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Abstract: We consider the full S-matrix in the scattering giving rise to analogous Hawking radiation
in dispersive media. We show the general structure of the scattering in the weak dispersion approxi-
mation and discuss some unnoticed features of the primary process, with a possible generalization of
the phenomenology of the Hawking effect. In particular, we stress that the Hawking particle and
its antiparticle partner a priori could also be produced with different rates. We provide a general
parameterization of the S-matrix, adopting the Iwasawa decomposition for the matrix itself. Then,
we assume that a perturbative structure in a suitable sense is allowed and display the corresponding
expansion. In connection with the general structure of the S-matrix at the leading order, we also
consider the thermofield dynamics (TFD) framework and show that the TFD picture is still available,
with a doubling of the degrees of freedom emerging in a natural way, as for the astrophysical black
hole case. Furthermore, we show that particles on the thermal vacuum can be identified with real
particles appearing in the scattering.

Keywords: analogous Hawking effect; S-matrix; thermofield dynamics

1. Introduction

In [1,2] we proposed a fourth-order ordinary differential equation as a master equation
allowing to deal with the analogous Hawking effect in condensed matter systems in a
systematic way, in the approximation of weak dispersive effects. Systems between the most
studied and relevant ones, such as Bose–Einstein condensates (BEC), dielectric media, and
water are encompassed in our picture. The only change is in the identification of the weak
dispersion parameter ε appearing in the master equation.

Herein, we take into consideration the full structure of the S-matrix, which is asso-
ciated with the analogous Hawking effect in condensed matter. The S-matrix has been
discussed previously in the literature, see, e.g., [3–7], for BEC, water, and for the Cor-
ley model [8]. In particular, in a general picture encompassing the previously discussed
ones, we show that the S-matrix, at the leading order in ε, is very simplified with respect
to the original complexity of the complete scattering process, due to the fact that two
modes participating in the scattering substantially decouple, at least as far as the primary
process, i.e., the pair-creation process, is concerned (they still can interact at the level of
subsequent scattering with respect to the primary process). The manifest advantage of the
proposed framework [1,2] consists in the fact that a unified picture for many interesting
cases occurring in the physical literature can be provided, and this is true also at the level
of the structure of the S-matrix. Moreover, by our analysis it is also clear that, whenever a
direct participation of the aforementioned modes in the primary process would occur, one
could maintain thermality for the spectrum of the particles detected at infinity. However,
there would occur a difference in the number of created particles, to be identified with the
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Hawking particles, and the would be Hawking partners (would-be anti-particles, where
“would be” stresses their possible different production ratio w.r.t. particles), and then a
generalization of the Hawking process would occur, with a thermal spectrum but separate
behavior between the Hawking particle and its would-be partner. This is also a feature
that could be a very interesting subject of experimental verification. In particular, a joint
measurement of the Hawking particle could represent in any case a corroboration of the
general picture for the analog Hawking effect.

Further, we take into account a series expansion of the S-matrix, as we are interested in
looking for corrections to the leading structure S-matrix due to subleading processes. After a
naive approach, we adopt a rigorous picture involving the Iwasawa decomposition of the
unitary group associated with the S-matrix itself, by means of which we can corroborate
the aforementioned naive approach. The proposed Iwasawa decomposition represents a
novel tool in the analysis of the S-matrix and will be the subject of further analysis.

As an interesting consequence of the above-mentioned picture involving decoupling
of the two modes, we show that also in the analog Hawking effect there exists still the
possibility to associate a thermofield dynamics framework for the primary process. One can
again show that the doubling of the number of degrees of freedom, with the introduction of
a (would-be fictitious) Hilbert space, arises in a natural way, as in the case of astrophysical
black holes, as Israel pointed out [9]. Furthermore, we show that particles over the thermal
vacuum can also be identified with real particles appearing in the scattering and detectable
in the final scattering states, as far as the white hole situation is concerned. For the black
hole case, they still appear as ingoing states, and we point out that experiments involving
stimulated Hawking radiation in the black hole case have been performed in [10].

2. The Master Equation: An Orr–Sommerfeld Type Fourth-Order Equation

Three significant cases of wave equations in dispersive analogue gravity can be recon-
duced to the equation

ε2 d4Φ
dx4 ±

[
p3(x, ε)

d2Φ
dx2 + p2(x, ε)

dΦ
dx

+ p1(x, ε)Φ
]
= 0, (1)

where the upper sign occurs in the case of subluminal dispersion and the lower one in the
case of superluminal dispersion. The latter case is considered in Nishimoto’s works (see,
e.g., [11] and references therein). Furthermore,

pi(x, ε) =
∞

∑
n=0

pin(x)εn, (2)

is assumed. As ε→ 0, one finds the reduced equation

p30(x)
d2Φ
dx2 + p20(x)

dΦ
dx

+ p10(x)Φ = 0. (3)

