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We demonstrate that modulations of the stiffness properties of an elastic plate along a spatial
dimension induce edge states spanning non-trivial gaps characterized by integer valued Chern num-
bers. We also show that topological pumping is induced by smooth variations of the phase of the
modulation profile along one spatial dimension, which results in adiabatic edge-to-edge transitions
of the edge states. The concept is first illustrated numerically for sinusoidal stiffness modulations,
and then experimentally demonstrated in a plate with square-wave thickness profile. The presented
numerical and experimental results show how continuous modulations of properties may be exploited
in the quest for topological phases of matter. This opens new possibilities for topology-based waveg-
uiding through slow modulations along a second dimension, spatial or temporal.

I. INTRODUCTION

The search for topological phases of matter has reached
a mature state with multiple realizations across differ-
ent physical realms, including quantum1, electromag-
netic2,3, acoustic4–6 and elastic7 media. In mechanics,
topologically protected wave transport has been demon-
strated through analogues to the Quantum Hall Effect
(QHE)8–15, the Quantum Spin Hall Effect (QSHE)7,16–20

and the Quantum Valley Hall Effect (QVHE)21–24. The
rich underlying physics makes these robust waveguiding
mechanisms promising for applications in acoustic de-
vices or structural components designed to steer waves
or isolate vibrations.

Recently, topological phases have been explored in
systems of lower physical dimensions by exploiting syn-
thetic dimensions emerging from the exploration of rel-
evant parameter spaces25–28. Notable examples in-
clude the observation of edge states, commonly at-
tributed to two-dimensional (2D) QHE systems, in one-
dimensional (1D) quantum29, electromagnetic30, acous-
tic31,32 and mechanical33–35 lattices following the Aubry-
André-Harper model of interactions36,37. Also, four-
dimensional (4D) Quantum Hall phases have been real-
ized using 2D photonic lattices38 and ultracold atoms39,
while six-dimensional (6D) phases in 3D systems have
been theoretically investigated in28,40. In this context,
topological pumping has been pursued in a variety of
physical systems, whereby adiabatic transitions of edge
states are induced by smooth parameter variations along
spatial30,34,38,39,41–43 or temporal15,44 dimensions. While
previous experimental studies demonstrate pumping in
photonic lattices and cold atomic gases, a realization us-
ing elastic waves is currently missing.

In the quest for topological phases of matter, elastic
solids such as thin, elastic plates are promising platforms
due to the convenience they offer in terms of manufactur-
ing and testing, and their rich spectral properties which
are characterized by a large number of wave modes of
distinct polarizations20. At the same time, the abun-
dance of polarizations makes implementing topological

waveguiding in elastic plates a challenging and non triv-
ial development, when compared to acoustic4 and elec-
tromagnetic2,3 counterparts. Towards overcoming these
challenges and expanding the range of possibilities for
topology-based elastic waveguiding, topological pumping
is here experimentally demonstrated for the first time in a
continuous elastic plate. The investigations herein lever-
age prior work on discrete lattices of continuous elastic
waveguides34 whereby modulations of physical proper-
ties along a spatial dimension were shown to induce edge
states spanning non-trivial gaps. Smooth phase varia-
tions of the modulation profile along a second spatial di-
mension induce transitions of the edge modes from being
localized at one boundary, to a bulk mode, and finally
to a localized mode at the opposite boundary. In here,
harmonic stiffness modulation profiles are first investi-
gated to illustrate pumping numerically. Square-wave
thickness modulations are then employed in the experi-
mental demonstration of the concept. While the major-
ity of studies has so far focused on discrete lattice sys-
tems, our results provide a general strategy to achieve
topological pumping through continuous property mod-
ulations and open new paths towards exploring higher
dimensional topological phases exploiting higher dimen-
sions in continuous systems.

