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Abstract—Differential Microphone Arrays (DMAs) are of great
interest in the literature on small-sized microphone arrays, due to
their good directivity properties and nearly frequency-invariant
spatial responses. Recently developed beamforming techniques
combine multiple DMA units to form flexible two-stage spatial
filtering systems, where the output of each DMA is fed into
a higher-level filter, called virtual filter, for further processing.
In this manuscript, we analyze and discuss some properties of
a broad class of two-stage beamformers with arbitrary planar
geometry. In this context, the DMA units are all assumed
to have the same directivity pattern of arbitrary order and
can be characterized by a variable number of omnidirectional
sensors organized in an arbitrary geometry. For any given
choice of the virtual array filter, we introduce a closed-form
optimization procedure to design DMA filters that maximize
the White Noise Gain (WNG) or the Directivity Factor (DF)
of the resulting two-stage beamformer at any frequency. Based
on this frequency-dependent design, we propose a frequency-
invariant design of the two-stage beamformer and we compare
the performance of the two approaches. Finally, we propose
two possible computational schemes for the proposed generic
two-stage spatial filtering system and discuss their efficiency in
performing filtering, steering, and changing beampattern.

Index Terms—Differential Microphone Arrays, DMA, Beam-
formers.

I. INTRODUCTION

M ICROPHONE arrays are widely used to take advantage
of the spatial diversity in acoustic environments for

advanced audio signal processing and speech enhancement
applications [1], [2]. In many of these applications, mi-
crophone arrays and sound sources are assumed to be on
the same plane. These include hands-free human-machine
interfaces, teleconferencing systems, and home and habitat
surveillance. All of these systems can benefit from the use
of spatial filters (beamformers) to improve their performance.
Among the different beamforming techniques, those based on
Differential Microphone Arrays (DMAs) are of great interest.
DMAs have been extensively studied in the literature for
small-sized microphone arrays, due to their good directivity
properties, nearly frequency invariant beampatterns, and low
computational cost [3]–[10].

In traditional DMA theory, Uniform Linear Arrays (ULAs)
are used to construct N th-order directional responses by com-
bining the derivatives of the acoustic pressure up to order N
[1], [6]. Pressure differentials are approximated by differences
between signals sensed by microphones. This approximation
holds under the assumption that the distance between the

sensors is much smaller than the acoustic wavelength of the
source signal of interest.

In more recent works, DMAs are implemented in the Short-
Time Fourier Transform (STFT) domain [2], [7], [8], [11]–
[13], where N th-order DMAs are designed using different
techniques. In addition to traditional ULAs, non-uniform linear
arrays [9], circular arrays [8], [11], square arrays [14], and
arbitrary planar geometry arrays [12], [13] have also been
studied.

Among the STFT domain techniques available in the lit-
erature, the one presented in [11] for uniform circular arrays
and later extended in [12] to arbitrary planar arrays enables
to design spatial filters that approximate beampatterns of tra-
ditional DMAs (e.g., cardioid, supercardioid, hypercardioid).
The technique, called FIB-LSE [11], is able to steer the beam-
pattern in any direction of the 2D plane without distortion, a
feature not available with traditional linear DMAs. The spatial
filter taps are derived based on the array geometry, the desired
steering angle, and a set of beam shape coefficients that fully
characterize the target beampattern to be approximated.

Although the current literature on DMAs offers good de-
sign flexibility, further beamforming systems with interesting
properties can be obtained if we consider arrays of multiple
DMAs. The first work in this direction is [15], where multiple
first-order steerable DMAs (FOSDMAs) are arranged into an
ULA, resulting in a two-stage spatial filtering system. The
first stage is a local filtering performed by the individual
DMA units (which are assumed to steer identical beams in
the same direction); the second stage is a Delay-And-Sum
(DAS) beamformer combining the outputs of the FOSDMA
units, called virtual array filtering. The combination of local
and virtual array filters yield the derivation of a global spatial
filter whose coefficients can be applied directly to all the
microphone signals to obtain an equivalent single-stage beam-
former. The resulting global beamformer can efficiently morph
between a DAS-like beamformer and a Super-Directive (SD)-
like beamformer by simply varying a scalar parameter that
determines the shape of the first-order beams. This approach
was later extended to systems combining several FOSDMA
units in which both the virtual array and the DMA units
are characterized by arbitrary geometries [16]. Other works
discuss two-stage spatial filtering techniques on arrays of
identical (in terms of geometry and spatial filter) DMA units
and use a Kronecker Product (KP) description to derive the
two-stage beamformer [17], [18]. In particular, the authors
in [17] show that for identical DMA units, the global array
beampattern is given by the product between the DMA unit
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beampattern and the virtual array beampattern. In [18], the
authors address KP beamforming using a two-stage approach
on ULAs and reframe DMA theory using finite difference
operators. More recently in [14] the authors proposed a
3-dimensional two-stage beamforming technique for square
DMAs.