Solutions of
p30(x) = 0 (4)

define the turning points (TPs) of the equation, and in the analysis of the reduced equation,
the behavior of solutions in the neighborhood of the TPs is of utmost relevance for the
scattering problem we mean to delve into. In the following, we limit ourselves to the case
of a single TP, which can be identified with x = 0 without loss of generality. In [11], it
is assumed that the reduced equation displays a Fuchsian singularity at the TP (nothing
actually prevents the general equation in itself to admit a regular behavior).
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It can be shown [11] that near the TP x = a the original equation is replaced by the
fourth-order differential equation

d4w
dz4 ±

(
z

d2w
dz2 + λ

dw
dz

)
= 0, (5)

where, as discussed at length in [1], w(z) represents the (rescaled [1]) wave-function in the
near horizon approximation, to be then matched in the linear region, with WKB solutions
that hold far from the turning point. We refer the reader to [1] for further details. In (5), the
upper sign is for the subluminal case, and the lower one is for the superluminal one, and

z = (p′30(a))1/3ε−2/3(x− a), (6)

and

λ =
p20(a)
p′30(a)

. (7)

Solutions to Equation (5) are found by means of Laplace integrals

wj(z) =
1

2πi

∫
Cj

dt tλ−2 exp
(

zt± 1
3

t3
)

, (8)

with a suitable choice for the paths Cj in the complex t-plane. Of course, there is also a
constant solution, which appears to be a Dirac delta in the space of the Laplace transform.
This further solution is fundamental in order to obtain a complete basis for the scattering
problem also in the region near the TP (i.e., near the horizon). As we discussed in [1,2],
Equation (5) is universal in form and is at the root of the analogous Hawking effect in
dispersive media, as far as they are governed by the above Orr–Sommerfeld-like equation.
In the following, we shall limit ourselves to the explicit discussion of the subluminal case.
For the superluminal one, we refer the reader to [2] for further details. See also the following
section. For the specific case of dielectric media, see also [12].

3. The S-Matrix in Presence of Dispersion

As known, the spectator mode v does not participate in the process at the turning
point, at least as far as the weak dispersion limit 0 < ε � 1 is assumed, where ε is the
parameter involved in the weak dispersion approximation, with ε = 0 indicating the
absence of dispersion. One may construct the straddling mode, which is obtained by
analytic continuation of the Hawking mode in the black hole region, to be identified with
the l-mode. The analytic continuation is unique and involves also the choice of the branch,
i.e., of the sheet of the Riemannian surface related to the logarithmic branch point associated
with the solutions of the differential equation governing the scattering process.

To be more precise: let us first individuate the OUT modes of the scattering, and in
particular let us call the u-mode the Hawking mode in the external region, the l-mode
its partner in the black hole region, and d-mode the (regular) mode again in the black
hole region. The l-mode has a negative norm (antiparticle). As far as the IN modes are
concerned, let us call the p-mode and the n-mode the high wave-number modes entering
the black hole, where the n-mode is a negative norm one. Last, but not least, we call v-mode
the (regular) mode entering the black hole. See Figure 1 for a pictorial representation.

As we have discussed in [1,2], at least at the leading order in the weak dispersion
approximation, the v-mode substantially decouples from the other ones, leaving a very
simple structure for the S-matrix, which will be discussed in the following subsection.
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3.1. The Complete S-Matrix

The following scattering operator is taken into account in literature (see, e.g., [6] for
the subluminal case): if one considers as IN-modes the ones moving towards the TP and as
OUT-modes the ones moving towards infinity (i.e., x → ±∞), one may write

ΦOUT = SΦIN (9)

where

ΦIN :=

 φp
φn
φv

, (10)

and

ΦOUT :=

 φu
φl
φd

. (11)

One has

S =

 σup σun σuv
σlp σln σlv
σdp σdn σdv

. (12)

In order to allow a better visualization of the overall process, we represent schemat-
ically in Figure 1 the modes participating to the scattering. In particular, we display the
subluminal case for the black hole scattering. The IN modes are traveling towards the
horizon, whereas the OUT ones are traveling towards the asymptotic regions (x → ∞ in the
asymptotic external region and x → −∞ in the deep black hole region). In the superluminal
case, the only change occurring is that the p-mode and the n-mode travel towards the
horizon from the black hole region.

horizon

black hole region

external region

u−mode

v−mode

p−mode

n−mode
l−mode

d−mode

Figure 1. Particles’ modes involved in the subluminal case. IN modes are indicated by means of
thin arrows, whereas OUT modes are indicated by means of thick arrows. The black hole horizon is
indicated by a vertical line.