II. ANALAYSIS OF EDGE STATES AND
TOPOLOGICAL PUMPING IN MODULATED

PLATES

We consider elastic plates characterized by a bending
stiffness which is periodically modulated along the x di-
rection, i.e. D(x, y) = D(x + λm, y), where λm is the
modulation wavelength. Two configurations are inves-
tigated in this work (Fig. 1). The first one employs a
conceptual harmonic stiffness modulation of the form

D(x, y) = D0[1 + am cos(κmx+ φ(y))] (1)
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FIG. 1. Stiffness modulations and plate configurations. (a) Plate (shaded gray solid) characterized by a harmonic stiffness
modulation D(x, y) = D0[1 + am cos(κmx + φ(y))] (colored surface). The schematic illustrates a linear phase change from φi

to φf . (b) Schematic of plate with square-wave modulation of thickness h(x, y) = h0[1 + am sign(cos(κmx+φ(y)))]. The phase
also varies linearly from φi to φf . (c) Top view of modulation in (a) illustrating the shift of the profile characterized by a tilting
angle α. (d) Top view and perspective view (inset) of square wave modulated plate employed in experiments. The sample is
characterized by parameters λm = 1.6 cm, h0 = 4.7 cm, am = 0.38, Lx = 31.2 cm, Ly = 43.7 cm and phase varying linearly
from φi = 0.7π to φf = −0.7π.

where κm = 2π/λm, while am, and φ respectively denote
amplitude and phase of the modulation. The phase φ(y)
determines the stiffness value D(0, y) at the left bound-
ary of the plate. If smoothly varied along y, it produces
the tilted modulation profile shown in Figs. 1(a,c). This
choice follows previous work where sinusoidal modula-
tions define the coupling within continuous waveguides
in the context of topological adiabatic pumping34.

The second configuration corresponds to a thickness
profile h(x, y) described by a square wave of the form
(Fig. 1(b)):

h(x, y) = h0[1 + am sign(cos(κmx+ φ(y)))] (2)

which produces a periodic modulation of the plate bend-
ing stiffness according to the expression D(x, y) =
Eh(x, y)3/(12(1 − ν2)), where E, ν are respectively the
Young’s modulus, and the Poisson’s ratio of the plate ma-
terial. This choice is driven by fabrication considerations
in the experimental activities of this work.

The effects of the harmonic stiffness modulation
(Eqn. (1)) are investigated analytically by considering
Kirchhoff-Love’s plate theory45. According to the the-
ory, the harmonic motion at frequency ω, w(x, y, ω), in
the direction perpendicular to the plate plane x, y is gov-
erned by the following equation of motion:

[D (w,xx + νw,yy)],xx + 2 [(1− ν)Dw,xy],xy

+ [D (w,yy + νw,xx)],yy = ω2mw,
(3)

where (),q denotes a partial derivative with respect to q,
and m = ρh is the mass density. We investigate the dis-
persion properties of the plate ω = ω(κx, κy, φ), where
the phase modulation φ is explicitly denoted as a free
parameter. To this end, we impose plane wave solutions
w(x, y) = w(x)ejκyy, where w(x) =

∑
n ŵne

j(κx+nκm)x,
n = −N, ..,+N reflects the x-wise periodicity of the
plate. Application of the Plane Wave Expansion Method
(PWEM) (see Supplemental Material (SM)46), leads to
an eigenvalue problem in the form:

K(κx, κy, φ)ŵ = mω2ŵ, (4)

where K is the N × N stiffness matrix and ŵ =
{ŵ−N , ..., ŵN}T . Solution of the eigenvalue problem in
Eqn.(4) yields the dispersion properties, described in
terms of eigenvalues ωi and associate wave modes wi de-
fined by the components of the eigenvector ŵi.

We begin our study by evaluating dispersion along x,
for assigned values of κy. Results for κy = 0, shown
in Fig. 2(a), correspond to letting (),y = 0 in Eqn. (3),
which yields an expression akin to the equation govern-
ing the transverse motion of 1D elastic Euler Bernoulli
beams47. In Fig. 2(a), µx = κxλm, while Ω = ω/ω0 is a

non-dimensional frequency, with ω0 = κ2m
√
D0/m. The

results, obtained for am = 0.8, effectively correspond to
the dispersion characteristics of a family of 1D, decoupled
elastic beams characterized by stiffness modulations that
differ by the phase parameter φ. The dispersion eigenval-
ues feature two bands separated by a gap that remains
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constant with φ. Indeed, continuous shifts of the stiffness
along x can be interpreted as a translation of the λm-
periodic unit cell along x, which does not affect the eigen-
frequencies. However, these shifts do affect the eigenvec-
tors, as it is revealed by the analysis of the topology of the
bands. Such analysis relies on the evaluation of band’s
Chern number in the (µx, φ) ∈ T2 = [0, 2π] × [0, 2π]
space34,48, which is given by

