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Abstract. Peripheral nerve injuries (PNIs) present significant clinical challenges, 
affecting communication between the central nervous system and peripheral or-
gans, thereby impacting patients' quality of life. These injuries, often due to trau-
mas like crushing, compression, and penetrating wounds, lead to chronic disabil-
ities and substantial healthcare costs. Timely intervention and personalized ther-
apeutic approaches are essential to restore neural functionality. Traditional treat-
ments, despite their availability, have limitations such as side effects and variable 
outcomes. Recent research has focused on developing advanced, often implanta-
ble, devices to provide more effective and less invasive solutions. However, in-
tegrating these technologies into clinical practice is complex, involving chal-
lenges related to biocompatibility, hermeticity, power management, and data se-
curity. This article examines the intricacies of implanted device technology, high-
lighting the need for advanced data analysis techniques to enhance their efficacy. 
It explores signal analysis methods for classification, including preprocessing, 
data augmentation, and machine learning strategies. The article also reviews 
power strategies for implantable devices, such as batteries, energy harvesting, 
and radio frequency, alongside other methods like inductive, capacitive, and 
magnetic resonance coupling, which are also used for wireless communication. 
Additionally, the evolution of integrated circuits and coating materials is dis-
cussed, emphasizing their role in improving device performance and longevity. 
This comprehensive review aims to provide a guide for overcoming the current 
challenges in PNI treatment through technological innovation. 

Keywords: Data transmission, ENG data analysis, Implantable device, Wire-
less Powering. 

1 Introduction 

Peripheral nerve injuries (PNIs) are complex clinical challenges that significantly 
impact neural communication and quality of life, often caused by traumas like crushing, 
compression, and penetrating wounds. These injuries lead to chronic disabilities and 
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high healthcare costs. When a peripheral nerve axon is damaged, Wallerian 
degeneration occurs, disrupting neural communication and exacerbating dysfunction. 
Mechanical injury can cause a wide array of neuropathies, such as axonal fragmentation 
and compression neuropathy. The former disrupts the continuity of nerve fibers [1] and 
impairs the transport of essential molecules and signals. In the latter case, prolonged 
compression results in reduced blood flow and ischemic neuropathy [2], in which 
insufficient oxygen supply causes demyelination (loss of the protective myelin sheath) 
and axonal degeneration. Nerve compression may also trigger an inflammatory 
response [2], leading to demyelination and axonal damage. Timely intervention is 
crucial, but the severity of injuries requires personalized treatment. Traditional 
treatments, including drugs, physiotherapy, electrical stimulation, and surgery, have 
limitations such as side effects and variable outcomes. Recent research focuses on 
advanced, often implantable, devices for more effective and less invasive treatment [3]. 
However, integrating these devices into clinical practice faces challenges like 
biocompatibility, structural design, power management, wireless communication, data 
security, and regulatory compliance [4]. 
 
Paper organization: The following sections focus on the problems, the novel methods 
and technologies used to implement implanted devices for peripheral nerve injury 
treatment. Section II focuses on data handling and classification tchniques, section III 
on powering and data communication, section IV on chip design. 

2 Signal analysis for classification 

A potential solution to these injuries is to create a digital bypass over the damaged 
section of the nerve [5, 6]. Signals passing through the nerve would be recorded before 
the damaged area, then classified to reproduce the correct stimuli after the damaged 
section. In this framing of the problem correctly classifying the different signals is of 
paramount importance. To extract the characteristics of the Electroneurography (ENG) 
signal, multiple analysis steps are needed. Through preprocessing, data balancing and 
data augmentation we obtain a complete dataset that can be used to train a machine 
learning (ML) or deep learning (DL) model of choice (Figure 1) [5, 6, 7]. Important 
aspects to take into consideration when creating a model are temporal constraints if 
targeted to a real time application and computational constraints when dealing with 
embedded devices [6]. 
 

