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Abstract

We propose a formulation to derive a reduced order model for geometric nonlinearities which is shown to be

valid for a set of parametrized defects. The latter are imposed in terms of the superposition of precomputed

perturbations of the nominal structure’s 3D-mesh, and parametrized by their amplitudes. A reduced order

model is then built once and for all using these defect shapes and the nominal model information only. A

suitable reduced order basis is introduced as well in order to effectively represent the influence of the defects

on the dynamics of the structure. In contrast to many nonlinear parametric reduced order models, the one we

propose does not need any previous training of the model in the parameter space. In this way, prohibitively

expensive full order simulations can be avoided and offline times are greatly reduced. Numerical tests are

performed on a MEMS resonator and a silicon micro-beam to study the effect of shape imperfections on the

dynamic response of the system.

Keywords: nonlinear modeling, reduced order models, continuum elements, parametric, geometric

nonlinearities, defects

1. Introduction

The Finite Elements Method (FEM) is arguably one of the most popular analysis tool in a wide range

of scientific and engineering fields. Nowadays many commercial software offer increasingly elaborate sim-

ulation packages which may even include multi-physics. Such programs usually come along with powerful

Computer-Aided Design (CAD) environments which allow the representation of very complex systems, a5

crucial requirement in many disciplines. In mechanical engineering, very large FE models, counting several

hundred thousands or even millions of degrees of freedom (dofs), are not rare. This fact leads to the necessity

of Reduced Order Models (ROM) as a mean to alleviate computational burden and times.

Reduced Basis methods represent perhaps the most well-know and widespread way to come up with such

ROMs. Loosely speaking, these approaches consist in selecting a suitable and reasonably small collection10

of vectors (the reduced basis) to approximate the full solution of the problem, of dimension N, with a M-

dimensional reduced solution, where M is the number of basis vectors and M�N. From this point onward, to
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compute a ROM one could follow a number of techniques, which largely depend on the availability of data

(e.g. results coming from previous simulations), on the accessibility to the (FE) model and solvers, on the

specific problem under study and on the physics involved (e.g. mechanics, fluid dynamics, thermal analysis).15

Historically, in structural mechanics, modal analysis [1] has always been the most popular reduction

method for linear dynamic simulations, where Galerkin projection is used to reduce the high dimensional

space of the full structural model (often referred to as High Fidelity Model, HFM) to a low-dimensional

space spanned by the Vibration Modes (VMs, i.e. the eigenvectors of the linear system, also known as

natural modes) included in the projection basis. Substructuring techniques are also widely exploited, where20

the model is divided in multiple subsystem which can be independently reduced to be later assembled back

together [2, 3, 4, 5].

In the context of nonlinear dynamics, the problem of running large FE models is way more severe than in

a linear environment. However, even if resorting to model order reduction is almost mandatory, rigorous tools

to do so are still object of research today. For this reason, in last years a huge effort has been made to develop25

nonlinear ROMs for a number of applications, ranging from contacts [6, 7], gears [8], bolted junctions [9] and

flexible multi-body dynamics [10, 11] to geometric nonlinearities [12]. The latter topic will be the focus of this

work. In spite of the fact that no unique or widely accepted technique has been established over the others,

literature is mature enough to offer the analyst an ample range of choices to cope with the main challenges

of model order reduction, namely, the selection of a Reduced Order Basis (ROB) and of an efficient way30

to compute reduced nonlinear generalized forces. With reference to the latter problem, three main options

are available. A first way to proceed is to directly compute all the (modal) coupling stiffness coefficients

(quadratic and cubic terms), task that can be accomplished through non-intrusive methods (i.e. not relying

on low-level FE formulations, e.g. ICE - Implicit Condensation and Expansion method, where coefficients

are identified from a set of static analyzes [13]) or through intrusive methods (i.e. where FE formulation35

must be available for manipulation [14]). Either ways, internal forces assume a polynomial form and can be

directly evaluated, so that assembly of internal forces and tangent stiffness matrix is no longer required. A

second option would be to resort to the so called hyper-reduction techniques, where the full internal force

vector is obtained by computing forces on an extremely small set of elements only. This usually comes to

the expense of relevant offline times, as the full solution is required to obtain the training vectors needed to40

identify the aforementioned set of elements. In a recent work [15], a method has been proposed to alleviate

this problem by substituting this full nonlinear solution with a linear one, while in [16] an adaptive a priori

approach is described. Last but not least, in the case of linear elastic material constitutive law, one may

recognize that explicitly writing internal forces in terms of displacements leads to a third order polynomial,

whose coefficients can be pre-computed and stored in second, third and fourth order tensors. This (intrusive)45

tensorial approach is the one we will adopt in this work, and it is crucial for our method. As for the problem

of the ROB selection, again, many choices are possible. An extension of the popular Rayleigh-Ritz approach

is given in [17], while an extensive review of basis vectors can be found in [18], where dual modes, a careful
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selection of VMs and Proper Orthogonal Decomposition (POD) are discussed. In [19], an ad hoc recipe is

given to find a suitable VM basis in the case of a circular cylincrical shells, even in presence of moderate50

imperfections. Here, however, we will make use Modal Derivatives (MDs) [20, 21], since they feature a set of

advantages which make them better fit to our purposes, as it will be detailed later in Section 4.

All of the methods discussed above usually refer to a model of a structure whose geometry is well defined

without uncertainty, model that in the remainder we will address to as the nominal model. In some circum-

stances however, it may be relevant to assess how a structure behaves in presence of shape defects. This is55

the case for instance of MEMS devices, whose dynamic response is usually strongly affected by the presence

of manufacturing defects [22, 23]. Stochastic analysis is therefore often required to assess performances, and

a Monte Carlo approach, where simulations are repeated for each and every set of randomly generated pa-

rameters, is usually the way to go. In terms of FE, a shape defect can be modeled by changing the nominal

geometry and remeshing, or directly applying a transformation to the nodal coordinates of the nominal mesh.60

After the new mesh is obtained, matrices can be built and simulations performed. This procedure, with its

variants, is already expensive for linear FE analysis, and for nonlinear analysis is simply inconceivable.

Two possible strategies can be used to address this problem. The first would be to resort to the family of

the so called reanalysis techniques, which basically consist in exploiting a full, known response of a nominal

structure to compute an approximate solution for the same structure with some kind of modification in65

geometry, mechanical properties or applied loads. Combined Approximations (CA) and Virtual Distortion

Method (VDM) are two popular methods out of many available in literature [24]. To the authors’ knowledge

however, though these methods usually address material nonlinearity both for statics and dynamics [25],

when it comes to geometric nonlinearities they address static problems only [26, 27], usually by alleviating

the computational effort during Newton-Raphson equilibrium iterations.70

The second option is to resort to to parametric ROMs (PROM). Again, as for ROMs, theory is well

developed for linear analysis. Moment-matching is a popular strategy, where basically the (n-th) derivatives

of the system equations with respect to the parameters (n-th moments) between the full and reduced models

are required to match [28, 29, 30]. An extensive survey of existing (projection-based) methods for parametric

reduced order models is given in [31], covering the issues of a proper selection of the ROB (e.g. mode-75

matching, POD), of the very construction of the model (e.g. global and local bases, basis/subspace/model

interpolation) and of a correct sampling of the parameter space.