C =
1

2πi

∫
D
∇× (w∗i · ∇wi) dD, (5)

where D = T2, ∇ = (∂/∂µx)eµx + (∂/∂φ)eφ and ()∗

denotes a complex conjugate. The Chern number is
evaluated numerically over a discretized (µx, φ) space ac-
cording to the procedure described in49, which gives the
label assigned to the first band in Fig. 2(a). A label
for a gap r is then assigned by computing the algebraic
sum of the Chern numbers of the bands below it34,48,

i.e. C
(r)
g =

∑r
n=1 Cn, which yields Cg = 1 for the gap

considered in Fig. 2(a). In finite structures, a non-zero
gap label signals the presence of topological edge states
spanning the associated gap as a result of a parameter
sweep. The existence of an edge state as φ varies in the
[0, 2π] range is verified by computing the spectral prop-
erties of a plate bounded along the x direction, which
are evaluated by constructing an eigenvalue problem sim-
ilar to that of Eqn. (4), where a solution of the kind
w(x, y) = ejκyy

∑
n ŵn sin(nπxLx

), n = 1, .., N is imposed
to satisfy the conditions at the plate x-boundaries, i.e.
w(x = 0, Lx; y) = w,xx(x = 0, Lx; y) = 046. Figure 2(b)
shows the modes of a finite plate of length Lx = 20λm
as a function of φ, for κy = 0. The modes (black solid
lines) belonging to the bulk bands, which are shown for
reference as the shaded gray regions, do not vary as a
function of φ. An additional mode (red line) traversing
the gap and varying with φ corresponds to a topological
edge state localized at either the left or right boundary
depending on the value of φ, with the right (left) local-
ization of the mode being denoted by the solid (dashed)
red line. The transition of the edge state with variations
of φ is related to the gap label Cg = 1. In particular,
its absolute value |Cg| = 1 indicates that the edge state
traverses the gap once for φ ∈ [0, 2π], while its positive
sign relates to a left-to-right transition that occurs when
the branch of the edge state touches the upper boundary
of the gap at φ = π. Representative left-localized (point
I) and right-localized modes (point III) are displayed
in Fig. 2(c), along with the mode extending to the bulk
in correspondence to the branch touching the bulk band
(point II). These observations are in agreement with the
behavior of edge states and their correspondence to the
gap labels in discrete lattices34,48.

Next, we discuss the dispersion properties for values
κy 6= 0. These values do not affect the structure of the
eigenvalue problem in Eqn. (4), and only introduce a fre-
quency shift. This is illustrated in Fig. 2(d) which dis-
plays the dispersion of a modulated plate with am = 0.8.

The two bands are denoted by the shaded gray volumes,
which are spanned for µx ∈ [0, π]. Their variation in
terms of µy = κyλm and φ illustrates the presence of a
separating gap at frequencies that increase monotonically
with µy. The modes of a finite plate with Lx = 20λm
populate these bulk bands, here omitted for simplicity,
and also include a mode spanning the gap, which is rep-
resented by the red surface in the figure. The red lines
superimposed at µy = 0 illustrate the transition expe-
rienced by the edge state as in Fig. 2(b), which now
occurs as a function of µy along the entire surface of
the edge state. To further confirm the topological prop-
erties, the Chern number and gap label as previously
defined are evaluated as a function of µy in discretized
(µx, φ) ∈ T2 = [0, 2π] × [0, 2π] spaces, which yields the
labels in Fig. 2(d). This result is expected from values
µy 6= 0 not affecting the dispersion topology.

