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FCPP+Miosix: Scaling Aggregate Programming
to Embedded Systems
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Abstract—As the density of nodes capable of sensing, computing and actuation increases, it becomes increasingly useful to model an 
entire network of physical devices as a single, continuous space-time computing machine. The emergent behaviour of the whole 
software system is then induced by local computations deployed within each node and by the dynamics of the information diffusion. A 
relevant example of this distribution model is given by aggregate programming and its minimal set of functional constructs used to 
manipulate distributed data structures evolving over space and time, and resulting in robustness to changes.
In this paper, we propose the first implementation of the aggregate computing paradigm targeting microcontrollers, by integrating 
FCPP, a C++ implementation of the paradigm, with Miosix, a modern operating system for microcontrollers with full C++ support. To the 
best of the author’s knowledge, we are the first to present results on the effectiveness of FCPP in an embedded operating system 
setting as opposed to a simulation environment, thus considering tight memory and computational constraints and accounting for 
packet losses due to nonidealities of the radio channel. We implemented and tested on a network of WandStem nodes two benchmark 
applications: a network connectivity checker for network planning and preventive maintenance, and a decentralised contact tracing 
application. Additionally, we show that common problems in sensor networks such as neighbour discovery, construction of a graph of 
the network topology, coarse grain clock synchronisation as well as network monitoring and the collection of statistics (such as memory 
occupation data) can be easily performed thanks to the expressive semantics of aggregate programming.

Index Terms—Embedded Systems, Aggregate Programming, Distributed Systems.

1 INTRODUCTION

A prominent challenge in distributed systems program-
ming is achieving reliable operation in networks where

communication links are unreliable, such as in Wireless Sen-
sor Networks (WSN) and Internet of Things (IoT) scenarios.
This issue is further exacerbated as the size of the network
of interconnected devices grows, making it increasingly
difficult to pinpoint and debug problems arising out of the
interaction of complex distributed embedded systems with
limited computational capabilities and memory capacity.

The compound of the aforementioned issues is soon
expected to present a significant roadblock in the adoption
of the Internet of Things (IoT) and fog computing in general,
as these technologies are deployed forming interconnected
systems of a real-world scale.

To overcome these issues, new distributed systems pro-
gramming paradigms have emerged, abstracting from indi-
vidual device programming and modelling instead an entire
network of devices as a single, continuous space-time com-
puting machine where the behaviour of the whole software
system emerges out of local computations performed by
each node and by the dynamics of information diffusion.
Among those approaches, we focus on the Aggregate Pro-
gramming (AP) paradigm [1] with its companion formal
language Field Calculus (FC) [2].

Although this promising paradigm significantly raises
the abstraction level at which distributed systems can be
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programmed, existing implementations are limited to simu-
lation environments only [3], [4], [5]. There is thus a lack of a
software platform to demonstrate the benefits of AP in real-
world deployments, a matter that we address in this paper
by presenting and releasing as open source the integration
of FCPP, an optimised implementation of the AP paradigm,
with the Miosix OS.

The resulting software framework demonstrates scala-
bility down to distributed embedded systems even when
cost or energy constraints demand the use of low power
microcontrollers. Moreover, the presented software frame-
work allows to demonstrate how common building blocks
of distributed systems such as leader election, reconstruc-
tion of the network topology graph, network monitoring
and coarse grain clock synchronisation can be conveniently
implemented thanks to the expressive semantics of AP.

Summarising, in this paper we provide the following
contributions. 1) We present the first software framework for
programming real-world distributed embedded systems us-
ing AP and release it as open source. 2) We demonstrate the
advantages of programming distributed embedded systems
using AP by showing how relevant examples of distributed
systems problems can be concisely solved using AP. 3) We
provide experimental results about the deployment of AP
in real-world scenarios and compare them to simulations,
including a discussion of the effect of packet losses due
to non-idealities of the radio channel. We do so by means
of two benchmark applications: a network connectivity
checker for network planning and preventive maintenance,
and a decentralised contact tracing application.

The paper is organised as follows. Section 2 provides
the reader with the necessary background regarding ag-
gregate programming (AP) and the main characteristics of
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the operating system (Miosix) used for the physical vali-
dation. Section 3 contains a detailed presentation of FCPP,
that is the adopted AP framework, while its integration
with the embedded operating system Miosix is described
in Section 4. In that section, we discuss the main imple-
mentation aspects, related to the use of resources when
low end microcontrollers are adopted and the choice of
the communication protocol for the validation. Important
benefits in terms of abstraction level of the design of a
distributed system are pointed out in Section 5, focusing on
the implementation of the core network services. Two case
studies are presented in Section 6 and 7: the former concerns
detection of network vulnerabilities, where a weak point
may be prone to disconnection to the rest of the network; the
latter considers a problem of contact tracing for the control
of disease spreading. For all the considered use cases, both
simulation and real data coming from in-field deployment
are reported. The final Section 8 draws some conclusions
and outlines the future development of our investigation.

2 BACKGROUND AND RELATED WORK

This section provides a brief background on the AP topic, to
the benefit of the unfamiliar reader, and reviews the litera-
ture for what concerns abstractions for distributed systems
programming as well as embedded operating systems.

2.1 Aggregate programming
The design of embedded systems has to address peculiar
challenges, especially when the system has to be able to
react in a partially autonomous way to its environment.
Several approaches have been developed to address these
challenges, a comprehensive review of the subject can be
found in [6]. Among them, we here focus on Aggregate
Programming (AP) and its companion abstract language Field
Calculus (FC) [2]. AP is designed to abstract the overall
network as a single aggregate machine, which operates on
collections of distributed data called computational fields.

Through AP, it is possible to define and compose dis-
tributed computations without explicit management of low-
level aspects such as delivery of messages between devices,
or the set of devices themselves. This approach greatly sim-
plifies the management of distributed systems, especially in
the common case when unreliability must be handled and
multiple nodes share a similar behaviour. For completeness,
in cases where the behavior of every actor of the system
has to be specified individually to achieve the desired goals,
approaches other than AP may be more suitable.