Parametric model order reduction for nonlinear problems is instead a field still in constant evolution, but

which already displays a wide number of solutions. Most of these methods are again ROB based. However,

while in many circumstances one can construct a ROB for nonlinear non-parametric ROMs and/or linear80

parametric ROMs just by exploiting information about the model, nonlinear PROMs usually rely upon a

number of HFM simulations (or experimental data, if available) for the construction of the reduced model

itself [6, 31]. Due to the way they are obtained, these two groups of ROMs are sometimes referred to

as model-driven (or data-free) and data-driven, respectively. Hybrid solution are also possible, of course.
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Then, nonlinear PROMs are (mostly) data-driven methods. The first step usually consists in sampling85

the parameter space at some locations (selected randomly, via greedy search algorithm, Latin Hypercube,

Smolyak sparse grid, to name a few). The HFM solutions corresponding to these set of parameters are

computed in a second phase. Following, a ROB is obtained performing a POD. This latter indeed features

some nice properties, such as optimality of the (spatial) reduction basis and error bound. One can then use

the basis obtained in this way directly [6] or use interpolation approaches between the available (trained) full90

solutions and/or bases in the parameter space to compute a new response for a new (untrained) parameter.

Interpolation approaches are also used to approximate the nonlinear reduced terms [32, 33, 34]. Interpolation

on Grassman manifold via tangent spaces is another popular option [35, 36], and data-regression techniques

are also available. In [37] for instance, the CUR method was expanded to handle parametric dependence

by building multidimensional interpolation functions for car crash simulations. At multiple stages, however,95

this method requires the expert’s judgment and a good knowledge of the system under study (this is however

justified, if not even desirable, in an industrial context).

While in [38, 39] ROM were sought to describe localized defects, the present work aim is to develop a

nonlinear ROM to represent shape defects “parametrically”, though this word assumes here a slightly different

meaning than in the context depicted above. Rather than having a parameter describing a property or a100

physical dimension of the structure (e.g. density, length, width), here the parameter will define the amplitude

of a shape representing the defect. More precisely, the defect will be given by the linear superposition of

precomputed shapes, whose amplitudes are regulated by a parameter vector. Such defect shapes can be of

any kind, as long as compatible with the boundary conditions of the nominal geometry. The final ROM,

in tensorial form, will then be a function of the parameter vector, and will be able to describe any (small105

enough) variation of the system from the nominal geometry. Thus, to study a different defected configuration,

remeshing will not be required anymore, as the defects will be embedded in the ROM formulation itself. To

obtain such a model, an alternative expression for strains is required. This formulation was used by Budianksy

to investigate post-buckling behavior of imperfect structures in Koiter analysis [40, 41]. Basically, it relies on

the treatment of defects as additional fictitious displacements. The technique proved successful in a number110

of other works, as for instance in deriving the natural frequencies of imperfect beams and shells [42, 43] or

to develop a ROM for buckling in presence of imperfections [44].

To summarize, the model-driven method we propose aims to provide a fast and versatile tool to aid the

design phase of structures subject to known shape defects. Even if many domain mappings are available in

literature to parametrize a geometry (see for instance [45], where free form deformations (FFD) are used),115

these shape defects are introduced in the strain formulation in order to be able to treat them as they were

displacements. With respect to most methods already available in literature, which rely upon the sampling

of the parameter space through multiple and highly expensive full simulations, this PROM requires only the

nominal geometry of the structure and a set of user-defined shapes representing the defects. Without the need

for training, offline costs to compute the model are therefore heavily cut down, while online computations120
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are extremely fast thanks to the explicit (tensorial) expression of the nonlinear internal forces. Moreover, in

contrast to data-based methods that usually are valid only for a particular loading case (unless the load itself

is included as a parameter to train), the obtained ROM can be run for an arbitrary number of different load

cases (within the frequency validity range). Of course, the aforementioned benefits come at the expenses of

intrusiveness and with the restrictions of small defects and of geometrical nonlinearities, whereas data-driven125

solutions have wider applicability. Moreover, it should also be mentioned that the presented model does not

exhaustively address all the problems that may arise in connection to the presence of defects. In particular,

residual or locked-in stresses are not taken into account in the present formulation.

The work is organized as follows: Section 2 will describe the procedure by which the defects are introduced

in the nominal model as fictitious displacements, leading to a new form of the internal forces, without the130

need of reconstructing the full model for the structure afflicted by the imperfections. In Section 3 the new

internal forces are explicitly written in a tensorial fashion (and directly in reduced form), featuring additional

terms which depend on the selected set of defect-shapes. Section 4 will discuss suitable ROBs for the model

at hand and will introduce a new kind of reduction shapes, representing defect-sensitivities, to enrich the

projection basis. Nomenclature and procedures for the following numerical studies are introduced in Section135

5. In Section 6 the model is validated on a test structure, representing a MEMS resonator, over a range

of selected relevant defects, while in Section 7 a shallow arch is presented as a second example. Finally, in

Section 8 conclusions are drawn.

2. Modified strain formulation

As already introduced in the previous section, the method we present here relies on the same procedure140

adopted by Budiansky in [40]. Its core assumption is to think of the defects as fictitious displacements to

impose to the nominal structure (i.e. without defects). Strains associated to these defects produce non-

physical stresses that need to be removed. We will make use of Budiansky’s notation to better illustrate the

concept.

Suppose that, under loading, a structure displaces by u. Introducing the linear and quadratic functionals145

L1 and L2, the strain can be written as

ε(u) = L1(u) +
1

2
L2(u). (2.1)

By considering a fictitious displacement d representing the defect, the total strain, as described earlier, is

given by

εtotal ≈ ε′ = ε(u+ d)− ε(d) = L1(u+ d) +
1

2
L2(u+ d)− L1(d)− 1

2
L2(d)

= L1(u) +
1

2
L2(u) + L11(u, d),

(2.2)

where L11 is a bilinear functional operator defined as L2(u+ d) = L2(u) +L11(u, d) +L2(d), and where ε(d)

is the strain due to defects only.150
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From Eq. (2.2) it can be seen how an additional bilinear term in the strain expression appeared, depending

on the defect. Corresponding internal forces will arise as well, allowing the parametrization of the model, as

it will be later shown in Section 3.

In the following, these arguments - until now reported only in general terms, are applied to the case of

tri-dimensional continuum mechanics and finite element discretization.155

2.1. Continuum formulation

Let us consider a material point of final coordinates X = {X, Y, Z} after deformation, defined as

X = x + u + ud, (2.3)

being x = {x, y, z} the initial coordinates, u = {u, v, w} the “real” displacement vector and ud =

{ud, vd, wd} the vector of small fictitious displacements corresponding to the defect along the three directions.