One obtains, by taking into account that S ∈ U(1,−1, 1),

|σup|2 − |σun|2 + |σuv|2 = 1, (13)

|σlp|2 − |σln|2 + |σlv|2 = −1, (14)

|σdp|2 − |σdn|2 + |σdv|2 = 1. (15)

The above formulas amount to current conservations. As it is evident, there are three
current conservations occurring for the processes at hand. The first formula amounts
to the current conservation (13) for the Hawking process. As discussed in [1,2], in the
near-horizon approximation one can individuate for the Hawking process a diagram in
the Laplace transform space where the particles involved in the aforementioned current
conservation appear. One should expect that also for the other processes involved in the
other two current conservations where analogous diagrams can be drawn. As we noticed
in [1], for the Hawking process the v-mode is not enabled to participate in the process
directly, i.e., at the level of the near-horizon process. For the sake of completeness, we also
present in Figure 2 the diagram involved in the Hawking process in the subluminal case,
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which was called Corley’s diagram in [1]. See [8] and also [4,13]. For the superluminal case,
there are only little changes. See [2,4,8,13].

u−mode

decaying mode

p−mode

n−mode

Figure 2. Paths used in the subluminal case in Corley’s work [8]. Given the universality of (5),
this diagram holds true for all the subluminal cases, which can be rewritten in terms of the Orr–
Sommerfeld-like equation discussed in [1]. The paths for the dispersive modes, called the p-mode
and the n-mode in the text, are indicated, as well as the one for the Hawking mode (u-mode) and for
the decaying mode. The last mode is the one in the black hole region x < 0. As remarked by
Corley [8], the path for the decaying mode can be deformed in the paths for the Hawking particle and
for the dispersive modes. For the superluminal case, we refer the reader to Figure 1 displayed in [2].

For the Hawking mode at frequency ω, one obtains (cf. [1])

wu(z) ' −
1

iπ
|z|i

ω
k Γ
(
−i

ω

κ

)
sinh

(πω

κ

)
, (16)

where κ corresponds to the surface gravity for the analogous black hole one is considering
(see [1,2]), whereas for the n-mode and the p-mode one has [1]

wp(z) '
1

2
√

π
e−

3
4 πie

πω
2κ |z|−

iω
2κ−

3
4 ei 2

3 |z|
3/2

, (17)

wn(z) '
1

2
√

π
e

1
4 πie−

πω
2κ |z|−

iω
2κ−

3
4 e−i 2

3 |z|
3/2

. (18)

3.2. The Hawking Partner

One may obtain the Hawking partner by choosing a suitable analytical continuation
for x < 0. It turns out that, by choosing the branch where −1 = e−iπ , for the further
solution one obtains

wl(z) :' − 1
iπ

eπ ω
κ zi ω

k Γ
(
−i

ω

κ

)
sinh

(πω

κ

)
. (19)

As to the latter mode, the second line (14) represents the process involving the Hawk-
ing partner, i.e., the l-mode, which is specular with respect to the one for the Hawking
particle (u-mode). As to the associated diagram, there are some subtleties that can be
suitably pointed out. Of course, as the number of Hawking modes can be obtained by
considering the ratio

|βω |2 :=
|Jn

x |
|Ju

x |
, (20)
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for the l-mode, to be identified with the Hawking partner, one must get

|βpartner
ω |2 :=

|Jn partner
x |
|Jl

x|
, (21)

and this expression must coincide with the former one, if the identification is correct.
According to the discussion in [13], in order to maintain the same ratio between the

two currents in the two latest equations, it is necessary to exchange the roles of the n-mode
and the p-mode, and this can be obtained by shifting the cut on the positive real axis. See
Figure 3.

n−mode

p−mode

l−mode

Figure 3. Paths for the Hawking partner in [13]. The dispersive modes involved are explicitly
indicated, as well as the path near the cut at the branch point representing the Hawking partner
(l-mode).

We follow a different strategy, as we maintain the identification of the Hawking partner
with the mode that is obtained by analytic continuation at z < 0 from the Hawking mode,
as indicated above [1] (where we chose −1 = e−iπ). Being an antiparticle, its relation is
with the conjugate solutions corresponding to the p-mode and to the n-mode (so that the
former is in its antiparticle state and the latter in the particle one). Then, one obtains

w∗p(z) ∝ e−
πω
2κ |z|

iω
2κ−

3
4 ei 2

3 |z|
3/2

, (22)

w∗n(z) ∝ e
πω
2κ |z|

iω
2κ−

3
4 e−i 2

3 |z|
3/2

. (23)

As a consequence, one is able to maintain the same ratio for (20) and for (21).
We can also obtain the same result with a different choice. It is straightforward to

show that the l-mode can be obtained simply by taking into account a different leaf of the
logarithm log(z) (or, equivalently of the power function za, with a being non-rational):

log(z) = log |z|+ i arg(z) + i2πm, m ∈ Z. (24)