In AP a single program P is defined, which is then
periodically run on each device i of a network in rounds
consisting of the following steps:

• gathering of the context, including:

– data collected from local sensors,
– local information stored in previous rounds,
– messages received from other devices.

• evaluation of the program P , considering the context
above as input;

• as a result of the evaluation, some data is stored
locally, other is shared with neighbours and further
data may be fed to local actuators.

The execution model of AP also does not require syn-
chronization of rounds across the nodes of the network,
thus the global computation/transmission pattern is not
deterministic. If required by applications, synchronization
can however be built on top of AP, as we will show in
Section 5.4. The rounds, executed across time and space by
different devices, induce a global behaviour at the system
level [12], allowing to interpret the network as a single
aggregate machine. The communication of data resulting
from a program execution is concretely performed through
proximity-based broadcasts, in which a device shares all the
relevant data (bundling values produced in various points
of the program) with whoever other device may be listening
to it. In the program, the received values are modelled and
used as neighbouring fields, i.e., maps from device identifiers
to values of some type. This dedicated data type comes with
two operations: mapping, which applies a function to each
value in a field; and folding, which reduces the values in
a field to a single value via repeated aggregation with a
given function. Direct access to field values is not allowed
by design, in order to ensure that programs are neighbour-
agnostic, hence more resilient to network changes.

In order to achieve its goal of allowing distributed em-
bedded systems programming, the AP paradigm needs to
demonstrate scalability to microcontroller-based embedded
systems, a necessary requirement to target low cost, battery
operated IoT and sensor network hardware.

Software frameworks for AP have been proposed in
the past, such as the Protelis [3] and Scafi [4] languages
with the Alchemist [5] simulator. These AP frameworks
are based on the Java Virtual Machine (JVM) and currently
support only simulated environments. In the paper [13]
the memory footprint of Protelis+Alchemist was measured
and found to be between 2 to 5 MByte per node, while
the available RAM in modern low-power microcontrollers
such as the ones used in our work is only 128KByte. While
we believe that these frameworks could be optimized, a
further obstacle in achieving scalability to microcontroller
embedded systems is presented by the JVM itself. Although
sensor nodes capable of running Java were made in the past,
such as the Sun SPOT [14], they were limited to the J2ME
CLDC 1.1 profile which is becoming obsolete, and to the best
of our knowledge we are not aware of any JVM supporting
modern Java that could fit within the resource requirements
of microcontrollers.

In this paper, we overcome this limitation by integrat-
ing the FCPP aggregate programming framework [13], a
resource efficient framework written in modern C++, with
the Miosix embedded operating system, showing how this
promising paradigm is suitable for the design of distributed
embedded systems even when cost or energy constraints
demand the use of low power microcontrollers.

2.2 Embedded operating systems
The operating systems scenario in the embedded systems
world is more fragmented compared to desktop and cloud
environments. The lower entry barrier to the development
of an embedded OS compared to a desktop one, coupled
with tighter efficiency and code size requirements, favoured
the development of operating systems with widely varying
features, each targeting specific application classes.
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A prominent class of embedded operating systems are
Real-Time Operating Systems (RTOS). RTOS have in com-
mon a design optimised for predictable latency in time-
sensitive operations such as interrupt response and context
switches, making them suitable for time-critical applica-
tions. Excluding this common trait, there is however still
great variability also within this class. On one side of the
RTOS spectrum we can find small real-time operating sys-
tems focusing on simplicity and reduced code size, such as
FreeRTOS [15] and ChibiOS/RT [16], while on the other end
we can find RTOSes targeting multicore architectures with
full POSIX compliance such as VxWorks [17], QNX [18] and
RTAI [19]. Other classes of embedded operating systems
exist, targeting specific domains such as Wireless Sensor
Networks [20], [21] and IoT [22], [23].

Miosix [24]1 is an RTOS focusing on compliance to
POSIX as well as to the C and C++ standard libraries, while
at the same time being suitable for resource-constrained
microcontrollers. Miosix has been ported to over 40 dif-
ferent hardware targets, with ARM Cortex, RISC-V and
ARM7 microcontrollers. It is written almost entirely in C++,
and scalability is achieved through a modular design and
compile-time configuration, making it possible to exclude
certain components, such as the filesystem module, from a
build when the feature is not required. The kernel provides
multiple schedulers, including a priority scheduler, an Ear-
liest Deadline First (EDF) scheduler and a scheduler based
on control theory [25], selectable at compile time.

The userspace module is also a compile-time component
that can be disabled to save code size, making it possible to
build monolithic firmwares where the applications and the
kernel live in the same address space, similar to a unikernel.
As a consequence, Miosix provides POSIX compliance also
in kernelspace, and the kernel itself takes advantage of the
data structures and algorithms provided by the standard C
and C++ libraries.

Miosix has been used for the design of networked real-
time embedded systems, especially in the research commu-
nity, where it served as a testbed for the design of clock
synchronisation algorithms [26], [27] and real-time wireless
mesh protocols [28]. Due to its support for wirelessly con-
nected platforms, as well as its C++ support, it was chosen
in this work to host the FCPP aggregate programming
framework.

3 FCPP: AN OPTIMIZED AP RUNTIME

FCPP2 is an implementation of the AP paradigm as a C++
library. This base language has been selected both for its
performance, and for its broad support for multiple different
architectures. FCPP is portable to any platform providing
support for C++14. Thanks to the enhancements we per-
formed as part of this work, the porting procedure has been
streamlined to the point of only requiring to write the code
to interact with the wireless transceiver provided by the
selected platform, as this is the only dependency other than
the C++ standard. The FCPP library provides:

• a domain specific language for aggregate programs;

1. https://miosix.org
2. https://fcpp.github.io

• a component-driven design, easing the extension to
multiple application scenarios, including microcon-
troller deployments, simulations, data processing;

• a compile-time optimised implementation, thanks to
meta-programming techniques [29];

• fine-grained parallelism support;
• simulation tools for distributed systems.