According to continuum mechanics [46], we can define a strain measure considering the stretching of a160

line element undergoing the displacement u + ud. Differentiating Eq. (2.3) we obtain

dX =
∂X

∂x
dx =

∂(x + u + ud)

∂x
dx = (I + D + Dd)dx = (F + Dd)dx, (2.4)

where I,D,Dd,F ∈ R3 × 3 are the identity matrix, the (real) displacement-derivative matrix, the fictitious

displacement-derivative matrix and the deformation gradient respectively. The stretch then is given by

dS = dXTdX− dxTdx. (2.5)

In our case however, we have first to remove the stretch associated to the defect only. Defining

Xd = x + ud , (2.6)

and differentiating165

dXd =
∂Xd

∂x
dx =

∂(x + ud)

∂x
dx = (I + Dd)dx, (2.7)

we can define the stretch due to the defects only as

dSd = dXT
d dXd − dxTdx, (2.8)

so that the total stretch is obtained subtracting Eq. (2.8) from Eq. (2.5) as

dS ′ = dXTdX− dXT
d dXd = dxT (FTF− I)dx︸ ︷︷ ︸

nominal structure

+ dxT (DT
d D + DTDd)dx︸ ︷︷ ︸

mixed terms due to defects

= 2(dxTE2dx), (2.9)

where the contributions coming from the nominal structure and from the defects have been highlighted and

where E2 is a modified version of the Green-Lagrange strain (second order) tensor. In particular, we can

write170

E2 =
1

2
(DT + D)︸ ︷︷ ︸

El
2

+
1

2
DTD︸ ︷︷ ︸
Eq

2

+
1

2
DT

d D +
1

2
DTDd︸ ︷︷ ︸

Ed
2

, (2.10)
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being El,q,d
2 the linear, quadratic and (bilinear) defect-related strain tensors respectively. Notice how Eq.

(2.10) has the same structure predicted by Eq. (2.2). Using Voigt notation1, the strain components can be

written as

E1 = El
1 + Eq

1 + Ed
1 =



εxx

εyy

εzz

γxy

γxz

γyz


=



ux

vy

wz

uy + vx

uz + wx

vz + wy


+



1
2 (u2x + v2x + w2

x)

1
2 (u2y + v2y + w2

y)

1
2 (u2z + v2z + w2

z)

uxuy + vxvy + wxwy

uxuz + vxvz + wxwz

uyuz + vyvz + wywz


+

+



uxud,x + vxvd,x + wxwd,x

uyud,y + vyvd,y + wywd,y

uzud,z + vzvd,z + wzwd,z

(ud,xuy + uxud,y) + (vd,xvy + vxvd,y) + (wd,xwy + wxwd,y)

(ud,xuz + uxud,z) + (vd,xvz + vxvd,z) + (wd,xwz + wxwd,z)

(ud,yuz + uyud,z) + (vd,yvz + vyvd,z) + (wd,ywz + wywd,z)


, (2.11)

where u? = ∂u/∂? and ud,? = ∂ud/∂? (with ? = x, y, z) are the displacement derivatives with respect to the

nominal initial configuration (similar definitions for v? vd,? and w? wd,? hold).

The virtual work of internal forces can be written as

Wint =

∫
Vo

ST1 δE1dVo =

∫
Vo

S2 : δE2dVo, (2.12)

being ST1 = {σxx , σyy , σzz , τxy , τxy , τyz} the Piola-Kirchhoff stress vector and S2 the corresponding tensor,

the symbol “:” denoting double contraction. The integration volume is denoted by Vo. The virtual strain175

change is:

δE2 =
1

2
FT δD +

1

2
δDTF +

1

2
δDT δD︸ ︷︷ ︸
h.o.t.

+
1

2
DT

d δD +
1

2
δDTDd, (2.13)

where higher order terms can be neglected for infinitesimal virtual displacements and where δDd = 0, being

the defect given.

In principle, since we are operating in a Lagrangian environment and we are defining all quantities with

respect to the nominal configuration, the external work should be modified through push-forward/pull-back180

operations, depending if one defines the forces in the nominal or in the deformed configurations, respectively.

This way, the changes induced by the defects on locations, areas and/or volumes onto which the external

forces are applied would be correctly addressed. In the present work though we assume that the change

between the two configurations is small, and therefore these aspects are neglected.

1We will use subscript 1 to denote Voigt notation, 2 to denote second order tensors.
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2.2. Finite Element Formulation185

Let us consider now a structure discretized using 3D-continuum elements and having n nodes per element.

We define the displacement derivative vector and the defect derivative vector as

θ ∈ R9 : θ = {ux uy uz vx vy vz wx wy wz}T = Gp, (2.14)

θd ∈ R9 : θd = {ud,x ud,y ud,z vd,x vd,y vd,z wd,x wd,y wd,z}T = Gd, (2.15)

respectively, where p ∈ R3n is the nodal displacement vector of one element, d ∈ R3n is the nodal defect-

displacement vector, and G is a matrix collecting the shape function derivatives with respect to physical190

coordinates. Recalling Eq. (2.11), we can define the strain vector as

E1 = El
1 + Eq

1 + Ed
1 = Hθ +

1

2
A(θ)θ + A(θ)θd =

(
H +

1

2
A(θ) + A(θd)

)
θ, (2.16)

where

H =



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0


, A(θ) =



ux 0 0 vx 0 0 wx 0 0

0 uy 0 0 vy 0 0 wy 0

0 0 uz 0 0 vz 0 0 wz

uy ux 0 vy vx 0 wy wx 0

uz 0 ux vz 0 vx wz 0 wx

0 uz uy 0 vz vy 0 wz wy


. (2.17)

Notice that in Eq. (2.16) the property A(θ)θd = A(θd)θ was exploited. For more details, the reader is

referred to literature [46].

From Eq. (2.16), virtual strain variation writes195

δE1 = (H + A(θ) + A(θd))Gδp = Bδp, (2.18)

where B is the strain-displacement matrix and, again, δθd = 0. Recalling Eq. (2.12), the internal virtual

work writes

Wint = δpT
∫
Vo

BTS1dVo = δpT fint (2.19)

while the internal force vector is given by

fint =

∫
Vo

BTS1dVo =

∫
Vo

BTC1E1dVo, (2.20)

where Hook’s law S1 = C1E1 has been introduced, being C1 the elastic constitutive matrix. From here on,

one can take again the variation of internal forces and write an expression for the tangent stiffness matrix,200

which will include some additional terms generated by the defect.
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3. Tensorial approach

In this section we derive the (element-level) tensors required to explicitly write the internal forces (and

consequently the tangent stiffness matrix). Following Eq. (2.20), writing each term explicitly yields

fint =

∫
Vo

GT (H + A + Ad)
T

C1

(
H +

1

2
A + Ad

)
p dVo, (3.1)

where Ad = A(θd). Equation (3.1) can be split into the following contributions

f (n,1) = GT (HTC1H)Gp = K2 p, (3.2a)

f(n,2) = GT

(
1

2
HTC1A + ATC1H

)
Gp, (3.2b)

f(n,3) =
1

2
GT (ATC1A)Gp, (3.2c)

f(d,2) = GT (HTC1Ad + AT
d C1H)Gp, (3.2d)

f(d,3) = GT

(
ATC1Ad +

1

2
AT

d C1A

)
Gp + GT (AT

d C1Ad)Gp, (3.2e)

where, for convenience, integration over volume is implicitly assumed and where the superscript (?,i) denotes205

terms associated to the nominal structure only (? = n) or to the structure with defects (? = d) of order i in

p and/or d. The linear stiffness term is trivially given by K2 .

It is at this point convenient to re-express matrix A (Ad) as

A = L · θ = L · (Gp), (3.3)

being L ∈ R6×9×9 a constant localization matrix, whose expression is given in Table 1.