The principal branch is given by m = 0. Let us consider the branch m = −1. We
check if the same Corley diagram as in Figure 2, but this time with the path around the cut
representing the Hawking particle with x < 0, can represent the right physical situation,
now on the branch m = −1. This time, we choose −1 = eiπ , and it is easy to show that
we get again (23) for the Hawking partner. What happens in the case of the p-mode and
n-mode? They coincide with the ones indicated in (22) and (23), respectively, and then the
ratio in (20) and (21) is the same. From the physical point of view, one would wonder if there
is the necessity to pass to the different leaf as we did. In a certain sense, given that in the
non-dispersive Hawking process the Hawking particle and its partner are pair-created, one
would expect the same diagram for both the modes in the dispersive case, at least as far as
u-modes and l-modes can be considered as the partners of a pair. This gives a nice support
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to the picture involving the m = −1 branch. At the same time, one can also interpret the
particles appearing in that branch as belonging to the would-be fictitious Hilbert space
involved in the TFD picture of the phenomenon. See also the following section.

3.3. Generalized Hawking Effect in Analogue Gravity

There is also a nice consequence to be immediately pointed out: let us write the
number of created particles for the two aforementioned cases, by taking into account that
the signal of thermality for the Hawking process is in general assumed to be given by

|σup|2 = exp(βhω)|σun|2, (25)

where βh := 2π/κ is the inverse of the analogous Hawking temperature, and, analogously,
also for the Hawking partner one must expect

|σln|2 = exp(βhω)|σlp|2. (26)

One obtains

|σun|2 =
1− |σuv|2

exp(βhω)− 1
, (27)

|σlp|2 =
1 + |σlv|2

exp(βhω)− 1
, (28)

respectively. A first interesting consequence is that, at the level of particle creation, the iden-
tification of the l-mode as the Hawking partner, which is then created at the same rate as
the Hawking mode, requires that

σuv = 0 = σlv, (29)

at least for what concerns the primary process, i.e., we mean the process of pair-creation
regardless of any subsequent scattering depleting the flux of the particles arriving at infinity:
It might happen that subsequent scattering is able to deplete the flux of Hawking particles
at infinity, still leaving unaltered the above balance for the primary pair-creation process.

This is a very interesting consequence of the overall picture concerning the analo-
gous Hawking effect in dispersive media. Indeed, the above considerations are model-
independent, as they hold true in general for a dispersion relation like the one emerging for
any model that is governed by a fourth-order ordinary differential equation, and, as far as
(25) and (26) are assumed to be implemented, as it is commonly done at least in the weak
dispersion approximation, any deviation from pure thermality at the level of the primary
process would clearly be of hindrance to the identification of the l-mode as the Hawking
partner, as a different rate of creation would occur. To some extent, this is not a tricky prob-
lem, as the thermality one is interested in would still be ensured. However, it is remarkable
that one should also stress that a process where the aforementioned difference in the rate
of particle creation occurs would be a generalized Hawking effect. It is remarkable also
that the Hawking effect discussed, e.g., in [14,15] is (probably?) to be ascribed to the latter
generalization, as a grey-body factor arises at the level of the primary process.

3.4. The Third Process

One has further interesting consequences for the third process for the third current.
Additionally, the d-mode cannot participate in the process (it corresponds to the constant
solution in the near-horizon approximation [1]), as well as the v-mode itself. There is no
chance to draw a diagram involving also the modes p, n involved in the third current
conservation. As a consequence, one must also find at the leading order

σdp = 0 = σdn, (30)
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which implies also
|σdv| = 1. (31)

3.5. The S-Matrix

As a consequence of the weak dispersion ansatz discussed in [1], one obtains at the
leading order in ε a trivial decoupling of the S-matrix:

S =

 σup σun 0
σlp σln 0
0 0 1

. (32)

It is easy to show that,

|σup|2 = exp(βhω)|σun|2 =: |αω |2, (33)

and then, at the leading order,

|σun|2 =
1

exp(βhω)− 1
=: |βω |2. (34)

Analogously, one finds

|σln|2 = exp(βhω)|σlp|2 = |αω |2, (35)

and then, at the leading order,

|σlp|2 =
1

exp(βhω)− 1
= |βω |2. (36)

As already noticed in the literature, the above S-matrix satisfies the equation

S†US = U = SUS†, (37)

where
U = diag(1,−1, 1). (38)

This condition arises from the following considerations: we are actually considering
the Bogoliubov transformation B from the initial scattering state to the final one. As is
well-known (see, e.g., [16,17]) in the case of a scalar field one has

BqB−1 = B−1qB = q, (39)

where one defines the operator
q := P+ − P−, (40)

and where P± are the projectors on the positive/negative norm solutions, respectively. This
condition is easily seen to be equivalent to (37).