Among the possible application scenarios, the one ini-
tially supported by FCPP was the simulation of distributed
systems running aggregate programs. With respect to alter-
native tools for the same purpose (Protelis [3] and Scafi [4]
languages with the Alchemist [5] simulator), FCPP provides
some further simulation features (3D environments, basic
physics, probabilistic wireless connection models), while
granting a massive increase in efficiency (about 100-fold
[13]). Furthermore, the extensible component-based archi-
tecture allows to cover additional scenarios that were not
previously addressed, including:

1) deployments on distributed systems of microcon-
trollers, requiring a tiny memory footprint and low
computing complexity;

2) graph-based big data processing, requiring effi-
ciency and fine-grained parallelism in order to ef-
fectively scale with the available resources.

In the remainder of this paper, we will present a novel
implementation of the first of those scenarios, featuring the
Miosix operating system. The latter scenario is currently
under development, with some preliminary features already
available in FCPP [30].

Figure 1 depicts the high-level architecture of the FCPP
library, consisting in three main layers:

1) Data structures, which are both used for the im-
plementation of aggregate functions in the third
layer; and for the specification of components in the
second layer either in their internal details or in their
external parameter specification.

2) Components defining abstractions representing sin-
gle devices (the node class) and the overall network
(the net class, particularly useful in simulations and
data processing). These two classes are produced
leveraging template meta-programming by compo-
sition of a given list of components [31], each pro-
viding a specific functionality, in a mixin-like fash-
ion [32], [33]. The component system enables the
reusability of several specific functionalities across
radically different application scenarios (microcon-
trollers, simulations, data processing).

3) Aggregate functions, which implement the abstract
concepts of aggregate programs as templated func-
tions with a node parameter. The FCPP library
includes both the basic built-in functions tradition-
ally included in aggregate languages, as well as a
large library of general reusable algorithms (building
blocks) with proven performance guarantees. Fur-
ther more specific algorithms may be provided by
external libraries, and be used to compose the FCPP-
based applications to be run.

Figure 1 (top left) shows the relations between compo-
nents, displaying whether a component needs another as

https://miosix.org
https://fcpp.github.io
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Fig. 1. Representation of the software architecture of FCPP as the combination of three main layers: data structures for both other layers, and
components which provide node and network abstractions to aggregate functions. Components are categorized as general purpose (cyan), used
across application domains; domain-specific (magenta), relevant only to some domains; and domain-dependent (blue) with variations for different
domains. Dependencies between them can be either hard (solid), for which the pointed component is required as an ancestor of the other; or soft
(dotted), for which the requirement only applies to some settings or domains.

TABLE 1
FCPP components.

Component Provides
calculus allows usage of aggregate programming constructs
connector handles periodic broadcasts of messages
displayer graphical user interface for the whole network
identifier gives access to nodes through their unique identifiers

logger periodically logs summary information
persister stores internal status for recovering after reboot
positioner handles movement and position sensing
randomizer gives pseudo-random generation utilities
navigator manages routing through a bitmap of obstacles
spawner automatically creates nodes in the identifier

storage attaches tagged data to nodes or to the net object
timer accesses and regulates scheduling of rounds

ancestor in the composition, as well as highlighting the
components that are reused across domains and which
instead have variations for different domains. We remark
that a component can always be substituted with another,
as long as they offer an analogous interface implementing
a logically equivalent functionality. A high-level description
of the available components is given in Table 1. For porting
FCPP to work on real devices, variants of the connector,
identifier and logger components had to be written. Those
are sufficiently general to be reusable across different boards
and operating systems: all the platform-dependent code has
been gathered into a simple “networking driver” file.

The syntax of aggregate functions in FCPP is presented
in Fig. 2. As FCPP is a C++ library providing an internal
domain-specific language, an aggregate function is a C++
function, so every peculiar keyword is a C++ macro hiding
implementation details, and all features of C++ are avail-
able, even though Fig. 2 is restricted to a small subset of the
language for compactness of presentation. In the syntax we
use the notation ∗ to indicate elements that may be repeated

aggregate function declaration
F ::= FUN t d(ARGS, t x∗) {CODE i}

FUN EXPORT d t = export type<t ∗ >;

aggregate instructions
i ::= return e;

∣∣ t x = e; i
∣∣ for(LOOP(x, `); e;++x){i} i

aggregate expression
e ::= x

∣∣ ` ∣∣ t(e∗) ∣∣ ue ∣∣ e o e
∣∣ p(e∗) ∣∣ node.c(e∗) ∣∣ f(CALL, e∗)∣∣ [&](t x∗)->t {i}

∣∣ e ? e : e
type aggregate function
t ::= T

∣∣ bt ∣∣ tt<t∗, ` ∗ > f ::= b
∣∣ d

built-in aggregate functions
b ::= old

∣∣ nbr ∣∣ oldnbr ∣∣ spawn ∣∣ self ∣∣ mod self∣∣ map hood
∣∣ fold hood

∣∣ mux
Fig. 2. Syntax of FCPP aggregate functions in Extended Backus-Naur
Form (EBNF).

multiple times separated by commas (possibly zero).
An aggregate function declaration consists of keyword FUN,

followed by the return type t and the function name d,
followed by a parenthesized sequence of comma-separated
arguments t x (prepended by the keyword ARGS), followed
by aggregate instructions i (within brackets and after keyword
CODE), followed by the export description, listing the types
used by the function in message-exchanging constructs.