The transitions of the edge states can be exploited
to implement a topological pump that employs an adi-
abatic (slow) variation of φ along a second dimen-
sion30,34,44,50. For a finite plate of length Ly , we con-
sider a smooth, linear phase modulation of the kind

φ(y) = φi

(
1− y

Ly

)
+ φf

y
Ly

(Fig. 1(a)). A top view

of a representative harmonic stiffness modulation is dis-
played in Fig. 1(c), where a positive tilting angle α =
tan−1 (− (φf − φi) / (κmLy)) resulting from a choice with
φi > φf is illustrated. We first demonstrate topolog-
ical pumping numerically by considering a plate with
Ly = 3Lx and phase variation with φi = 0.5π and
φf = 1.5π. These values cause the edge states to tran-
sition from the left boundary to the right boundary. To
verify this, we compute the forced response of the plate
when harmonically excited by a distributed force per
unit area q(x, y, t) = f(x)δ(y − ye)eiωt. The force is ap-
plied near the bottom boundary (ye = λm/2), and has
a spatial distribution f(x) that corresponds to the left-
localized edge state obtained for φi = 0.5π (see Mode I in
Fig. 1(c)). This favors the excitation of the desired topo-
logical mode, while minimizing the contribution from
bulk modes co-existing at the same frequency. The re-
sponse of the plate is evaluated through a Galerkin47 ap-
proximation of the displacement field w(x, y), similar to
that employed to obtain the modes of the finite plate
(see details in SM46). The response of the plate for an
excitation frequency of Ω = 10.97 (Fig. 2(e)) consists of
a topological pump whereby energy is transferred from
the bottom left boundary to the upper right boundary of
the plate via an edge state transition. Additional exam-
ples are reported in the Supplementary Material (SM)46.
The topological pumping results from an adiabatic evo-
lution along the wavenumber branch of the edge state at
a given frequency34, which is illustrated for the pump of
Fig. 2(e) by considering a cross-section of the dispersion
diagram at frequency Ω = 10.97 (blue plane in Fig. 2(d)).
The results in Fig. 2(f) are displayed for φ ∈ [0.5π, 1.5π],
which is the interval considered for the phase modula-
tion φ(y). Shaded gray areas correspond to the intersec-
tion between the blue plane and the bulk bands (shaded
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Dispersion properties and topological pumping for elastic plate with harmonic stiffness modulation D(x, y) = D0[1 +
am cos(κmx+ φ(y))]. (a) Dispersion surfaces Ω(µx, φ) for µy = 0 showing two bands separated by a gap, with information on
Chern numbers and gap label. (b) Frequency spectrum of finite plate with Lx = 20λm and µy = 0 as a function of φ: black lines
corresponding to finite structure modes are superimposed to the bulk bands (shaded gray regions), while an edge mode (red
line) spans the gap. (c) Representative modes for left-localized, bulk and right-localized modes, corresponding to the points
marked in (b). (d) Variation of the finite plate spectrum in (b) as a function of µy. The red surface represents the dispersion
of the edge state, while shaded gray volumes are the bulk bands. The red line at µy = 0 highlights the transition of the edge
state from left-localized (dashed) to right localized (solid) that occurs at φ = π. (e) Steady-state response |w(x, y)| of the
modulated plate at frequency Ω = 10.97, where the associated colormap also represents normalized displacement. Topological
pumping occurs through a transition of the edge state from left-localized (φi = 0.5π) to right localized (φf = 1.5π) due to the
phase modulation φ(y) = φi → φf . (c) Cross section of dispersion diagram in (d) at frequency Ω = 10.97 as a function of
φ ∈ [0.5π, 1.5π]. Black and red lines respectively denote bulk and edge modes of the finite plate. The contours represent the
spectrogram of the displacement field |ŵ(y, µy)|, revealing that pumping occurs through a transition along the wavenumber
branch of the edge state.

gray volumes) of Fig. 2(d), and represent the dispersion
bands µy(Ω = 10.97, φ) occupied for µx ∈ {0, π}. These
bands are populated by modes of the finite plate with
Lx = 20λm (solid black lines), while the intersection be-
tween the blue plane and the red surface in Fig. 2(d)
defines the edge state (red line) that spans the gap as
a function of φ. The previously described forcing pro-
file selectively excites the left-localized edge state (for
φi = 0.5π) at the bottom boundary of the plate, while a
smooth phase modulation φ(y) = φi → φf drives the left-
to-right transition of the edge state along y, which occurs
along the branch defined by the red lines in Fig. 2(f). We
verify such transition by computing 2D Fourier Trans-
forms (FT) while performing an appropriate windowing
of the displacement field to capture wavenumber changes