It may be noted that, from the point of view of quantum field theory (QFT), the S-
matrix discussed above is different from the usual S-matrix of the standard QFT, albeit there
is a direct relation between them. In QFT, there is usually another definition of S-matrix:

φ̂out(x) = S−1φ̂in(x)S , (41)

where we have indicated with S the scattering operator of QFT. As well-known, it has to be
an unitary operator: S†S = SS† = I, such that |0, out〉 = S|0, in〉 holds, which is ensured
if a finite number of particles is created in the transition between the two aforementioned
vacua [16,18,19].
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3.6. A Perturbative Approach to the S-Matrix

For simplicity of notation, henceforth we shift to a more standard writing of the
scattering matrix. The S-matrix has entries sij. Condition (37) leads to the following
six equations:

|s11|2 − |s12|2 + |s13|2 = 1, (42)

|s21|2 − |s22|2 + |s23|2 = −1, (43)

|s31|2 − |s32|2 + |s33|2 = 1, (44)

s12s11 − s22s21 − s32s31 = 0, (45)

s13s11 − s23s21 − s33s31 = 0, (46)

s12s13 − s22s23 − s32s33 = 0. (47)

One may explore the next-to-leading-order correction in ε by assuming an analytic
behavior of the S-matrix in the parameter ε. This might be a non-trivial assumption,
as our analysis is involved with quantum field theory in external fields, where ε enters in
a non-trivial way. Then, we still maintain an expansion parameter, say ε′, leaving open
the problem to find out the relation between ε and ε′. Indeed, in our case, our fourth-
order equation of the Orr–Sommerfeld kind is involved in a singular perturbation theory
problem, as higher-order derivatives appear in the perturbation itself, and this represents a
nontrivial mathematical problem. It is, e.g., not easy to determine in a complete way the
first correction to the wave functions in the near-horizon region. As to general difficulties
occurring in the case of singular perturbation theory, see, e.g., Examples 1.19 and 1.20,
pp. 435–436 in [20]. We proceed as in [21], with the difference that our expansion parameter
is ε′:

S = S(0) +
∞

∑
k=1

ε′
kS(k) = S(0) + ε′S(1) + ε′

2S(2) + . . . (48)

We put:

s(0)11 = αω = s(0)22 , (49)

s(0)12 = βω = s(0)21 . (50)

It is supposed that s13, s23 are at least order of ε′, i.e., are small (cf. [21]). With simple
algebraic manipulations of Equations (46) and (47) we get the following equations:

(αω − 1)s(1)13 = βωs(1)23 , (51)

(αω + 1)s(1)23 = βωs(1)13 , (52)

and then we obtain, as in [21],

s13

s23
=

βω

αω − 1
=

αω + 1
βω

=: r, (53)

i.e., s(1)13 = rs(1)23 .
From Equations (42) and (43), at order ε′, we obtain

s(1)11

s(1)12

=
βω

αω
=

s(1)22

s(1)12

, (54)
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and then s(1)11 = s(1)22 . Furthermore, Equation (44) at order ε′ provides s(1)33 = 0. As a
consequence, we get

S =

 αω βω 0
βω αω 0
0 0 1

+ ε′


s(1)11

αω
βω

s(1)11 rs(1)23
αω
βω

s(1)11 s(1)11 s(1)23

rs(1)23 s(1)23 0

+ O(ε′
2
). (55)

A less-naive approach to the parameterization of the S-matrix is presented in the
following subsection. As to the meaning of the parameters s(1)11 and s(1)23 , it is better to go

back to the previous notation: one has s(1)11 = σ
(1)
uv , which corresponds to the amplitude,

at the first order, of conversion of an initial v-mode to a final u-mode (Hawking particle),
whereas s(1)23 = σ

(1)
lv corresponds to the amplitude, at the first order, of conversion of an

initial v-mode to a final l-mode (Hawking partner). We recall that we indicated the l-mode
as would-be Hawking partner because of the possibility to find a different amplitude
of production of the l-mode with respect to the amplitude of production of the u-mode,
as previously discussed. This difference does not arise in our framework of ε-expansion.
This is obviously also true in the above expansion in ε′. A relation (yet-unknown) ε′ = h(ε),
where h is a function to be determined, is expected.