Aggregate instructions always end with a return statement
with the function result. Before it, there may be a number
of local variable declarations (assigning the result of an ex-
pression e to a variable x of type t), and for loops, repeating
an instruction i while increasing an integer index x until a
condition e is met. Aggregate expressions can be either:

• a variable identifier x, or a C++ literal value ` (e.g. a
string, integer, floating-point number);

• a constructor call t(e∗) building an object of type t;
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• the application of a unary operator ue (e.g. −, ∼, !,
etc.), or of a binary operator e o e (e.g. +, ∗, etc.);

• a pure function call p(e∗), where p is a C++ function
not using FCPP and the node object;

• a component function call node.c(e∗), where c is a
method provided by some component;

• an aggregate function call f(CALL, e∗), where f is either
a defined aggregate function name d or an aggregate
built-in function b (detailed below);

• a conditional branching expression eguard ? e> : e⊥,
which evaluates and returns e> if eguard is true,
evaluating and returning e⊥ otherwise.

Several built-in aggregate functions are provided in FCPP.
Among them, in this paper we will focus on the following:

• nbr(CALL,i,f), that repeatedly updates a dis-
tributed value based on neighbours’ values. It takes
an initialisation value i of a type t, and a function
f with a single argument of type field<t>. At
every evaluation round, function f is applied to the
collection of values that neighbours recently shared
for this same nbr expression, using i at computation
start when no values have been shared yet. The result
of f is both shared back to neighbours for their future
rounds, and returned by the nbr call.

• max_hood(CALL,v,i) given a neighbouring field
v (e.g., the argument passed to f by an nbr) and
a local value i, reduces the elements in the field
to a single value by starting from i and repeatedly
applying function max to each element of the collec-
tion and to the current partial result. Similarly, func-
tion min_hood applies function min; and function
list_hood appends each element in the field to an
initial collection. Note that these folding operators
need a neighbouring value to operate with, which is
usually obtained by sharing values with neighbours
through nbr.

Among the macros used by FCPP, we remark that CALL,
CODE, and ARGS ensure that the aggregate context (in the
node object) is carried along during program execution,
while updating a representation of the stack trace for inter-
nal alignment. Thanks to the alignment mechanism, the mes-
sages (implicitly) produced by a nbr construct are matched
in future rounds (on the same or different devices) only to
the same construct, i.e., an nbr called in the same stack trace
and position in the syntax. This enables function composi-
tion, and recursion, without risk of interferences between
messages originating in different parts of the program.

4 INTEGRATING FCPP WITH MIOSIX

This section discusses the integration of FCPP with the
Miosix operating system and WandStem WSN node. The in-
tegration and the experiments described in the next sections
are all publicly available online.3

The Miosix operating system was chosen as it simplifies
the porting of FCPP to embedded targets. This is because
Miosix provides an execution environment with a high
degree of standard compliance, especially for what concerns

3. https://github.com/fcpp/fcpp-miosix

Preamble SFD L PAN Header Sender ID FCPP message CRCD
4 7 2 211 1

Fig. 3. Packet format used to implement the FCPP communication
model on WandStem nodes. The size in bytes of every packet field is
reported, except for the FCPP message field that is variable length.

support for embedded applications written in C++, both
in kernelspace and userspace. As previously discussed, the
userspace subsystem in Miosix is optional, and for the FCPP
integration it was decided to disable it, and run FCPP as
a kernelspace application. The FCPP aggregate computing
library has been designed to be easily ported to any execu-
tion environment providing a C++ compiler adhering to the
C++14 standard, a requirement that Miosix meets. Miosix
also natively provides access to the system time through
<chrono>, so no modifications to FCPP were needed on
the time Application Programming Interface (API) access.

The hardware platform has been selected in order to
provide a sufficient amount of RAM memory to meet the
memory footprint of FCPP and Miosix combined, also
leaving available room to allow developing applications.
Additionally, among the platforms supported by Miosix,
one was chosen providing a wireless transceiver for inter-
node communication. Given the constraints above, the cho-
sen platform is the WandStem WSN node [34], a wireless
sensing board providing a 48MHz ARM Cortex-M3 CPU,
128KByte of static RAM memory, 1MByte of FLASH mem-
ory and an IEEE 802.15.4-compliant wireless transceiver.

The integration of FCPP and Miosix required to define
a suitable wireless communication protocol for FCPP, as
well as to design and implement two software modules: an
interface between the FCPP message API and the wireless
transceiver provided by Miosix, and a compressed logging
module to simplify the collection of experiment results.

4.1 Wireless communication protocol

Instances of FCPP running on different nodes communicate
through messages, an abstract data type encapsulating the
shared state of AP programs. FCPP messages need thus to
be mapped into wireless packets, by defining an appropriate
communication protocol. In our integration we took advan-
tage of the shared nature of the wireless medium natively
providing the gossip-like communication model required
by AP. Our communication protocol consists of a single
packet type, shown in Figure 3. The packet is composed
of a standard 802.15.4 [35] preamble, Start Frame Delimiter
(SFD), length field (L) and Personal Area Network (PAN)
header, followed by the node sender ID, a data block con-
taining the encapsulated FCPP message, a send time delay
field (D) and a Cyclic Redundancy Check (CRC) to detect
corrupted packets. The PAN header in particular serves the
purpose of identifying the network through an unique PAN
ID, allowing for co-existence with other networks such as
ZigBee, as well as to allow multiple independent FCPP
networks to co-exist in the same area. While the PAN ID is
a configurable parameter, the microcontroller of WandStem
nodes provides a unique hardware ID that has been used as
sender node ID, thereby requiring no per node configuration

https://github.com/fcpp/fcpp-miosix
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and allowing the same firmware to be programmed on all
the nodes in a network, simplifying deployment.