along y. The procedure consists on pre-multiplying the
displacement field w(x, y) by a Gaussian window cen-

tered at y = y0, i.e. G(x, y) = e−(y−y0)
2/2c2 , where c is a

parameter controlling the Gaussian’s width. A FT oper-
ation then quantifies the displacement field in reciprocal
space ŵ(y0, µx, µy) around the location y = y0. The de-
pendence of µx is then eliminated by taking the L1 norm
along µx, which produces ŵ(y, µy). The corresponding
spectrogram, obtained for c = 0.07, is displayed in the
form of contour plots in Fig. 2(f), where the colors repre-
sent the normalized magnitude of the displacement field
|ŵ(y, µy)|. The procedure confirms that energy remains
concentrated on the wavenumber branch of the edge state
according to the modulation φ(y), which characterizes
the topological pump displayed in Fig. 2(e).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

FIG. 3. Dispersion properties and experimental observation of topological pumping in plate with square-wave modulation of
the thickness h(x, y) = h0[1 + am sign(cos(κmx + φ(y)))]. (a) Dispersion properties and edge state (red surface) for a finite
plate with Lx = 31.2cm and free-free boundary conditions along x. Bulk bands are represented by shaded gray volumes, along
with Chern number and gap labels information. (b) Detail of dispersion for φ ∈ [−0.7π, 0.7π], corresponding to the interval
considered for the phase modulation of thickness. The experimentally measured frequency response spatially averaged over the
plate surface is displayed alongside the dispersion. Each resonant peak defines a wavenumber branch highlighted by dashed
and solid red lines in the dispersion surface, along which topological pumping occurs at the corresponding frequency. (c-e)
Experimentally measured velocity field |ẇ(x, y)| for selected resonant peaks II, IV and V . The transitions from localization at
the left-boundary to localization at the right-boundary that characterize topological pumping are quantified by the spectrograms
displayed in (f-h), which confirm that energy is concentrated around the wavenumber branches of the edge states.

III. EXPERIMENTAL OBSERVATION OF
TOPOLOGICAL PUMPING IN
SQUARE-MODULATED PLATE

Topological pumping is experimentally demonstrated
in a plate with square-wave thickness modulation

h(x, y) = h0[1 + am sign(cos(κmx+φ(y)))] with modula-
tion parameters λm = 1.6 cm, h0 = 4.7 cm, am = 0.38,
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φi = 0.7π and φf = −0.7π (Fig. 1(b)). The plate is rect-
angular of dimensions 31.2 cm × 43.7 cm, and it is made
of aluminum (Fig. 1(d)). A linear phase modulation pro-
duces the tilted thickness profile in Fig. 1(d).

The plate dispersion properties are computed using a
Finite Element (FE) model implemented in the COM-
SOL Multiphysics environment46. The computations
provide information on all wave modes, whose polariza-
tions are tracked by computing a polarization factor20

that quantifies the relationship between in-plane (u, v)
and out-of-plane (w) components of the displacement
field. The polarization factor is employed to discriminate
and isolate out-of-plane polarized wave modes, which are
weakly coupled to the in-plane ones. We compare the re-
sults to experimental data consisting of the out-of-plane
velocity field ẇ(x, y, t) of the plate’s surface measured by
a scanning laser Doppler vibrometer (SLDV) (see details
in SM46).

The numerically computed dispersion relations are
shown in Fig. 3(a), where, as previously, the red sur-
face corresponds to the edge state, while the shaded
gray volumes denote the bulk bands. Similar to the
case of harmonic modulation, the existence of an edge
state spanning the gap is associated with the non-trivial
band topology identified by integer-valued Chern num-
bers. Chern numbers and gap labels are numerically
evaluated using the Bloch modes obtained through the
FE model according to the procedure outlined in SM46,
which yields the labels displayed in Fig. 3(a). We find
that the first spectral gap produced by the square modu-
lation is also characterized by a gap label Cg = 1, which
signals a left to right transition of the edge state, again
highlighted by the dashed and solid red lines at κy = 0.
This transition occurs at φ = π along the entire surface
of the edge state, which is consistent with constant val-
ued Chern numbers evaluated as a function of κy in the
considered frequency range (f ∈ [0, 40] kHz). Figure 3(b)
displays a zoomed view of the dispersion in Fig. 3(a) for
φ ∈ [−0.7π, 0.7π], with the observation that the interval
[−0.7π, 0] coincides with [1.3π, 2π] due to the periodicity
with φ. This interval corresponds to the phase modula-
tion of the manufactured plate, i.e. from φi = 0.7π to
φf = −0.7π, which exhibits the transition of the edge
state occurring at the bottom boundary of the gap.