3.7. A General Parametrization of the S-Matrix

As we said, the S-matrix constructed above is an element of the group U(1,−1, 1),
a real form of U(3,C) preserving the quadratic Hermitian form η :=diag(1,−1, 1) in C3.
Its general element depends on nine real parameters and can be realized by means of the
Iwasawa parametrization [22,23]. It means that the generic form of S can be put in the
following form:

S = KAN (56)

where K is a generic element of the maximal compact subgroup; A is a maximal non-
compact abelian subgroup; and N is the exponentiation of the nilpotent generated by the
positive roots associated to A. Let us do it in detail, starting from the associated Lie algebra
u(1,−1, 1). It consists of the 3 × 3 matrices A that satisfy

A†η + ηA = 0, (57)

which gives a∗11 a∗21 a∗31
a∗12 a∗22 a∗32
a∗13 a∗23 a∗33

 =

−a11 a12 −a13
a21 −a22 a23
−a31 a32 −a33

. (58)

Accordingly, we choose the following basis for the Lie algebra:

µ1 =

 0 0 −i
0 0 0
−i 0 0

, µ2 =

0 0 −1
0 0 0
1 0 0

, µ3 =

−i 0 0
0 0 0
0 0 i

,

µ4 =

0 0 0
0 −i 0
0 0 0

, µ5 =

−i 0 0
0 −i 0
0 0 −i

, µ6 =

0 1 0
1 0 0
0 0 0

,

µ7 =

0 −i 0
i 0 0
0 0 0

, µ8 =

0 0 0
0 0 1
0 1 0

, µ9 =

0 0 0
0 0 −i
0 i 0

. (59)
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Notice that they are trace orthogonal but not uniformly normalized. This choice
simplifies the expressions we need. The first 5 matrices are compact (their squares have
negative trace) and generate the maximal compact subgroup K. It is a U(2)× U(1): the
first four matrices generate U(2), of which the first three generate SU(2), and the fifth
matrix generates the U(1). The quotient U(1,−1, 1)/(U(2)× U(1)) has rank 1, so there is
only one generator for A. We choose µ6. Finally, we have to determine the eigenmatrices
of the adjoint action of µ6 corresponding to positive roots. These are easily obtained by
computing the commutators [µ6, µj], j = 7, 8, 9. We get

N1 =

 i −i 0
i −i 0
0 0 0

, N2 =

0 0 −1
0 0 1
1 1 0

, N3 =

 0 0 −i
0 0 −i
−i i 0

. (60)

Parametrizing the subgroup SU(2) à la Euler, we get

S[~x; y;~z] ≡ K[~x]A[y]N[~z], (61)

with

K[~x] =ex1µ3 ex2µ2 ex3µ3 ex4µ4 ex5µ5 , (62)

A[y] =eyµ6 , (63)

N[~z] =ez1 N1 ez2 N2 ez3 N3 . (64)

More explicitly

K[~x] =e−ix5

e−ix1 0 0
0 1 0
0 0 eix1


cos x2 0 − sin x2

0 1 0
sin x2 0 cos x2


e−ix3 0 0

0 1 0
0 0 eix3


1 0 0

0 e−ix4 0
0 0 1

, (65)

A[y] =

cosh y sinh y 0
sinh y cosh y 0

0 0 1

, (66)

N[~z] =

1 + iz1 −iz1 0
iz1 1− iz1 0
0 0 1


1− z2

2
2 − z2

2
2 −z2

z2
2
2 1 + z2

2
2 z2

z2 z2 1


1− z2

3
2

z2
3
2 −iz3

− z2
3
2 1 + z2

3
2 −iz3

−iz3 iz3 1

. (67)

The range of the parameter to cover the whole group is

x1, x4 ∈ [0, π], x2 ∈ [0, π/2], x3, x5 ∈ [0, 2π], y, z1, z2, z3 ∈ R. (68)

Exploiting all the products would provide us the most general parametrization for
coefficients of S. However, for several analyses it may be convenient to keep the terms
factorized. As an example, let us consider again the case of a perturbative deviation from
(32). To this end, we can write

S(0) = S[~0, yω,~0] =

cosh yω sinh yω 0
sinh yω cosh yω 0

0 0 1

, (69)

with sinh yω = βω . We could compute the most general first-order correction, but we want
now to limit ourselves to consider only real corrections, so we keep x1 = x3 = x4 = x5 =
z1 = z3 = 0, set

x2 = aε′, y = yω + bε′, z2 = cε′, (70)
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and keep the first order in ε′. This gives S = S(0) + ε′S(1) + · · · , with

S(1) =

 βωb αωb −a− c(αω − βω)
αωb βωb c(αω − βω)

aαω + c aβω + c 0

. (71)

This expression is more general than (55). While the first 2 × 2 block coincides with
the previous one, the last row and column are more general, since they are not forced to
be symmetric, and so we have three independent parameters in place of just two. Notice
that imposing S(1)

23 = S(1)
32 in (71) automatically gives symmetry and reproduces exactly

(55). We stress that, while the comparison we have just done seems to suggest a direct
identification ε′ = ε, such a conclusion would be too naive as one has to determine the
final identification in the full quantum field theory framework.