 
2.1 Preprocessing 

Preprocessing is essential to extract the relevant features for classification. Usually, a 
band-pass filter is used to attenuate noise below 800 Hz, originating from muscles, and 
above 2500 Hz, to minimize other sources of noise [5, 6, 7, 8]. This band pass improves 
the signal-to-noise ratio (SNR) given that most ENG signal power has been observed 
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to be in the range between 1000 and 2500 Hz [5]. The Discrete Wavelet Transform 
(DWT) [9] can be employed for further noise reduction. This method decomposes a 
signal into various frequency components and achieves both time and frequency 
localization in a concise representation, thereby reducing noise [9]. Signals may also 
be compressed and reconstructed using Autoencoders, this process diminishes noise by 
retaining only the vital features of the signal [10]. Compared to the Wavelet approach, 
in a synthetic environment, autoencoders have demonstrated a noise removal efficiency 
with a 4 dB improvement in SNR [10]. To enhance the signal quality, feature extraction 
algorithms such as the Running Observation Window (ROW) [11] or Velocity 
Selective Recording (VSR) [12] can be implemented. Finally, down-sampling up to 5 
kHz can be applied to reduce data dimensionality without altering the classification 
outcomes, as evidenced in [5, 6]. Given the complexity of the task and the limited size 
of Electroneurographic (ENG) signal datasets, which may include imbalance among 
different stimuli, data augmentation techniques like noise addition, overlapping 
windows, and Generative Adversarial Networks (GANs) [13, 14] can be used. To 
address class imbalance, methods such as random oversampling or random 
undersampling [14,15] are employed. 

 
 

2.2 Machine learning classifiers 

In the realm of machine learning, classifiers such as Random Forest (RF) [16], Linear 
Discriminant Analysis (LDA) [7], and Support Vector Machines (SVM) [17] are 
frequently used for ENG signal classification. While these models provide 
interpretability, they might lack the complexity needed to capture detailed patterns. RF, 
which constructs multiple decision trees and integrates their predictions, has achieved 
up to 85% accuracy in classifying vagal nerve signals in pigs across six test subjects 
under four different stimuli using 500 ms windows for classification, as reported in 
[16]. LDA classifies signals by maximizing the separation between classes in a feature 
 

 
  
Fig. 1. A simplified pipeline to obtain a classifier model. The data undergoes preprocessing and 
augmentation before being used to train and test classifiers. 
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space derived from a linear combination of inputs and has been used to classify ENG 
signals under ten different stimuli (such as proprioception, nociception, and touch) with 
accuracies ranging from 40% to 70% using 500 ms windows [7]. SVM, which 
categorizes elements by identifying separating hyperplanes in an enhanced feature 
space, were used to classify ENG signals from rats under three different stimuli, 
achieving an average accuracy of 75% to 84% [17]. 
 

 
2.3 Deep learning classifiers 

Deep learning models, including Convolutional Neural Networks (CNNs) [5], Multi-
Scale Convolution Block (MSCB) [18], InceptionTime (IT) [6, 18], Transformers 
(TARNet) [18], Electroneurographic Network (ENGNet) [6], and Spiking Neural 
Network (SNN) [5], offer a more profound level of classification compared to 
traditional machine learning methods. Nonetheless these models may encounter 
challenges due to limited data and computational constraints [14].  For instance, a 
similar implementation of a CNN achieved accuracy rates between 80.2% and 86.4% 
on a ten-class classification task involving rat ENG signals [17]. MSCB [18], a 
variation of CNN that uses multiple kernel sizes for convolution, captures a wide range 
of information from the input signal, acting as diverse filters SNN (Figure 2). It 
achieved 93.6% accuracy in classifying three classes of signal using 50 ms windows. 
IT [6, 18] consists of multiple blocks, each featuring a convolutional reduction layer, a 
convolutional layer with various-sized kernels, and a max pooling layer, achieving 
accuracies from 78.5% to 98.1% for four-class classification using 100 ms windows [6] 
(dataset presented in [17]). ENGNet [6], which comprises three main blocks —
temporal convolution for selecting temporal information, spatial convolution for 
channel selection, and a combination of features to resolve classification problems— 

 

 
  
Fig. 2. Scheme of the convolutional approach from [5]. The signal is represented by a matrix, 
where each row corresponds to the signal coming from a different recording channel. Then one-
dimensional convolutions are applied either on the temporal or on the spatial axis. 
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Fig. 3. A schematic representation of a SNN [5]: Information is transmitted through spike trains, 
represented as binary sequences. Each neuron is modeled with an internal state variable, such as 
the membrane potential, which is updated at every time step based on the spatiotemporal 
summation of incoming signals. 