The experiment is conducted by clamping the plate at
its bottom right boundary while excitation is induced by
a pair of piezoelectric ceramic patches attached to the
bottom left boundary46. The patches are connected to
opposite electrical poles, which induces an out-of-phase
(dipole) excitation that favors the excitation of the left-
localized topological mode (for φi = 0.7π), while reduc-
ing the contribution from bulk modes. The forced fre-
quency response function, corresponding to the response
spatially averaged over the plate surface, is displayed
alongside the dispersion surfaces. The finite size of the
plate introduces a series of resonant peaks that are ob-
served in the frequency range within which the edge state
exists. At these frequencies, topological pumping is ob-

served through a transition along the wavenumber branch
of the edge state, as illustrated by the dashed and solid
red lines in Fig. 3(b), respectively denoting left and right
localized modes. The measured velocity fields for three
selected resonant frequencies are displayed in Figs. 3(c-e),
where transitions from left to right localization charac-
terizing the pump can be observed. For each of those
recorded responses, a spectrogram is computed as de-
scribed in Section II and displayed in Figs.3(f-h), which
confirms the transition along the wavenumber branch
corresponding to the edge state. We remark that for the
first peaks, such as in the case reported in Fig.3(c), the
edge state is only defined within a restricted domain of
the parameter space. In such cases, pumping still occurs
through the wavenumber branch of the edge state, but is
defined in a shorter spatial domain centered at the mid-
portion of the plate, as confirmed by the spectrogram of
Fig.3(f) corresponding to the pump of peak II.

The results reported in Fig. 3 confirm the exis-
tence of steady-state topological pumping in the square-
modulated plate occurring for several operating frequen-
cies within [25, 30] kHz, while populating the dispersion
surface associated with the edge state. The potential of
the modulated plate as a waveguiding platform is further
demonstrated by realizing topological pumping in a tran-
sient regime. To that end, an excitation in the form of a
7−cycle sine burst signal of center frequency f = 26.7kHz
is employed, which aims at transporting energy through
the pump defined by peak IV in Fig. 3(b). Figure 4 dis-
plays the measured velocity wavefield in the modulated
plate at three subsequent time instants: a clear transi-
tion from left-localized wave (a), to bulk wave (b), and
finally to right-localized wave propagation (c) is observed
consistent with the expected topological pumping behav-
ior. A video animation of the full transient response is
provided in SM46.

IV. CONCLUSIONS

In this paper, we present the first experimental demon-
stration of topological pumping in continuous elastic
plates. We illustrate a simple design principle based
on continuous property modulations which can be em-
ployed to induce the existence of topological edge states
and drive their edge-to-edge transition. The results also
provide opportunities for exploring higher dimensional
physics in mechanics by exploiting synthetic dimensions
in parameter space, which can be mapped to real spatial
or temporal dimensions. These concepts have implica-
tions of technological relevance for applications involv-
ing elastic wave manipulation, such as guiding of bulk,
surface and guided waves in acoustic devices, ultrasonic
imaging and nondestructive evaluation.
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(a) (b) (c)

FIG. 4. Experimental observation of transient topological pumping in square-modulated plate. Figures (a-c) displays snapshots
of the measured velocity field for three subsequent time instants, where the transition from left-localized (a), to bulk (b), and
finally to right localized mode (c) as the wave propagates along y can be observed.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from
the National Science Foundation (NSF) through the

EFRI 1741685 grant and from the Army Research office
through grant W911NF-18-1-0036.

1 M Zahid Hasan and Charles L Kane. Colloquium: topo-
logical insulators. Reviews of Modern Physics, 82(4):3045,
2010.

2 Ling Lu, John D Joannopoulos, and Marin Soljačić. Topo-
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