Our parametrization allows to include easily also the corrections due to the non-real
terms (by switching on x1, x3, x4, x5, z1, z3) or to extend the perturbation at any given order
or to provide exact general expressions, after relating the generalized Iwasawa parameters
with the physical ones.

4. Thermofield Dynamics and Thermality

From the origins of the Hawking effect and of the thermofield dynamics (TFD) frame-
work for describing thermal equilibrium, there exists a fine relation between thermal
emission by black holes [9] and thermofield formalism [24–27]. As discovered by Werner
Israel, the thermal vacuum of TFD coincides with the Hartle–Hawking state, sometimes
also indicated as a Hartle–Hawking–Israel state in tribute of Israel’s finding [9]. See
also [13,28,29]. Our possibility to show that the p-modes and n-modes correspond to the
particle/antiparticle states of the thermal vacuum, i.e., as particles of the Hartle–Hawking–
Israel vacuum, is a noticeable consequence of the aforementioned scheme.

4.1. A Summary of TFD

Thermofield dynamics are introduced with the aim of describing quantum field theory
at a finite temperature. The key idea is to set up a formalism where the ensemble average
of any operator at thermal equilibrium is replaced by an expectation value of the same
operator with respect to a thermal vacuum:

〈A〉β =
1

Z(β)
Tr(exp(−βH)A) =: 〈0(β)|A|0(β)〉. (72)

In the previous equation, Z(β) is the partition function, and H is the Hamiltonian
operator for the system at hand; |0(β)〉 is the thermal vacuum, and β is the inverse
temperature, as usual. It is not possible to obtain that |0(β)〉 stays in the same Hilbert
spaceH as the bosonic theory at hand, but, in order to implement the above mapping, it
is necessary to duplicate the degrees of freedom by introducing a fictitious copy H̃ of the
original Hilbert space, with associated creation and annihilation operators. The thermal
state |0(β)〉 can be arranged for in the tensor product H ⊗ H̃. Let us introduce in the
vacuum states |0〉 and |0̃〉, with corresponding annihilator operators al , ãl and bl , b̃l for
particles and antiparticles, respectively. A physical (fictitious) n–particle state whose energy
is En is denoted by |n〉 (|ñ〉) and |n, ñ〉 = |n〉|ñ〉 is the n–particle tensor product state.

The vacuum state in the extended Hilbert state is

|0(β)〉 = 1√
Z(β)

∑
n

e−βEn/2 |n, ñ〉; (73)

Z(β) is a normalization.
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In the calculation of (72), one has to sum over all the fictitious states ñ; the result is

〈A〉 = 〈0(β)|A|0(β)〉 = 1
Z(β) ∑

n
e−βEn〈n|A|n〉. (74)

One can also introduce thermal-state operators, according to the standard construc-
tions in thermofield dynamics, and introduce the thermal state |0(β)〉 and thermal-state
annihilation operators al(β), ãl(β), bl(β), b̃l(β), which are such that

al(β)|0(β)〉 = ãl(β)|0(β)〉 = bl(β)|0(β)〉 = b̃l(β)|0(β)〉 = 0. (75)

Let us recall that, for bosons, we have En = nω. We are mainly interested in the
following Bogoliubov relations:

al = clal(β)− sl ã†
l (β), (76)

a†
l = cla†

l (β)− sl ãl(β), (77)

and the analogous ones for b-operators (which correspond to operators for antiparticles,
i.e., for negative frequency states; cf. [24]), with

cl : =
1√

1− exp(−βω)
, (78)

sl : =
exp

(
− 1

2 βω
)

√
1− exp(−βω)

. (79)

4.2. Analogue Hawking Effect and TFD

In the framework of analogue gravity, one may show that particle of the thermal
vacuum can be identified with particles appearing in the spectrum of the analogous system
displaying the analogous Hawking effect. In agreement with the leading term in the S-
matrix we discussed above, we have Γω = 1, where Γω stays for the grey-body factor
(see (85) below), and we have restored its standard notation for the Hawking effect itself.
The decoupling of the modes v, d at the leading order, as discussed the previous section,
is fundamental in order to allow a thermofield dynamics picture also in analogue gravity,
as we show below. Indeed, as a consequence of such a decoupling, we can write

au
ω = αωap

ω + βωan†
ω , (80)

to be compared with the thermofield formula

aω = uω(βh)aω(βh) + vω(βh)ã†
ω(βh), (81)

where
aω(βh)|0(βh)〉 = 0 = ãω(βh)|0(βh)〉. (82)

The fictitious Hilbert space of TFD is instead populated by the Hawking partner:

al†
ω = βωap

ω + αωan†
ω , (83)

to be compared with the thermofield formula

ã†
ω = uω(βh)ã†

ω(βh) + vω(βh)aω(βh). (84)