 

Table. 1. Comparison of Machine Learning Methods. 

 Machine Learning Algorithm 
 

Method 
 

RF SVM LDA 
 

Accuracy 
 

꼞 꼞꼞 꼞 

 

Interpretability 
 

꼞 꼞 꼞꼞 

 

Speed 
 

꼞꼞 꼞꼞 꼞꼞꼞 

 
 
has demonstrated accuracies between 82.5% and 96.5% using 100 ms windows with 
the same dataset as IT. SNN (Figure 3), as presented in [5] is a third-generation network 
model that employs an activation function designed to mimic human neural activity, 
has reached accuracies from 80.2% to 86.4%. TARNet [18], a classifier based on an 
attention mechanism that selectively weights and integrates information from different 
parts of the input sequence, achieved a 72.1% accuracy over three classes using 50 ms 
signal windows [18]. Currently most of the deep learning networks are convolutional 
and between them ENGNet has proven to be one of the most effective neural network 
models for classifying ENG signals. A summary of the Neural Network performance is 
presented in Table 1 and Table 2. 
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Table. 2. Comparison of Deep Learning Methods. 

 Deep Learning Architectures 

Method 
Convolutional 
(CNN, MSCB, 
ENGNet, IT) 

Trasformer 
Based 

(TARNet) 

Spiking Neural 
Networks 

(SNN) 
 

Accuracy 
 

꼞꼞꼞 꼞꼞 꼞 

 

Interpretability 
 

꼞  꼞 

 

Speed 
 

꼞 꼞 꼞 

 

3 Powering and data communication 

Powering and communication are two key aspects of Implantable Medical Devices 
(IMDs). These devices rely on efficient power sources and reliable data transfer 
methods to ensure proper functionality and patient safety. For wireless communication, 
as reported in [19], the Bluetooth Low Energy (BLE) 5 protocol is used to optimize 
wireless communication in implantable medical devices, due to its low power 
consumption and compatibility with compact devices. BLE 5 operates in the 2.4 GHz 
Industrial, Scientific and Medical band with dynamic channel allocation to minimize 
interference, achieving a theoretical throughput of 1.366 Mbps, sufficient for real-time 
data transmission. Tests confirm stable communication up to 50 cm and in the presence 
of biological tissues, with an increased packet error rate in higher Body Mass Index 
scenarios. Regarding powering, there are various methods that allow to transfer power 
to the IMDs, including batteries, energy harvesting and radio frequency. At the end of 
the section, Table 3 is presented, where a summary of the discussion is provided. 
 

 
3.1 Batteries 

The development of batteries for implantable biomedical devices focuses on enhancing 
performance, safety, and longevity, with advancements in lithium-based, lithium-
polymer, and solid-state batteries offering high energy density and improved 
biocompatibility. Challenges such as potential leakage, biocompatible packaging, and 
manufacturing costs persist, particularly for devices with high power demands like 
Implantable Cardioverter-Defibrillators, which use lithium-manganese dioxide and 
lithium-silver vanadium oxide batteries [20, 21]. Improving battery life is essential to 



7 
 
 
 

reduce the need for frequent surgical replacements and associated risks, benefiting both 
patients and healthcare systems [22]. 

 
3.2 Energy harvesting 

Energy harvesting for IMDs utilizes human motion, thermal gradients, infrared 
radiation, and solar energy to generate power. Techniques include piezoelectric 
materials, electrostatic and magnetic induction generators for kinetic energy, 
thermoelectric generators for thermal energy, and photodiode arrays for infrared 
radiation. These methods aim to reduce the need for battery replacements and improve 
device longevity [23, 24]. 

 
 

3.3 Radio frequency 

Radio Frequency (RF) Power Transfer utilizes electromagnetic waves to transmit 
energy from an external transmitter to an implanted receiver. It's suitable for longer 
distances, ideal for low-power devices needing continuous operation. However, careful 
control is necessary to prevent tissue damage and ensure compliance with regulatory 
standards [25]. Other methods valid both for the powering and the communication 
aspects include inductive coupling, capacitive coupling, magnetic resonance coupling 
and ultrasound (Figure 4). 