210

Remark 1 (notation). In the following, we’ll adopt the notation described in [47], which is compatible

with the Matlab Tensor Toolbox [48] used in this work. In short, the notation A · B will always denote

the contraction of the last dimension of A over the first dimension of B. Where this is not the case, it

will be explicitly indicated as A ·ij B, meaning contraction of A’s ith dimension over B’s jth dimension. For

matrices with more than two dimensions, transpose operation will be explicitly denoted as well. For instance,215

AT (i↔j) means that dimension i is switched with dimension j. When Einstein’s notation is used, we assume

summation over the (repeated) lowercase indexes, while uppercase indexes are not to be summed over (e.g.

CIJ = AIiBiJ).

3.1. Quadratic terms

Being the expression of the linear terms of equation (3.1) trivial, we start here by directly considering220

the quadratic ones. Upon a closer inspection of Equations (3.2)b-d, an underlying common structure can be

recognized. For this reason, it will be sufficient to study the term

GT (HTC1A)Gp → (GTHTC)Ii(LijkGklpl)Gjmpm = fI , (3.4)
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Table 1: Elements of the sparse 6× 9× 9 matrix L

L111 = 1, L421 = 1, L531 = 1, L412 = 1, L222 = 1,; L632 = 1, L513 = 1, L623 = 1, L333 = 1

L144 = 1, L454 = 1, L564 = 1, L445 = 1, L255 = 1, L665 = 1, L546 = 1, L656 = 1, L366 = 1

L177 = 1, L487 = 1, L597 = 1, L478 = 1, L288 = 1, L698 = 1, L579 = 1, L689 = 1, L399 = 1

By defining the third-order tensor K̂3 as2

K̂3 Ilmplpm = fI , (3.5)

we get to

K̂3 IJK = (GTHTC)Ii(LijkGkJ)GjK , (3.6a)

K̂3 = (GTHTC1) · (L ·G) ·21 G. (3.6b)

Notice that K̂3 ijk = K̂3 ikj . Finally, using K̂3 , we can define

K3 =
1

2
K̂3 + K̂3

T (1↔3), (3.7)

K3d = K̂3 + K̂3
T (1↔3). (3.8)

Recalling Eqs (3.2)b-d, it can be easily shown that the following expression hold

f(n,2) = ( K3 · p)p, (3.9a)

f(d,2) = ( K3d · p)d. (3.9b)

Notice that all the computations here have been done only considering the terms in p, but we would have

obtained the same results even by using Ad instead of A in Eq. (3.4).225

3.2. Cubic terms

As previously done for quadratic terms, even for cubic forces a core term can be isolated:

fI = K̂4 Ilqrp
(I)
l p(II)q pr = GTIi(LijkGklp

(I)
l )T (1↔2)Cjm(LmnpGpqp

(II)
q )Gnrpr, (3.10)

which defines:

K̂4 IJKL = GTIi(LijkGkJ)T (1↔2)Cjm(LmnpGpK)GnL, (3.11a)

K̂4 = GT (L ·G)T (1↔2) ·21 C1 · (L ·G) ·21 G. (3.11b)

2To avoid confusion with indexes, subscripts denoting tensors’ names will be put on the left side

10



Notice that, according to this definition, internal forces are obtained following the sequence of products

(( K̂4 · p) · p(II))p(I). Recalling Eqs. (3.2)c-e, opportunely choosing p(I/II) as p or d as required and using

K̂4 , the following fourth-order tensors are defined:

K4 =
1

2
K̂4 , (3.12)

K4d = K̂4
T (2↔3) +

1

2
K̂4 , (3.13)

K4dd = K̂4 . (3.14)

Thus, as it can be easily verified, internal forces write

f(n,3) = (( K4 · p) · p)p, (3.15)

f(d,3) = (( K4d · p) · p)d + (( K4dd · p) · d)d. (3.16)

Finally, notice again that the tensors obtained in this and in previous section are defined for a single element.

In theory, these could be assembled as usual into the global stiffness tensors. However, this is impossible in

practice due to memory limitations. For this reason, Galerkin projection is applied at element level during230

the assembly procedure so that the global reduced tensors are directly obtained.

3.3. Tensor reduction

As shown previously, the quadratic and cubic terms of the internal forces write

f(2) = f(n,2) + f(d,2) = ( K3 · p)p + ( K3d · p)d, (3.17a)

f(3) = f(n,3) + f(d,3) = (( K4 · p) · p)p + (( K4d · p) · p)d + (( K4dd · p) · d)d. (3.17b)

Assume now to have a suitable reduction basis V for p and assume d to be a linear combination of a number

of predefined defect shapes, collected by columns in matrix U. Then, we can write

p ≈ Vη, (3.18a)

d = Uξ, (3.18b)

where V ∈ Rn×m, U ∈ Rn×md , η ∈ Rm is the reduced coordinates vector, and ξ ∈ Rmd is the vector

of defect-shape amplitudes, being n, m, md the number of dofs, modes in the basis, and defect-shapes,

respectively. Substituting equations (3.18) into (3.17), we can write the following reduced tensors, here235

written in tensor and Einstein notations:

Q3 = ((VT · K3 ) ·V) ·21 V

Q3d = ((VT · K3d ) ·V) ·21 U

Q4 = (((VT · K4 ) ·V) ·31 V) ·21 V

Q4d = (((VT · K4d ) ·V) ·31 V) ·21 U

Q4dd = (((VT · K4dd ) ·V) ·31 U) ·21 U

⇐⇒

Q3 IJK = V TIi K3 ijkVkJVjK

Q3d IJK = V TIi K3d ijkVkJUjK

Q4 IJKL = V TIi K4 ijklVlJVkKVjL

Q4d IJKL = V TIi K4d ijklVlJVkKUjL

Q4dd IJKL = V TIi K4dd ijklVlJUkKUjL

(3.19)

11



where Q3 ∈ Rm×m×m, Q3d ∈ Rm×m×md , Q4 ∈ Rm×m×m×m, Q4d ∈ Rm×m×m×md and Q4dd ∈ Rm×m×md×md

. The reduced internal force vectors for quadratic and cubic terms write

f̃
(2)

= ( Q3 · η)η + ( Q3d · ξ)η, (3.20a)

f̃
(3)

= (( Q4 · η) · η)η + (( Q4d · ξ) · η)η + (( Q4dd · ξ) · ξ)η. (3.20b)

Finally, notice that

i. once V and U are selected and tensors from Eqs. (3.19) are computed, defects can be toggled on/off

and leveraged just by changing ξ, the parameter-vector of defect shapes amplitudes

ii. the terms ( Q3d · ξ), (( Q4dd · ξ) · ξ) and ( Q4d · ξ) can be precomputed before each analysis and added240

to Q2 and Q3 , respectively; thus, online computations will involve only three tensors rather than five.

iii. generally speaking, the formulae derived in this paragraph are valid either referred to the global struc-

ture or to the single element. As mentioned earlier though, projection should be carried out at element

level (in which case one should use Vel, the element-partition of V).

iv. the tensorial formulation arises from linear elastic constitutive law and Total Lagrangian formulation.245

Should other kinematic models (e.g. corotational) be adopted, the polynomial formulation should be

retrieved (e.g. using Taylor expansion) before applying the presented method.