As a consequence, we can claim that the p-modes and the n-modes correspond to
particle states associated with the thermal vacuum, to be compared with the Hawking
mode (u-mode) and the Hawking partner (l-mode), which are states of the “standard”
(i.e., non-thermal) vacuum, and belong to the Hilbert space and to the would-be fictitious
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Hilbert space, respectively. Further, we note that, in the case t of a white hole, modes p, n
are outgoing scattering states; in the black hole case, modes p, n are ingoing scattering
states, which can be associated with vacuum fluctuations (as far as the spontaneous process
is concerned) and real particles in the stimulated case. Then, it is worth mentioning that,
in both the white hole case and the black hole one, p, n may be experimentally measured,
and so we have also a physical measure of the aforementioned particles excited over the
thermal vacuum. This happens only in the case of analogue-gravity models, where a
nontrivial dispersion appears. Furthermore, we can also interpret the fictitious part of the
Hilbert space involving the Hawking partner as associated with the m = −1 branch of the
analytic function we discussed in the previous section.

We also think that the above picture would be of strong interest also for theoreticians
of TFD, as the particles of the thermal vacuum appear in the present case as real particles,
which can actually be measured, as discussed above (e.g., in the case of a white hole
configuration of a nonlinear dielectric medium, one may detect photons corresponding to
the p, n states in a suitable photon detector). See also [10].

One may wonder if it is possible to extend our considerations also to the case where
Γω < 1 because of a depletion process of the actually created particles. This means that
σuv 6= 0, and then

Γω = 1− |σuv|2 < 1. (85)

As discussed in [1], one maintains the relation (33), and then one obtains

|σun|2 =
Γω

exp(βhω)− 1
=: |βω |2. (86)

A very naive ansatz would be the following: the picture concerning states u, l and
states p, n proceeds as above, with the difference that the depletion of Hawking particles
(u-modes) at infinity because of the backscattering (v-modes) is such that

uω(βh) =

√
Γω

1− exp(−βω)
, (87)

and

vω(βh) =

√
Γω

exp(βω)− 1
. (88)

Still, one has to remark that the effects of depletion not only can but even must in
principle act in a different way in the case of the Hawking mode and in the case of the
Hawking partner, as Equations (27) and (28) show, disrupting the standard TFD picture
and maybe leaving room for a generalization of the standard formalism. We do not delve
into this problem herein.

5. Conclusions

We took into account the general structure of the Hawking scattering process in
analogue gravity with weak dispersion. We discussed in detail the process involving the
Hawking partner, and we showed that, in general, one could expect different creation rates
for the Hawking particle and the (would-be) Hawking partner, unless a weak dispersion
takes place, as in the framework of the generalized Orr–Sommerfeld equation we discussed
in [1,2], encompassing the framework introduced in [4,8], at least at the leading order in
the weak expansion parameter ε. Including higher-order correction in ε in general may
be tricky. Therefore, in order to show which kind of general form the further corrections
one must expect at the subleading order for the S-matrix operator, we proposed a general
method based on a rigorous Iwasawa decomposition of the group U(1,−1, 1) in order to
prescribe the general form of the S-matrix. In principle, this method allows to describe any
possible modification of the S-matrix, perturbative or not, and it makes easily controllable
any expansion with respect to an infinitesimal parameter ε′, once the latter is related to the
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physical perturbation parameter ε. We did not try to propose here a direct relation between
ε′ and ε, since in general it is made tricky by technical subtleties; quantum field theory does
not allow to just make naive identifications. A direct perturbative expansion in ε requires
in general further assumptions (as a reasonable smallness of some non-diagonal entries of
the S-matrix, see [21]). We leave this delicate question to a future work devoted to a full
investigation of the potentiality of the Iwasawa parameterization approach.

We think that the analysis we presented here, together with the ones in [1,2], provides
the possibility to improve our knowledge of the analog Hawking effect on the theoretical
side, but also on the experimental one, as it is made possible in line with principles a more-
accurate black hole spectroscopy (albeit probably only in a semi-analytical way for what
concerns actual calculations of higher-order corrections to the S-matrix). Furthermore,
we took into account the thermofield dynamics framework, and we have showed that,
at least at the leading order, it maintains its performability also in the dispersive analogue-
gravity framework, with the (apparently unnoticed before) further bonus that particles
on the thermal vacuum can be identified with the modes p and n, and then it becomes
experimentally measurable, as discussed in the previous section. The TFD framework is
instead jeopardized by the presence of grey-body factors for the Hawking particle and the
would-be Hawking partner at the leading order, as different rates no more allow to define
a thermal vacuum in the standard way.
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