 
 

3.4 Inductive Coupling 

Inductive Power Transfer (IPT) is a near-field wireless power transfer (WPT) technique 
that utilizes magnetic induction to transfer electrical energy between two coils. The IPT 
system operates by applying an alternating current to the primary coil in the energy 
transmitter, which generates a varying magnetic field. This magnetic field induces a 
current in the secondary coil, which can then be used for charging a wireless device or 
storage system. This system relies on mutual inductance, where one coil is placed 
outside the body and the other is integrated into the implanted device.  
 
The mutual inductance M between the coils can be computed using the formula: 
 

𝑀 = 𝑘ඥ𝐿ଵ𝐿ଶ 
(1) 

where k is the coupling coefficient, L1 and L2 are the inductances of the primary and 
secondary coils, respectively. Inductive coupling has several advantages, including a 
simple topology, ease of implementation, and high-power transfer efficiency over short 
distances. It is widely used in powering devices such as cochlear implants, 
neurostimulators and cardiac pacemakers [26]. However, IPT also has limitations. It 
requires precise alignment between the coils, and its efficiency decreases with 
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increasing distance, making it unsuitable for portable applications. In addition to 
powering, inductive coupling is also utilized in telecommunication systems for 
implanted devices. It features a typical throughput ranging from several hundred 
kilobits per second (kbps) to 1 Megabit per second (Mbps) [27], making it suitable for 
both short and long-term applications [26]. 

 
 

3.5 Capacitive coupling 

Capacitive coupling is an efficient technique for data and power transfer in short-range 
wireless communications for implanted devices. This methodology relies on two 
parallel plates acting as capacitors: one attached to the skin and the other implanted and 
connected to the device. The skin acts as a dielectric separator, facilitating the coupling.  
 
Energy transmission occurs via displacement current Id, described by the equation: 
 

𝐼ௗ = 𝜀 ⋅ 𝜀 ⋅
𝑑𝐸

𝑑𝑡
⋅ 𝐴 

(2) 
where E is the electric field intensity, A is the area of the plate, 𝜀 and 𝜀 are the relative 
permittivity and free space permittivity respectively, t denotes time. To optimize 
efficiency, the displacement current must be increased by reducing the distance 
between the plates and increasing the excitation voltage. Capacitive coupling is 
advantageous due to its low cost and minimal parasitic current loss. It is used to power 
implanted microstimulators, deep brain stimulators, and neurostimulation devices. The 
throughput ranges from 100 kbps to 1 Mbps [28, 29]. However, it has some limitations, 
such as the increase in tissue temperature around the plates and the absorption of the 
electric field by the tissues [29]. Despite these limitations, capacitive coupling can be 
effectively used in retinal implants to transfer power and data to microelectrodes on the 
retina, helping restore vision [30]. 
 

 
3.6 Magnetic resonance coupling 

Magnetic Resonance Coupling (MRC) is an advanced technique used for both wireless 
power transfer and telecommunication in implantable biomedical devices. This method 
employs strong coupling between resonant coils, operating at the same resonant 
frequency, to efficiently transfer power wirelessly [31].  
 
The fundamental frequency for these systems can be determined using the formula: 
  

𝜔 =
1

ඥ𝐶ଵ𝐿ଵ
=

1

ඥ𝐶ଶ𝐿ଶ
 

(3) 
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where L1 and L2 are the inductances, and C1 and C2 are the capacitances of the primary 
and secondary coils, respectively. To optimize power transmission and minimize losses 
due to weak coupling, the inductance of the coils should be adjusted by adding parallel 
or series capacitances. This ensures that the resonant frequency of the coils matches, 
thereby maintaining strong coupling. One of the key advantages of MRC is its 
immunity to environmental factors, allowing it to transfer energy through free space 
with minimal efficiency loss. This makes it suitable for devices like ventricular assist 
devices [32] and other long-term implants [33], where consistent and reliable power 
transfer is essential. The strong coupling achieved by resonant coils can extend 
transmission distances to meters [34], making it a robust solution for various 
biomedical applications. In addition to powering, MRC is also used for 
telecommunication in implantable devices. It leverages the same principles of resonant 
coupling to achieve high data transfer rates. The throughput of MRC systems is 
typically well above 1 Mbps [35], which is adequate for most biomedical applications 
requiring high-speed data transmission. 
 