Packets do not have a destination field, as are instead
implicitly addressed to all nodes in the same FCPP network
within the radio range of the sender. Packets are transmit-
ted using a Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA) scheme with exponential backoff
to effectively share the wireless medium. As FCPP mes-
sages contain timestamps, coarse-grain MAC-level times-
tamping [36] is used to improve accuracy in case of packet
collisions. This feature is implemented through the field
D of the packet which is added by the MAC to encode
the time delta between the upper layers expected send
time, and the actual send time, making it possible to adjust
timestamps accordingly upon message reception. Due to
the point-to-multipoint communication model, the protocol
does not include acknowledge packets, and relies instead on
the capability of the AP communication model to tolerate
packet losses.

As can be seen, the mapping of FCPP messages to
IEEE 802.15.4 radio packets is simple and straightforward.
We consider this a significant advantage of the AP model,
proving it naturally lends itself to be applied to wireless
networks.

4.2 Experiment logging
Analysis of AP simulations and experiments is performed
through logged data that each FCPP instance periodically
prints. The logged data consists mainly in the local state of
each node, and to best reconstruct the distributed state it
is thus necessary to save the logs of each node. While for
a simulation environment this is not an issue as all virtual
nodes are simulated on a single desktop machine, actual
experiments require a data collection solution. For our de-
ployments, we relied on the availability of free RAM mem-
ory in the chosen hardware to implement delta-compressed
in-memory storage of logged data, which allow the data of
each node to be downloaded to a central computer when
the nodes are collected after each experiment.

This module has been added to the standard FCPP code-
base, and operates by allocating a suitable buffer (40KByte
in our case) at the start of the experiment, used to store
a compressed copy of all the printed messages. In our
experiments the buffer was never filled, and actually never
exceeded 1/4 of its capacity, so we were always able to fully
reconstruct the entire network state.

4.3 Resource utilisation
The resources required by FCPP and Miosix are difficult
to quantify, as the Miosix compilation process uses link-
time garbage collection, that is during compilation a static
call graph of all functions and class methods is computed
and all unreachable code is removed from the build. The
part of the operating system, C/C++ standard libraries and
FCPP that become part of a firmware thus depend on what
components are actually used by the application.

To estimate the required resources in a realistic setting
we compiled a firmware including both the vulnerability
detection and contact tracing applications (described in Sec-
tion 6 and 7) together. Table 2 reports the measured results.

TABLE 2
Memory occupation breakdown of the FCPP/Miosix integration.

FLASH memory occupation
Applications + FCPP 145029 Byte
Miosix (OS kernel) 38325 Byte
libgcc.a (Compiler intrinsics) 9268 Byte
libm.a (C standard library) 320 Byte
libc.a (C standard library) 66834 Byte
libstdc++.a (C++ standard library) 120770 Byte
Total 380564 Byte

RAM memory occupation
.data (Global/static variables) 1360 Byte
.bss (Global/static variables) 3512 Byte
main stack 8952 Byte
heap 25336 Byte
logging buffer 40960 Byte
Total (no logging buffer) 39160 Byte
Total (with logging buffer) 80120 Byte

Microcontrollers are computer architectures that execute
code directly from the on-board FLASH memory, so the
code of the OS kernel, standard libraries, FCPP and appli-
cation all contribute to the FLASH memory requirements.
We used static analysis to compute a breakdown of the used
memory, although being FCPP a header-only C++ library,
the code size for the applications and FCPP could not be
separated. From the table we can see that the applications
and FCPP occupy the largest fraction of code size (38%),
the second largest fraction is occupied by the C++ stan-
dard library (32%), while the Miosix kernel occupies 10%.
Other standard libraries take up the remaining part of the
firmware. Variables and data structures used by the appli-
cation, libraries and kernel contribute instead to the RAM
memory requirements. The RAM information in Table 2 are
obtained through a mix of static analysis and profiling, as
for example the heap allocations are only known at run-
time and may differ from node to node. For profiling we
used AP to measure the maximum occupied stack and heap
among all nodes in the network. From the table we can see
that most of the occupied RAM is dynamically allocated on
the heap. The single largest data structure used is the buffer
for the compressed logging, that is shown separately as it
is only used to simplify the experiment data collection and
would not be needed in an actual deployment. During the
experiment also the maximum transmitted packet size has
been profiled, measuring 87 Bytes of FCPP message content,
105 Bytes including all headers.

Summarising, the resource utilised by FCPP are well
within the capabilities of modern microcontrollers. The
presented applications, even compiled together occupy less
than half of the WandStem available memory, leaving ample
room for significantly more complex application develop-
ment. Alternatively, a smaller microcontroller with about
half the memory could be selected to save cost.

5 CORE NETWORK SERVICES

A key advantage of AP is its ability to raise the abstrac-
tion level at which distributed embedded systems are pro-
grammed, by shifting the focus from individual nodes and
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their interaction to the network level. As a result, the ex-
pressiveness of AP makes it possible to provide concise yet
efficient solutions to common needs that arise in distributed
systems programming. In this section, we will present some
such examples that we used in our case studies, with a focus
on core network services that are often needed as a basis to
build complex distributed behaviours.

5.1 Network statistics collection
The first and simplest AP example we show is the
gossip_max function, that propagates across the network
the maximum between a local input data and the data
“gossiped” by neighbours. It can be implemented in FCPP
in the following way.
GEN(T) T gossip_max(ARGS, T value) { CODE
return nbr(CALL, value, [&](field<T> x){
return max(max_hood(CALL, x), value);

});
}

This function is generic, with a type parameter T and
a single argument value of that type. It also consists of
a single nbr, which starts from a default corresponding to
the local value, and computes a new gossip based from the
gossips received from neighbours’ in x. The block starting
with [&] is the standard C++ syntax to introduce a lambda
function. Such gossip is defined as the maximum between
the current value and every gossip in x. The same principle
can be applied to define the gossip_min function, with a
trivially similar implementation.

