navigation System
LNS Lunar Navigation Service
LLO Low Lunar Orbit
LME2000 Lunar Mean Equator at J2000
LPO Lagrange Point Orbits
LoS Line of Sight
ODTS Orbit Determination and Time Synchronisation
PID Proportional Integral Derivative
RF Radio Frequency
RWFM Random Walk Frequency Modulation
RMSE Root Mean Squared Error
SISE Signal In Space Error
SHE Spherical Harmonic Expansion
SRP Solar Radiation Pressure
WFM White Frequency Modulation
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