4. Enhanced basis for defects

To compute the reduced tensors, one needs to specify first (a) the defect-shapes in U and (b) the reduced

order basis (ROB) V. The choice of the latter is critical, since the most expensive step of the present250

method corresponds to the offline computation of the tensors which, as already highlighted, can only be

obtained directly in reduced form. An a priori selection of the ROB is then crucial, as most (if not all) of the

advantages provided by the present approach would be lost if one had to choose a new basis and compute

the reduced tensors for every and each different choice of the parameter-vector ξ.

As already mentioned in the introduction, the choice of a projection basis for a parametric model can255

be done as proposed by a number of different parametric model order reduction techniques (e.g. moment-

matching, POD). However, the particular form of the internal forces (which follows from the strain formula-

tion, Eq. (2.11)) allows for another option, that will be now discussed.

We first tested a ROB with vibration modes (VMs) and modal derivatives (MDs) in their static form [49],

computed on the nominal structure. We here briefly recall how to compute MDs with reference to continuum260

elements. MDs are defined as

θij ,
∂φi
∂ηj

= −K|−1eq
∂K(φjηj)

∂ηj

∣∣∣∣
eq

φi, (4.1)

12



where φj is the j-th vibration mode, ηj its modal amplitude and K is the tangent stiffness matrix. The

tangent stiffness matrix evaluated for a displacement p = φjηj writes (at element level):

Kel =
∂fel

∂pel
=

∫
Vo

GT
[
HTCH + HTCAη + 2AT

η CH + 3AT
η CAη

]
G dVo, (4.2)

where Aη = A(Gφelj ηj). Taking the derivative with respect to the modal coordinate ηj and evaluating the

resulting expression at equilibrium (i.e. for ηj = 0) leads to265

∂Kel(φelj ηj)

∂ηj

∣∣∣∣
eq

=

∫
Vo

GT
[
HTCAφ + 2AT

φCH
]

G dVo, (4.3)

where Aφ = A(Gφelj ). This last equation defines the derivative of the tangent stiffness matrix with respect

to the j-th modal coordinate at element level, and can be assembled for the whole system following the usual

FE procedures; then Eq. (4.1) can be evaluated.

With VMs and MDs only, however, the basis proves to be sufficient to represent a subclass of defects only.

In particular it yields accurate results only when the defect-base U corresponds to a subset of VMs. The270

reason why this happens is likely to reside in the fact that MDs are included in the ROB, and MDs represent

de facto modal sensitivities.

On the stream of these considerations, the idea is then to enrich the ROB adding defect sensitivities

(DSs). A similar approach was used in [50], where POD-modes sensitivities were added to the ROB to model

the flow past a square cylinder, with the incidence angle as a geometric parameter. The method showed275

better accuracy with respect to other traditional POD-based approaches. DSs are obtained following the

same procedure to compute MDs. Consider the eigenvalue problem evaluated at equilibrium (i.e. for p = 0):(
K|eq − ω2

iM
)
φi = 0, (4.4)

being ωi and φi ∈ Rn the i-th eigenfrequency and eigenvector respectively. Moreover, recalling Eqs. (3.1),

(3.2) and (3.17) the tangent stiffness matrix K writes

K(p,d) =
∂fint
∂p

= K2 + 2 K3 · p + 3( K4 · p) · p + K3d ·21 d + 2( K4d · p) ·21 d + ( K4dd ·31 d) ·21 d, (4.5)

and is thus a function of both displacements and defects. Taking the derivative of the eigenvalue problem280

with respect to the j-th amplitude parameter ξj and assuming ξi = 0 for i 6= j (so that d = Ujξj), we write

(
K|eq − ω2

i |eqM
) ∂φi
∂ξj

∣∣∣∣
eq

+

(
∂K

∂ξj

∣∣∣∣
eq

− ∂ω2
i

∂ξj

∣∣∣∣
eq

M

)
φi|eq = 0. (4.6)

Notice that M is the mass matrix referred to the nominal system, and it is assumed not to vary significantly

in presence of defects (its derivatives w.r.t. ξj are therefore zero). Equation (4.6) cannot directly be solved for

∂φi/∂ξj since the coefficient matrix is singular by definition. Though workarounds can be found in literature,

here we prefer to neglect mass terms as it’s done for static MDs, allowing us to define DSs as285

Ξij ,
∂φi
∂ξj

∣∣∣∣
eq

= −K|−1eq
∂K

∂ξj

∣∣∣∣
eq

φi, (4.7)
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which represent the sensitivity of mode i with respect to defect j. In Eq. (4.7), K = K(p,d) must be

evaluated for p = 0 (equilibrium) and d = Ujξj , as well as its derivative ∂K/∂ξj . Strictly speaking,

however, we have that the latter depends on ξj . This is not desirable, as it would make the ROB V depend

on the parameter amplitude. We can make then the further assumption to take the stiffness matrix derivative

around the nominal configuration, that is for ξj = 0. This way we have, for the single element,

∂Kel

∂ξj

∣∣∣∣
eq

=
∂Kel(pel = 0,d = Uel

j ξj)

∂ξj
= GT

(
HTC1Ad + AT

d C1H + 2ξjA
T
d C1Ad

)
G (4.8a)

= GT
(
HTC1Ad + AT

d C1H
)

G, (4.8b)

where Uel
j is the element subset of the j-th column of U and where, in this case, Ad = A(GUel

j ). Finally,

(∂K/∂ξj)|eq is formed through standard finite element assembly.

In conclusion, the ROB will be composed of a set of m VMs φi, collected in matrix Φ, a set of m(m+1)/2

(S)MDs θij , collected in matrix Θ, and a set of mdm DSs Ξij , collected in matrix Υ, so that290

V = [Φ, Θ, Υ] , (4.9)

for a total of (3/2 +m/2 +md)m basis vectors. As already mentioned, in the particular case in which defects

are chosen from the set of VMs, and these VMs with associated MDs are included in the basis, then one could

avoid to compute their respective DSs, reducing the size of the ROB. However, since rigorously θij 6= Ξij ,

this would be just an approximation. Refer to Appendix A for more details.

295

Remark 2 (on basis selection). Generally speaking, not all the MDs and DSs in the projection basis will

be strictly required to obtain an accurate ROM. Techniques to select a subset of MDs are already available

in literature [49, 51] and one could think of applying similar strategies even to DSs. Though an interesting

topic, as V’s dimension strongly affects both offline and online computational times, this is out of the scope

of the present work. Therefore, it will not be treated here.300

5. Method

5.1. Model types

We test the proposed method on a FE model of a realistic system. For each selected combination of

defects, simulations are performed for four different models. First, the solution is computed for the high

fidelity model including defects (HFM-d) and its “classic” reduced counterpart (ROM-d), that is without305

the new strain definition and without parametrization. By this we mean that the reduced order basis V

is obtained form the mesh that directly incorporates defects. As such, DDs are not needed. Secondly, the

Defect-Parametric Reduced Order Model (DP-ROM) will be run. This refers to the ROM discussed in this

work. Finally, the “classic” ROM-n computed from the high fidelity nominal model (HFM-n) is simulated

14



Table 2: Acronyms for the different models considered in the numerical study.