These functions allow a network to converge to the max-
imum/minimum of a given quantity, and are particularly
useful for the collection of network statistics. As an example,
in our deployments of FCPP we took advantage of this fea-
ture to monitor the maximum dynamically allocated heap
memory used among all nodes, the maximum occupied
stack size as well as the maximum transmitted message size
by simply adding the following lines to our programs:

node.storage(max_stack{}) = gossip_max(CALL, usedStack());
node.storage(max_heap{}) = gossip_max(CALL, usedHeap());
node.storage(max_msg{}) = gossip_max(CALL, node.msg_size());

where the functions usedStack() and usedHeap() query
the Miosix OS for the currently occupied memory, while
node.msg_size() is provided by FCPP.

5.2 Leader election and distance from leader
Leader election is a common problem for the coordina-
tion of distributed systems. It may be tempting to use
a gossip_max call to select a leader, but that would
not adjust in case the network changes and the former
leader is lost. Optimally self-adjusting solutions to the
leader election problem have been proposed which do
not rely on a-priori network information [37], also avail-
able in the FCPP coordination library as wave_election.
For this scenario, however, we assumed knowledge of
a reasonably accurate upper bound to the network di-
ameter. This allowed us to use the simpler FCPP li-
brary function diameter_election_distance function,
which also computes the distance (in terms of network
hops) between each node and the leader, implemented with
code equivalent to the following:

using tuple_t = tuple<device_t,hops_t>;
FUN tuple_t diameter_election_distance(ARGS, hops_t diameter) {
CODE
tuple_t loc(node.uid, 0);
return nbr(CALL, loc, [&](field<tuple_t> x){
x = mux(get<1>(x) < diameter, x, loc);
tuple_t best = min_hood(CALL, x, loc);
if (best != loc) get<1>(best)++;
return best;

});
}

In this function, first a local leader loc is defined, as the
current device with distance zero. Then a leader estimate is
evolved every round with nbr, by starting from the local
leader, and then selecting the best plausible leader offer
from neighbours. First, through multiplexer operator mux
(a strict version of an if, which also applies to field values
pointwise), only offers from neighbours that are below the
network diameter in distance (and hence plausible) are
selected, using loc in place of invalid offers. This ensures
that in case a leader is disconnected, in a time proportional
to diameter it will be discarded from the network allowing
election of new valid leaders. Then, the best leader offer still
standing in x is selected, by lexicographic minimisation (on
node ID first, then distance). Finally, the distance estimate
is increased by one if the leader is not the node itself. In
this code get<1> is the standard C++ syntax to access the
second element of a tuple. This function was used in our
application through this simple line of code where tie is
the standard C++ syntax to unpack a tuple to individual
variables:

tie(node.storage(min_uid{}), node.storage(hop_dist{})) =
diameter_election_distance(CALL, diameter);

5.3 Neighbour list and network topology discovery
Wirelessly connected distributed systems are often de-
ployed without a statically planned network topology, due
to the uncertainty caused by obstacles in the environment
blocking or attenuating the radio signal as well as due to the
presence of mobile nodes. For this reason, computing at run-
time the network topology, as well as keeping it updated
when the environment changes, is a common requirement.

While in all examples so far the distributed values used
always were of scalar type, FCPP also supports array or
list types, making it possible to gather neighbour lists for
logging or possibly disseminating them across the network.
We logged such information by adding to the node storage
a value nbr_list declared as std::vector<device_t>.
The list of neighbours can obtained through the simple code:

node.storage(nbr_list{}).clear();
list_hood(CALL,node.storage(nbr_list{}),node.nbr_uid(),nothing);

Which at every iteration clears the previous neighbour list
and re-computes it starting from nothing and adding all
of the neighbours’ identifiers listed in node.nbr_uid(),
thanks to the basic library function list_hood.

5.4 Coarse-grain clock synchronisation
Clock synchronisation is another core network service that is
essential for the coordination of distributed systems. While
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Fig. 4. Screenshot of the simulation (left) and evolution of the minimum, average, and maximum degree in the network as simulated time progresses
(right). In the screenshot, nodes are coloured according to their hop-distance from the leader (the larger red cube).

achieving high resolution clock synchronisation is outside
the scope of this paper, we show here a simple coarse-
grain clock synchronisation implementation that focuses on
demonstrating the expressiveness of AP, yet is already suf-
ficiently precise to be used in our experiments to solve the
problem of synchronising the collected experiment traces
among nodes that were turned on at different points in time.

Our simplified clock synchronisation maintains a
network-wide global clock computed through the FCPP
library function shared_clock, implemented with code
equivalent to the following:

FUN times_t shared_clock(ARGS) { CODE
return nbr(CALL, times_t{0}, [&](field<times_t> x){
return max_hood(CALL, node.previous_time() == TIME_MIN

? node.current_time() : x + node.nbr_lag());
});

}

The function consist of a single nbr operator, which
starts from a default clock of zero, and computes a new clock
from the received neighbours’ clocks in x. Each time, the
shared clock is defined as the maximum of the sum of the
clocks in x with the time elapsed since the last message from
the corresponding devices in node.nbr_lag(), except for
the first round (when the previous time is TIME_MIN) for
which the shared clock is set to coincide with the local clock.
Application code can then add a global clock to the node
storage through the following line.

node.storage(global_clock{}) = shared_clock(CALL);

5.5 Simulation
Among the described network services, we present here
results for the leader election, distance from leader as well as
neighbour discovery in a mobile node scenario tested both
in simulation and in a real world deployment.

The simulation is organised as follows. We considered
an indoor environment consisting of eight 6 × 6m rooms
at the two sides of a long 24 × 3 corridor, as depicted in
Figure 4 (left). We deployed 20 devices, which are turned
on one at a time in the simulated interval of time from

0s to 100s, all located in a same room. From time 100s to
200s, the devices move to different rooms (each at different
times), staying there still until starting to gather back to a
single room, in the interval from time 300s to 400s. Finally,
the devices turn off one at a time between times 400s and
500s. We performed 1000 runs with different random seeds,
averaging the results across them. We assumed that devices
had a 0% probability of connection from a distance of 12
meters, a 50% probability of connection from a distance
of 8.4 meters, and 100% probability of connection from
zero distance, interpolating between these numbers through
a smooth step-like function derived experimentally. We
scheduled rounds periodically every second, collecting logs
accordingly, and allowing messages to persist for 5 seconds
across multiple rounds before being dropped, in order to
stabilise the neighbour list.