 
 

 
 

 
  

Fig. 4. Powering and communication systems. 
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Table. 3. Powering and Communication Methods 

  

RF 
 

IPT 
Cap. 

coupling 

 

MRC 
Ultra-
sound 

 

Data rate 
 

Depends 
on power 

Up to 
1Mbps 

Up to 
1Mbps 

Above 
1Mbps 

0.1-
1Mbps 

 

Range 
 

꼞꼞꼞 꼞 꼞 꼞꼞 꼞꼞꼞 

Cost 
(lower is better) 

꼞꼞 꼞꼞 꼞 꼞꼞 꼞꼞꼞 

 

Efficiency 
 

꼞꼞꼞 꼞꼞꼞 꼞꼞 꼞꼞꼞 꼞꼞꼞 

Complexity 
(lower is better) 

꼞꼞 꼞 꼞꼞 꼞꼞 꼞꼞꼞 

 
 
3.7 Ultrasound 

Ultrasound refers to sound pressure with frequencies above the human hearing limit, 
commonly over 20 kHz. A newer application is ultrasonic power transfer (UPT), which 
uses ultrasonic frequencies to transmit energy wirelessly. This process involves a 
transmitter converting electrical energy into ultrasonic waves and a receiver converting 
those  waves  back  into  electrical  energy.  UPT systems can transfer power over long  
distances with a relatively small size due to the short wavelength and low operating 
frequency. Ultrasound-based power transfer is efficient due to low attenuation in 
biological tissues but requires precise alignment and must avoid causing mechanical 
damage [36]. Ultrasound telecommunication systems are generally used in advanced 
telemetry systems, deep tissue implants, and pacemakers [37]. These systems typically 
achieve an experimental throughput of 0.1 to 1 Mbps [36], but under optimal conditions 
they can reach several Mbps. However, ultrasound telecommunication systems in 
implanted devices are generally high cost [31]. 

4 Integrated circuits and coating 

The development of integrated circuits (ICs) from their inception to the present day has 
enabled more sophisticated, reliable, and compact medical devices. This progression 
has profoundly influenced the design, functionality, and application of medical devices, 
which often rely on ICs for data acquisition, signal processing and wireless 
communication.  These  functions  are  critical  in  advanced  medical  devices  such  as  
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Fig. 5. Different types of Ics. 

 

 
Fig. 6. Different materials for encapsulation. 