MODEL Description

HFM-n high fidelity model of the nominal structure (i.e. without defects)

HFM-d high fidelity model of the structure with defects

ROM-n “classic” reduced order model (with VMs and MDs) in tensorial form,

computed from the HFM-n

ROM-d “classic” reduced order model (with VMs and MDs) in tensorial form,

computed from the HFM-d

DP-ROM defect-parametric ROM (with VMs, MDs and DSs) in tensorial form,

computed from HFM-n and a given set of defects

Figure 1: Work-flow map. From the inputs (HFM-n, U and ξ), ROM-n, HFM-d, ROM-d and DP-ROM are computed. Close

to each box, it is shown how many times each block must be evaluated (Nξ is the number of defect combinations). It is also

shown (in green) where the modified strain formulation comes into play.

to highlight the fact that defects are significantly changing the response from the nominal case. A summary310

of the model types is given in Table 2.

5.2. Procedure

Figure 1 synthesizes the sequence of operations followed for the numerical simulations and, at the same

time, attempts to put in evidence the contribution of each of the elements individually discussed in the

previous sections (as, for instance, the strain formulation and the defects). As common inputs, the user must315

first specify the nominal geometry and a set of (admissible) displacement fields to model defects (namely,
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Figure 2: MEMS resonator model and mesh, xy-plane view (top) and xz-plane view (bottom). Insert 1 shows an anchor

encastered to the ground, while insert 2 is a close-up on the beam’s mesh. The structure is meshed in ABAQUS using free

quadratic tetrahedra (TET10), counting 17,158 elements, 30,616 nodes and 91,212 dofs.

Figure 3: Schematic representation of (a) first vibration mode φ1, (b) second vibration mode φ2, (c) wall angle defect, (d)

section A-A of the left beams (x < 0, see Fig. 2) at half length for modal derivative θ13 (symmetric about y-axis), where the

color-map shows y-displacement. For θ13 mass does not move, thus is not shown here.

U). ROM-n can be directly computed from HFM-n only. Once the amplitude of the defects (ξ) is defined,

HFM-d is instead obtained by shifting HFM-n’s node positions by a displacement defined by d = Uξ. ROM-

d follows. Finally, to construct DP-ROM, we compute VMs and MDs using HFM-n (as done for ROM-n)

and DSs are obtained using available information about defects. Tensors are then computed exploiting the320

modified strain formulation. At this point one can select ξ and optionally precompute the quadratic and cubic

tensor deviations due to defects (see Section 3.3). Notice that HFM-d and ROM-d have to be computed for

each combination of defects, while ROM-n (obviously) and DP-ROM are computed once and for all, the latter

needing just the aforementioned (inexpensive) precomputation. Once the models are ready, time integration

is performed in Matlab using Newmark’s scheme with full Newton-Raphson iterations. Rayleigh damping is325

introduced selecting a Q factor of 10,000 in correspondence of the first and second eigenfrequencies. Errors

between HFM-d and DP-ROM are then evaluated.
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Figure 4: Defect Sensitivities for the first VM φ1 with respect to defect U1, U2 and U3. Colormap shows the out-of-plane

displacement. Notice that although Ξ11 looks very similar to Ξ13 if considering the mass only, in the first case the beams

undergo torsion, while in the latter pure bending.

6. Numerical tests - I

6.1. Micromechanical resonator FE-model

Description. DP-ROM is tested on a simple MEMS resonator, shown in Fig. 2 (nominal structure). Despite330

not representing any particular real device, such a system is a common element in many MEMS sensors (e.g.

accelerometers, gyroscopes), whose dynamic behavior is strongly influenced by the presence of manufacturing

defects [52, 53]. The system is composed by a 400 × 400 × 20µm mass suspended by four 200 × 5 × 20µm

slender beams, which are connected to the mass at one end and to an anchor at the other end. Anchors are

25 × 25 × 25µm parallelepipeds, encastered at the base, keeping the mass suspended over the ground and335

free to oscillate. Mesh details are given in Fig. 2 as well. The material is silicon (E = 148 GPa, ρ = 2330 kg
m3 ).

Defects. Out of the many possible defects that could be imposed to the structure, we selected three defect

shapes that produce, even when small (see below), appreciable differences on the dynamic response with

respect to the nominal device. The first shape-defect (U1) is the second eigenmode φ2, which corresponds340

to a mass motion along z-axis; the second one (U2) is given by an inclination of the walls of the structure

parallel to the xz-plane by a wall angle αx, that is

vd = tan(αx)z, (6.1)

being z the elevation of the nodes from ground, and where ud = wd = 0; the third one (U3) is the static

MD θ13, which basically consists in a counter-torsion of the four beams while the mass stays still. The

defect-shapes are shown in Fig. 3. The defect-basis is then345

U = [U1 , U2 , U3] = [φ2 , Uαx
, θ13] , (6.2)

and the corresponding amplitude vector is

ξ = [ξ1 , ξ2 , ξ3]T . (6.3)
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The vectors in U are normalized such that a value ξi = 1 corresponds to a maximum displacement of 1µm

for U1 and U3, and to an angle αx = 1◦ for U2. As it will be shown later, all these defects introduce a

coupling between (in-plane) drive and out-of-plane directions.

350

Load case. A nodal mono-harmonic load is placed in the middle of the lateral face of the mass, aligned with

y-axis, with frequency equal to the first resonance ω1 of the HFM-d. This is the typical operative condition

of a MEMS resonator, which are kept at resonance with a Phase Locked Loop (PLL) and Amplitude Gain

Control (AGC). Notice that, for each simulation, the natural frequencies of the system may slightly change

depending on the imposed defects: for each set of defects then, the HFM-d’s first eigenfrequency is used for355

HFM-d, ROM-d and DP-ROM (but not for ROM-n, which is always driven at the nominal natural frequency

ω1n). Figure 3a schematically shows the actuation mode φ1 (drive mode).

Reduction Basis. For every reduced model, the ROB is composed by the first (24.2 kHz)3, second (79.6 kHz)

and third vibration modes (139.5 kHz) with their respective MDs (for a total of 9 vectors). In the case of the360

DP-ROM, also defect sensitivities are included, for a total of 9 DSs (derivatives of the 3 VMs with respect

to each defect-shape). Notice that for the present study we include in the basis even those DSs relative to

defects coinciding with VMs (namely, U1). This is done in order to avoid a special treatment for this case,

keeping the analysis as general as possible. Again, hints on how neglecting VM-related DSs would change

the analysis are given in Appendix A. Figure 4 shows the DSs related to the drive mode φ1.365

6.2. Error evaluation

To assess the accuracy of the method, we adopt the global relative error (GRE) as an error indicator [49],

defined as

GREt =

√∑Nt

i=1(pi − p̂i)
T (pi − p̂i)√∑Nt

i=1 pTi pi

× 100, (6.4)

where pi = p(ti) is the displacement vector for the i-th time step of the reference solution (HFM-d) and

where p̂i is the corresponding approximated solution.370

Equation (6.4) considers the totality of displacements, disregarding the fact that the order of magnitude

of the response along the three directions is different. It is then useful to define the GRE separately for the

out-of-plane direction as:

GREz =

√∑Nt

i=1(wi − ŵi)T (wi − ŵi)√∑Nt

i=1 wT
i wi

× 100, (6.5)

3Values referred to HFM-n
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Figure 5: Global Relative Errors (GRE) for the three ROMs. On the vertical axis the pair (ξ2, ξ3) is shown. For each pair, the

three bars indicate a different value for ξ1. The vertical lines mark the maximum errors for the DP-ROM (solid, red), ROM-d

(dash-dotted, blue) and ROM-n (dashed, green).

where w is the z-displacement vector. In many MEMS applications, displacements due to unwanted coupling

between axes (as it is here the case between drive and z-direction) superimpose to a desired measurement sig-375

nal. Their correct estimation is therefore critical. Figure 5 shows the errors considering all the displacements

(top) and only w (bottom). In both cases, we can see that the ROM-d and DP-ROM yield approximately

the same errors. Instead, looking at the performances of ROM-n, it can be easily seen that along the out-

of-plane direction errors become immediately unacceptable, as the defects lead to a coupling between drive

and z-direction which is not present in the nominal case. It should also be noted that the displacements in z380

are much smaller than the ones along y (drive direction), therefore y-errors tend to “hide” z-errors in GREt.