The left side of Figure 4 shows the state of the network
leader election and distance from the leader for one such
simulation after the nodes were deployed in the rooms. The
network was in this case fully connected, and all nodes
agreed on the same leader, being the node with the lowest
network ID, and the distance computation was also correct.

For what concerns the neighbour discovery, Figure 4
(right) shows instead the evolution of the minimum, aver-
age, and maximum degree in the network as nodes are first
progressively turned on, then deployed in different rooms,
collected and progressively turned off. The figure has been
computed by averaging the results of all 1000 simulations.

For what concerns clock synchronisation, the global
clock was simulated, but it was always fundamentally exact
as expected, since the possible sources of error for it were
not modelled.

5.6 Deployment
The same FCPP code that was run in the simulation was
also compiled together with Miosix and deployed on eight
WandStem nodes. The experiment set-up was similar to the
simulations, where the nodes were first turned on one by
one over the course of 155s, then deployed in different
rooms from time 210s to 420s. After the deployment, nodes
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were left in a fixed position until time 1020s, then were
brought back in the same room, an operation that lasted
until time 1180s. Finally, the nodes were turned off one
by one from time 1200s to 1740s. The simulation and de-
ployment setups were designed to be qualitatively similar,
aiming to prove that the gathered results show similar
patterns. We did not aim at a quantitative comparison, as
it would be impossible to perform due to both the unavoid-
able uncertainties in real-world experiments (interference
with existing WiFi networks, etc.), and the lack of radio
modelling in AP simulators (interferences, walls, etc.).

The left part of Figure 5 shows the network topology ob-
tained through the neighbour discovery information during
the time frame from 420s to 1020s. Links that were present
more than 50% of the time during the observed timeframe
are shown with a solid line, while links that were present
less than 50% of the time are shown with a dashed line.
During the time when the nodes were in a fixed position
all the link reliabilities, except for the one between nodes 0
and 6, were either above 95% or less than 10%. This is to
be expected in a static environment where links with good
signal reception only experience occasional packet losses
due to collisions, resulting in high link reliabilities, while
links where packets are received at the limit of the receiver
sensitivity result in low link reliabilities. The link between
nodes 0 and 6 is the only link exhibiting an asymmetric
reliability, where node 6 received packets from node 0 with
97% reliability, while node 0 received packets from node
6 with only 55% reliability. Such occurrences are possible
in CSMA/CA networks, and can be attributed to a hidden
terminal situation, where packets from node 6 could have
been stomped by other nodes such as 1, 5 and 7, not in
the radio range of 6, and thus unaware of its transmissions.
Node 2 remained instead disconnected from the rest of the
network 99.3% of the time and only occasionally received
packets form node 7.

The right part of Figure 5 shows instead the average and
maximum degree of the network during the entire experi-
ment, including the gradual powering on of the nodes in a
single room, their deployment and subsequent recollection.
The pattern matches the one observed in the simulations.

The left part of Figure 5 also shows the leader election
and hop distance computation during the time frame from
420s to 1020s. Nodes 0, 1, 3, 4, 7 consistently selected node
0 as their leader, in accordance with having a 100% link
reliability towards 0. Node 6, having a 97% link reliability
towards 0 sporadically disconnected and elected itself as
leader, and node 2, being isolated most of the time select
itself as leader except for the brief connection periods where
it correctly considered 0 the leader. For what concerns the
hop distance computations, nodes 0,1,5,7 stably reported the
correct hop distance. Nodes 3 and 4 due to their weak links
transiently changed their hop distance from 2 to 1, while
nodes 6 and 2, when isolated from the rest of the network
reduced their hop number to 0 as they became leaders of the
isolated part of the network. All in all, the neighbour discov-
ery, leader election and hop distance computation operated
as expected also in a real world deployment exhibiting
non-trivial connectivity patterns such as asymmetric link
reliabilities.

For what concerns the global clock, the experiment did

not log the clock synchronisation error and the current
clock resolution is only 7.8125ms which is insufficient to
appreciate clock skew over the course of the experiment,
but the global clock nonetheless was used as time reference
for aligning the logs for producing Figure 5 (left), showing it
achieved the goal of compensating the time offset of nodes
turned on at different points in time. Further studies aiming
to achieve high-resolution clock synchronisation in an AP
framework will be presented in future works.

6 CASE STUDY: VULNERABILITY DETECTION

As a first case study, we consider a simple scenario of
network vulnerability detection, using archetypal routines
common in aggregate programs. Assume that we want to
keep track of whether our network contains weak points,
which are devices that are only connected to a single other
device. Such situations may be of concern, as a weak point
can easily be disconnected from the rest of the network,
permanently or temporarily, due to communication mal-
functions. This routine can be programmed in FCPP through
this very simple function.
FUN void vulnerability_detection(ARGS, int diameter) { CODE

tie(node.storage(min_uid{}), node.storage(hop_dist{}))
= diameter_election_distance(CALL, diameter);

bool collect_weak = sp_collection(CALL,
node.storage(hop_dist{}), count_hood(CALL) <= 2,
false, [&](bool x, bool y) {
return x or y;

});
node.storage(some_weak{})
= broadcast(CALL, node.storage(hop_dist{}), collect_weak);

}

This function takes a single parameter, which is an upper
bound to the diameter of the network. In the first instruc-
tion, a leader election algorithm is called, using this estimate
to select the node with the minimum identifier (UID) and
the hop-distance of the current device from it. In the second
instruction, a collection algorithm is called, which aggregates
towards the leader the Booleans representing whether the
current node is a weak point (if the count_hood count of
neighbours is at most two, including the current device), us-
ing the or operation with null element false. Finally, in the
third instruction a broadcast algorithm is called, propagating
the collection result to the whole network.