 
pacemakers, neurostimulators and insulin pumps, enhancing diagnostic and therapeutic 
capabilities [38]. The historical evolution of chip technology in medical devices is 
marked by three stages: non-flexible, semi-flexible, and flexible chips. In the early 
days, spanning from the 1960s to the 1980s, medical devices utilized non-flexible chips 
made from rigid silicon and encased in robust metal or ceramic packages. This period 
saw the introduction of early pacemakers and large diagnostic equipment, which 
benefited from hermetic sealing techniques, ensuring long-term stability and reliability 
[39]. The 90s marked the transition to semi-flexible chips, which balanced the rigidity 
of traditional silicon chips with the flexibility needed for wearable medical devices. 
These chips improved the comfort and durability of devices like fitness trackers and 
heart rate monitors, making them essential tools for health monitoring [40]. Finally, the 
advent of flexible electronics in the 2000s represented a significant milestone. Modern 
flexible chips, integrated into soft, stretchable materials, allowed for seamless 
integration with the human body. These chips are now used in wearable health 
monitors, implantable sensors and flexible diagnostic devices, benefiting from 
advancements in flexible substrates like polyimide, parylene, and liquid crystal 
polymers (Figure 5) [41].  Additionally, the miniaturization trend has enabled the 
development of lab-on-a-chip (LOC) technologies, which integrate multiple laboratory 
functions onto a single chip for biomedical applications, thus revolutionizing diagnostic 
tools [42]. Beyond advancements in chip materials, it is essential to consider the 
methods of protecting and ensuring the longevity of these components in medical 
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devices. The encapsulation of ICs plays a crucial role in guaranteeing their durability 
and reliability, especially in the harsh biological environment inside the human body. 
Chronic implantation of devices within the human body often leads to the formation of 
fibrotic capsules around the device. This fibrotic response can affect the functionality 
of the implant by creating a barrier to electrical signals and drug delivery [43, 43]. The 
encapsulation materials used must, therefore, not only protect the ICs from moisture 
and corrosion but also minimize the body's immune response to prolong the device's 
effective operational life. Traditional hermetic packaging methods involve creating 
airtight seals around electronic components. While effective in preventing moisture and 
gas ingress, these packages are rigid and bulky, limiting the miniaturization and 
flexibility of devices. By addressing the challenges associated with size, weight, and 
cost, hermetic packaging remains a cornerstone of reliable medical device design, 
contributing significantly to the advancement of medical technology and patient care 
[39, 44]. Silicones, especially silicon-containing polymers like polydimethylsiloxane 
(PDMS), are integral to the encapsulation of medical device implants due to their 
distinctive properties, including biocompatibility, hydrophobicity, low surface tension, 
and exceptional chemical and thermal stability. Silicone encapsulation enhances device 
performance and biocompatibility by providing a protective barrier that integrates well 
with biological tissues [45]. In the realm of medical implants, the ability to form a 
biocompatible and durable encapsulation layer is paramount for the device's long-term 
success. Moreover, silicones' hydrophobic nature helps to create a moisture-resistant 
barrier, crucial for implants exposed to body fluids. This property, combined with their 
chemical inertness, ensures that implants remain unaffected by the body's internal 
environment [45]. Recent advancements in the encapsulation and packaging of ICs 
have significantly enhanced the reliability and performance of electronic devices. 
Encapsulation materials such as epoxy resins, silicone rubbers, and thermosetting 
polymers are crucial for protecting ICs from environmental factors including moisture, 
thermal stress, and mechanical damage [46]. Emerging encapsulation materials, 
including inorganic coatings like aluminum oxide and hafnium oxide, as well as organic 
polymers like polyimide and parylene, offer promising alternatives. These materials 
provide excellent barrier properties, mechanical strength, and biocompatibility, making 
them suitable for long-term use in microfabricated implants. Advanced characterization 
techniques and accelerated testing methods are employed to assess the performance and 
longevity of these materials, ensuring they meet the stringent requirements of modern 
biomedical devices [41]. Continuous innovation in IC encapsulation and packaging 
technologies is essential for the safe and stable operation of implantable medical 
devices, which are expected to function reliably within the human body for several 
decades. By leveraging the unique properties of advanced materials, medical devices 
can achieve higher performance standards, improve patient outcomes, and contribute 
significantly to the advancement of biomedical engineering (Figure 6) [46]. 
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5 Conclusions 

This review has explored recent advancements in implantable device technology for 
peripheral nerve injury treatment, focusing on signal classification, powering, 
communication methods, and integrated circuit encapsulation. The complex nature of 
PNIs demands robust solutions that can overcome traditional treatment limitations, 
offering more reliable and minimally invasive options. Through advanced signal 
analysis techniques and machine learning, more accurate and responsive neural 
interfaces can be achieved, creating potential for real-time, personalized interventions. 
Furthermore, powering and communication strategies such as energy harvesting, 
inductive and capacitive coupling, and magnetic resonance coupling provide 
sustainable energy solutions while minimizing surgical interventions. The development 
of flexible and biocompatible ICs and encapsulation materials marks a significant step 
forward, enhancing device stability and integration within biological environments. 
However, translating these innovations into clinical practice poses substantial 
challenges, including regulatory hurdles, biocompatibility concerns, and the need for 
optimized data security. By addressing these issues through continued research and 
development, the biomedical field can significantly improve patient outcomes and 
quality of life. The integration of advanced materials, efficient power management, and 
sophisticated data processing will be crucial for the next generation of PNI treatments, 
paving the way for innovative therapeutic approaches that harness the full potential of 
implanted device technology. 
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