Figure 6 shows the time response at the force application node in the three directions in the nominal case and

in the ξ1 = ξ2 = ξ3 = 1 case. To validate our in-house Matlab code, results were compared with ABAQUS

ones for the nominal case, showing agreement. Small discrepancies in the x-response are attributed to possi-

ble differences between our Matlab code and ABAQUS in the FE formulation, integration procedures, solvers385

and convergence tolerances (notice that due to the symmetry of the nominal problem the displacement u,

which is in the order of 10−5, should be rigorously zero at the forcing location; therefore u can be imputed to

numerical reasons and mesh asymmetries only). Notice that, while the response along z changes significantly
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Figure 6: Time domain response at the force application node along the three directions. Left: results for the nominal config-

uration (ξ1 = ξ2 = ξ3 = 0) for all the models plus a full model run on ABAQUS. Right: results for the ξ1 = ξ2 = ξ3 = 1 case.

T0 is the period of the harmonic driving force.

from case to case, the x and y responses are barely affected by the presence of the defects.

6.2.1. Role of the reduction basis390

We briefly want to stress the importance of using the correct reduction basis. Given the assumption of

small defects, one may be driven to think that it might actually be enough to use the nominal reduction

basis Vnom (i.e. the basis comprising VMs and MDs only, computed on the nominal geometry) not only for

ROM-n, but also for ROM-d and DP-ROM. To dispel this doubt and further support the arguments already

discussed in Section 4, we ran a numerical test for the MEMS resonator model (ξ1 = ξ2 = ξ3 = 1 case) when395

using the same nominal ROB used for ROM-n, that is Vnom = [Φ, Θ]. Again, 3 VMs and their correspond-

ing 6 MDs are included in the basis. Eigenfrequencies, time responses and GREs are shown in Fig. 7. As it

can be easily observed, the two ROMs yield now completely different results, with a drastic overestimation

of the first eigenfrequency. It is thus evident how information about the defects must be present both in the

model to be reduced and in the reduction basis itself.400

Remark 3 (ROM-d vs DP-ROM ). Looking at Fig. 7, one can also see that even when using the same
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Figure 7: Simulations for ROM-d and DP-ROM when using the same (nominal) reduction basis as ROM-n. The two model are

marked by a * to denote the differences with respect to the definitions given in Table 2. The testing conditions are the same

used for Fig. 6 (right). In particular, we have again ξ1 = ξ2 = ξ3 = 1. (a) First eigenfrequencies for the different models, (b)

time domain responses, (c) errors in terms of GRE (total and for individual axes). Plot is split to increase visibility.

reduction basis, ROM-d and DP-ROM lead to slightly different results (regardless of how wrong they might

be with respect to HFM-d). This follows from the fact that ROM-d is computed from HFM-d whereas DP-

ROM from HFM-n, with the modified strain formulation to take defects into account. As such, the latter405

is just an approximation of the former. Small discrepancies are therefore expected. The only case in which

ROM-d and DP-ROM would coincide would be the one where ξ = 0 and VROM−d = VDP−ROM . The first

condition would make VMs (and MDs) of the nominal and of the defected models coincide, while the second

would also imply that DSs are either added to VROM−d or removed from VDP−ROM .

6.3. Computational times410

In order to assess the computational savings provided by the proposed method, we define three speed-up

coefficients as

SP1 =
tfull
tonline

, SP2 =
tfull

tonline + toffline
, SP3 =

tfullNon
tonlineNon + tofflineNoff

, (6.6)

where tfull is the (online) computational time for the full analysis of HFM-d, tonline and toffline are the

ROMs’ online and offline times respectively, Non is the number of online runs and Noff is the number of

times a ROM has been computed. Notice that toffline accounts for both the times for the ROB and tensors415

computation.

All the simulations have been carried out on the Euler cluster of ETH Zürich (with 27 CPUs) in Matlab

R2017b, using in-house developed codes. This was done mainly in order to make a fair assessment of the

approximation errors discussed in the previous section by avoiding unwanted/unforeseen error sources. How-

ever, it would be unfair to compute speed-ups referring to the full simulation carried out in this environment,420
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Table 3: Computational times (in seconds) and speed-ups (average values). Speed-ups are computed using ABAQUS’ online time

(average value over 10 cluster runs) as reference. All the simulations (both on ABAQUS and Matlab) were run on ETH Zürich

Euler cluster with 27 CPUs (4GB RAM each). The times marked by * are the ones that are affected by parallel computing.

The small difference in ROM-d and DP-ROM online times is due to the number of reduced coordinates (9 and 18, respectively).

offline

(basis)

offline

(tensors)
online Noff Non

total time

(27 cases)

total time

(hh:mm:ss)

SP1

(online)

SP2 (on+off,

1 case)

SP3 (on+off,

27 cases)

HFM-n

(Abaqus)
- - 2,399.7* 0 27 64,792 17:59:52 - - -

ROM-d 18.2 112.1* 5.2 27 27 3,659 1:00:58 461.5 17.7 17.7

DP-ROM 35.9 174.5* 5.8 1 27 367 0:06:07 413.7 11.1 176.5

for it would be much slower with respect to a state-of-art commercial software. For this reason, speed-ups

reported in Table 3 are computed with reference to a full (nominal) simulation in ABAQUS/CAE 6.14-1

(same model HFM-n, load and fixed time steps). All computational times are shown in Table 3 as well.

As it can be easily observed, online speed-ups (SP1) are very high, as it is usually the case for all tensorial

approaches and other reduction techniques. To make a more comprehensive performance assessment, it is425

better to look at SP2, which includes the offline costs. It is however to stress the fact that, if the simulation

time-span is large enough, toffline may become negligible compared to tonline so that SP2 → SP1 for

tonline → +∞. This holds true for SP3 as well. However, if the same ROM can be exploited more than once,

be it for different load cases or for different parameter sets - as in the case of the DP-ROM, we have that

SP3 → SP1 even for Non → +∞. In the present case, for a moderatly short time-span and relatively low430

number of simulations, we have SP3 = 175.5, almost half of the theoretical maximum limit SP1 = 413.7.

Following these considerations, we can confidently say that the DP-ROM, if fully exploited as in the intention

of the authors, will have SP3 ≈ SP1. As already stated in the introduction, a Monte-Carlo analysis would

make the perfect fit with this method, and one could think to couple it even with uncertainty quantification

methods [54].435

6.4. About Scalability

Before concluding this section, we would like to make a few comments on how computational times are

expected to change with the size of the full model and on the tensors computation.