6.1 Simulation

We evaluated this case study in the same scenario consid-
ered in Section 5.5. Figure 6 (left) shows the results, averaged
across the whole 1000 runs. As the network turned out to be
sufficiently dense, weak points were produced only rarely
(red line), except for the initial turn-on phase (before 100s)
where weak points were more likely. After that, peaks of
about 1% frequency occurred during the dispersal phase,
and smaller peaks occurred during the gathering phase (due
to the nodes yet-to-be gathered possibly becoming weak
points of the network). In both cases, the whole network
was able to track the presence of such weak points (blue
line), with a small delay: the wider amplitude of the blue
line represents the fact that many devices agree in knowing
that some device is a weak point.
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Fig. 5. Deployment plan (left) and average degree over time during the experiment (right). The network connectivity graph was computed using AP.
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Fig. 6. Results of the simulated case studies, vulnerability detection (left) and contact tracing (right)

6.2 Deployment
The same FCPP program was also compiled for Miosix and
deployed on the eight WandStem nodes. The deployment
pattern matches the one described in Section 5.6. Figure
7 (left) shows the results. The network initially correctly
reported the presence of nodes with less than two links
before time 45s, corresponding to when the third node
was turned on. After a transient time to propagate the
information, it stably reported that no weak points were
present as long as the nodes were in the same room. After
the nodes were transferred in different rooms, due to the
poor connectivity of nodes 2 and 7, nodes agreed most of
the time that the network contained weak points. When
the nodes were recollected in a single room, the lack of
weak points was correctly detected. Finally, when turning
off nodes, when fewer than 3 nodes remained turned on,
the weak point was detected again.

7 CASE STUDY: CONTACT TRACING

As a final case study, we considered a prototype contact
tracing application for the control of disease spreading. We
let every node keep a list of its most recent contacts, as

pairs of UIDs and timestamps: as this list may grow quite
large, and reveal sensitive information, every device kept
its own list locally without sharing with others. In order to
file contact warnings, a list of the most recent reported infec-
tions was also kept, also as pairs of UIDs and timestamps.
As this second list was potentially smaller, devices shared
knowledge about infected people, each of them comparing
it against its personal list of contacts. In case of a match
between a contact and a reported infection, the contact
warning was triggered. We set up a fixed window of 60s
before discarding both contacts and reported infections.

7.1 Simulation

We evaluated this case study in the same scenario consid-
ered in Section 5.5, assuming that a single node becomes
infected at time 40s and then again at time 280s. Figure 6
(left) shows the results, averaged across the whole 1000 runs.
In the first infection, the network is confined to a single
room, thus being strongly connected: as expected, every
device follows filing a contact warning for the following 60s.
In the second infection, the network is already dispersed
across the whole floor, and that translates into a smaller peak
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Fig. 7. Results of the case studies during the experiment, vulnerability detection (left) and contact tracing (right)

as some devices are no longer connected to the reported
infection.

7.2 Deployment

Porting of the contact tracing application to Miosix required
to map the infection event to a short press of the only
user button of the WandStem board (a long press of the
same button was instead used to turn off the node), and
the infection notification was displayed by turning on a
red LED. The so modified FCPP program was compiled
for Miosix and deployed on the eight WandStem nodes,
following the same pattern described in Section 5.6. Figure
7 (right) shows the results.

Node 1 signalled an infection from time 540s to 600s and
correspondingly, nodes 0, 3, 4, 5 reported an infection too
due to their direct contact, resulting in 62.5% nodes being
infected. Later, node 6 signalled an infection from time 795s
to 855s. In this case, only node 7 reported an infection due
to direct contact. Node 1 then signalled an infection again
from time 1005s to 1100s, but in this case around time 1020s
nodes began to be recollected in the same room. As a result,
while the percentage of infected devices started at the same
value as the previous time node 1 signalled an infection,
it quickly rose to 87.5%. The 100% positivity rate starting
from time 1200s is due to nodes being turned off. As the
only button in WandStem nodes is used both for turning off
nodes and signalling an infection, the long press required to
turn off the node resulted in nodes transmitting an infected
packet just before turning off, and being all in the same room
resulted in a 100% positivity rate almost all the time in the
last part of the experiment.

8 CONCLUSIONS

To the best of our knowledge, this paper is the first attempt
to link the aggregated computing paradigm (FCPP) with
the most important requirements of distributed systems, by
considering not only a validation by simulation but also
targeting real world microcontroller-based sensor nodes.

The investigation here presented focused on demon-
strating that the approach based on aggregated computing

is feasible and provides important features of distributed
systems with limited programming effort and almost no
knowledge of the hardware/software specific characteristics
of the wireless node, with the expected portability benefits.

Moreover, the presented design flow can be adopted
also in systems with a fine granularity of the processing
platforms, down to the level of microcontrollers.

The validation has been carried out by simulation, as
usual, to assess the scalability; but also using as test vehicles
real hardware nodes mounting an open-source operating
system for embedded applications (Miosix), which also
allows the replication of our experiments by the research
community. Note that the validation on real devices allowed
us to check the performance of the proposed solution under
non-ideal radio links, including for instance packet losses,
while also assessing the feasibility in terms of usage of
scarce resources like the memory and the computing power
of an average microcontroller.

The real-world assessment has been carried out in a
domestic environment using eight nodes, and the scalability
of the approach has been demonstrated via simulation.
Future work may scale up the size of the physical validation,
using more wireless nodes, and may include high-resolution
clock synchronization features and more advanced commu-
nication protocols to further improve the network reliability
and capabilities.
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