On the one hand, considering online times, it is known that HFM times grow more than linearly with the

number of dofs of the structure. In contrast, the original size of the model is irrelevant for ROMs, and online440

speed is determined by the size of the ROB. Even in this case however, computational times grow more than

linearly with the basis size. On the other hand, ROM offline costs grow almost linearly with the number of

elements thanks to element-level projection assembly. Moreover, the number of dofs of the element (30 for

the 10-nodes tetrahedra TET10 in our test case) greatly affects performances.

Additionally, to give a rough idea of the influence of the basis dimension and of parallel computing,445
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Figure 8: Tensor computational speed as

a function of the number of parallel Mat-

lab workers. N is the number of vectors in

the reduced order basis. Data are referred

to the MEMS model described in this

work, notice however that these values re-

main almost unchanged when coarser or

finer meshes were considered.

the tensor computational speed (in terms of elements per second) is shown in Fig. 8. These results were

obtained in Matlab R2017a on a local machine equipped with 2 Intel(R) Xeon(R) CPUs (E5-268W 0) @

3.10 GHz and 64 GB RAM. As it is often the case with parallel computing, speed grows less than linearly

with the number of workers. The impact of ROB’s size is not negligible, but very weak if compared to other

parameters’ one. Finally, notice once more that Matlab was used to compute tensors. Thus, a Fortran or450

C++ dedicated routine could greatly improve performances, reducing offline times and making the method

even more attractive.

7. Numerical tests - II

In the previous section, a structure subject to multiple defects was studied with the aim to assess the

accuracy and the speed of the proposed method. In that setup the focus was on correctly describing cross-455

coupling effects. These, however, would likely manifest in a linear setting as well (even if, of course, in a

different manner). In this example, instead, we consider the simple case of a beam, clamped at both ends,

where the defect will deform the nominal structure into a shallow arch, with the purpose to study a case

in which the presence of the defect drastically changes the nonlinear dynamics of the structure. The silicon

beam has the same dimension of the suspension beams of the previous test case, with length Lb along x,460

width wb along y and thickness tb along z (see Fig. 2). We used a mesh with 320 hexahedral quadratic

elements (HEX20), for a total of 2117 nodes and 6129 dofs. The defect shape is given by

vd(x, ξ) = ξ cos

(
π

Lb
x

)
, x ∈ [−Lb/2 , Lb/2], (7.1)

where ξ is the amplitude parameter (ud = wd = 0). The load, fext = step(t), is placed at half length on

one edge of the beam and is aligned with the positive y-axis. For ROM-n and ROM-d, the reduction basis

contains the first 5 VMs and 15 MDs, while for DP-ROM it includes even 5 DSs. Figure 9 shows the errors in465

the forcing direction and the time responses at the excitation node in the two worst cases. As it can be seen,

the GRE is almost always less than 10% and the hardening/softening behavior of the shallow arch is nicely

captured by the DP-ROM, even for very large defects (ξ = ±100%wb). Higher order harmonics in the full

solution, of course, cannot be captured by the tested ROMs due to truncation of the basis. In analogy with
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Figure 9: Shallow-arch defect. (a) Model mesh, (b) error along y-axis (GREy , in logarithmic scale), for ξ ∈ [−5,+5], step-

load time domain responses in y-direction in the worst cases for positive (c) and negative (d) values of ξ. T0 is the period

corresponding to the first eigenfrequency of the nominal structure; wb = 5µm is the beam thickness in y-direction. HFM-d

linear responses (gray dotted lines) are shown in (c) and (d) to put in evidence the hardening/softening behaviors.

what we have done in the previous test case, we reported even the responses and the errors we would obtain if470

using the nominal model with no defects. Notice that the kink in ROM-n’s GREy is purely coincidental (for

those particular defect amplitudes and load level, the softening behavior of the structure brings the nominal

response close to the HFM-d’s one).

8. Conclusions

In this work we proposed a parametric ROM to describe shape defects, defined in terms of a shifted475

nodal position of a tri-dimensional mesh with respect to the nominal geometry. These “defect shapes”

are embedded in the strain formulation, which allows for the parametrization of the model. Indeed, using

tensorial reduction, we showed how these defect shapes can be directly included in a ROM which can be

computed once and for all and which yields accurate results in a neighbourhood of the nominal configuration

for any defect shape. We also discussed the need to enhance the projection basis with defect sensitivities480

(DSs), which can be computed using the modified strain formulation. Incidentally, DSs could be of interest

even in the context of shape optimization, since they can be analytically derived and do not need remeshing.

In contrast to many strategies employed in nonlinear parametric model order reduction, no training of the

model is needed, so that the offline costs reduce to the computation of the reduced order tensors only. Two

numerical examples were given. First, a MEMS resonator was studied under operative conditions, where485

the presence of defect shapes introduced a not negligible coupling between axes. Error and computational
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time analyses showed that consistent speed-ups can be achieved with minimal loss of accuracy. Finally, a

shallow-arch micro-beam was studied for different heights of the arch under step loading excitation, showing

that the hardening/softening behavior of the structure can be accurately represented. All in all, we think

that the proposed method provides a very efficient tool to aid the design phase of structures subject to shape490

defects, as in the case of MEMS industry.

Appendix A. On MDs and DSs for VM-defects

As it has already been pointed out in Section 4, MD θij can also be interpreted as the sensitivity of the

structure with respect to a defect coinciding with vibration mode φi. To our purposes, this would suggest

that if we were to choose a defect-shape from a set of VMs, no further DS would be needed to enhance the495

reduction basis, as MDs would replace DSs. However, comparing Eq. (4.8) and Eq. (4.3), it turns out that

the two expressions are not equivalent.

Selecting a defect U = φj , we have that Ad = A(GUel) = A(Gφelj ) = Aφ. By comparing the two

expressions:

∂Kel(φelj ξj)

∂ξj

∣∣∣∣
eq

= GT
(
HTC1Ad + AT

d C1H
)

G 6= GT
[
HTCAφ + 2AT

φCH
]

G =
∂Kel(φelj ηj)

∂ηj

∣∣∣∣
eq

, (A.1)

we notice a difference of a factor 2 for the term ATCH (integration over volume is implicitly assumed). An500

inexpensive way to assess the impact of this discrepancy is to look at the evolution of the eigenfrequencies

of the reduced system when including only MDs and when including also DSs. Figure A.10 shows the

eigenfrequencies trends for the model described in Section 5 when the first VM φ1 is imposed as a defect. As

it can be easily observed, for the second and third modes frequencies tend to diverge if DSs are not included.

For the present system and the selected defect amplitudes however the percent error is very small, and one505

Figure A.10: First three natural frequencies for increasing defect amplitudes. Eigenfrequencies for HFM-d (solid black line), for

DP-ROM with and without DSs (red dashed lines) are shown on the left vertical axis. Percent errors (blue, dotted lines) are

shown on the right vertical axis. φ1 is the imposed defect.
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could then think to use only MDs in the basis. Finally, notice that each defect-shape might have a different

impact on the accuracy on the DP-ROM: for instance, imposing the second VM as a defect to our nominal

model, we could show that errors are more pronounced on the first eigenfrequency if DSs are not included.

For this reason, we recommend to critically choose whether to exclude or not DSs case by case.
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