State-of-the-art two-stage beamformers using multiple
DMAs employ either arbitrary configurations of first-order
DMA units with arbitrary geometry or arbitrary configurations
of N th-order DMA units with the same geometry. In this
paper, we discuss the properties of a more general class
of two-stage beamformers characterized by arbitrary planar
configurations of multiple N th-order DMA units, each one
with the same directional response, and where DMA units
can have different geometries and different numbers of om-
nidirectional sensors. Therefore, any two-stage beamformer
based on regular distributions of microphones can be derived
as a special case of this general approach. We also show that,
even for this class of two-stage beamformers, the beampattern
of the global array equals the product between the DMA
unit beampattern and the virtual array beampattern. Also, the
resulting two-stage beamformer is able to perform continuous
beam steering in any direction of the plane.

Other contributions of this work relate to design and im-
plementation aspects. As for the spatial filter design, without
loss of generality, we consider the DMA units as FIB-LSE
beamformers [12], while the virtual array filter is assumed to
be either a DAS or SD beamformer. We introduce a closed-
form optimization procedure to derive the beam shape coeffi-
cients of the local filters that maximize the White Noise Gain
(WNG) or the Directivity Factor (DF) of the resulting two-
stage beamformer at each frequency and for a given choice of
virtual array filter. Based on this frequency-dependent design,
we propose a frequency-invariant design of the two-stage
beamformer and we compare the performance of the two
approaches. Finally, we discuss two possible implementations
of the generic two-stage spatial filtering system.

The manuscript is structured as follows. In Section II, the
signal model is defined and the metrics used to evaluate
the performance of the proposed system are discussed. In
Section III the beamformer design for both the DMA units and
the virtual array is discussed, together with a brief overview
of traditional beamformers (i.e., DAS and SD). Section IV
shows that the global array beampattern is the product be-
tween the local and virtual array beampatterns. In Section V,
we analyse several two-stage differential beamformer designs
and compare them to traditional single-stage DAS and SD
beamformers using the same set of microphones. We then
discuss two implementations of the two-stage beamformer in
Section VI. Finally, in Section VII we conclude the manuscript
and propose some possible future works.

II. SIGNAL MODEL AND METRICS

Let us consider K DMA units deployed on the horizontal
plane. Each DMA unit can have a different number of sensors
Mk, with index k = 1, . . . ,K. Both the geometry of the DMA
units and their distribution on the plane are arbitrary. Fig. 1

Fig. 1. Example of a planar array of DMA units. The green dots represent
the reference points of the DMA units.

shows an illustrative configuration of the system, where the
green dots identify the reference points of the DMA units.

In what follows, we refer to the set of reference points of
DMA units as virtual array to distinguish it from the array of
all microphones, which we refer to as global array.

A. Local DMA Unit Signal Model

The propagation vector of a plane wave emitted by a far-
field source, lying on the same plane of the DMA units,
from an angle θ (measured counterclockwise from the x-axis),
propagating in an anechoic acoustic environment at the speed
of sound c = 340 m/s, and incident to the kth DMA unit, is
[12], [13]

dk(ω, θ) = [ejωk,1 cos(θ−ϕk,1), . . . , ejωk,Mk
cos(θ−ϕk,Mk

)]T ,

with k = 1, . . . ,K,
(1)

where the superscript T denotes transposition, j is the imag-
inary unit, ωk,m = ωrk,m/c with ω = 2πf the angular
frequency, f > 0 the temporal frequency and rk,m, ϕk,m, with
m = 1, . . . ,Mk are the distance and the angular position of
the mth microphone in the kth DMA unit w.r.t. its reference
point, respectively. The signals acquired by the sensors of the
kth DMA unit are modeled by the vector [12], [13]

yk(ω) = dk(ω, θ)Xk(ω) + vk(ω), (2)

where Xk(ω) is the source signal at the reference point of
the kth DMA unit and vk(ω) models the additive noise. To
perform spatial filtering, the elements in yk(ω) are multiplied
by complex weights W ∗

k,m(ω). The weighted sensor outputs
are then summed to form the output Zk(ω) of the kth DMA
unit. By collecting the filter taps in the vector wk(ω) =
[Wk,1(ω), . . . ,Wk,Mk

(ω)]T , we can write the filter output as

Zk(ω) = wH
k (ω)yk(ω), (3)

where (·)H is the conjugate-transpose operator.
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B. Global Array Signal Model

In this work, we consider the farfield assumption to be
valid also for the global array. In this case, we can define
the propagation vector of the virtual array as

d̄(ω, θ) = [ejω̃1 cos(θ−Φ1), . . . , ejω̃K cos(θ−ΦK)]T , (4)

where ω̃k = ωrk/c and rk, Φk are the distance and the angular
position of the kth DMA unit reference point, respectively. It
follows that the signal model of the global array is expressed
as a function of (1) and (4) as

¯
y(ω) = d(ω, θ)X(ω) +

¯
v(ω), (5)

where

¯
y(ω) = [yT

1 (ω), . . . ,y
T
K(ω)]T ,

¯
v(ω) = [vT

1 (ω), . . . ,v
T
K(ω)]T ,

d(ω, θ) = diag (d1(ω, θ), . . . ,dK(ω, θ)) d̄(ω, θ),

with diag(·) the operator that forms a rectangular block-
diagonal matrix of size

(∑K
k=1 Mk

)
×K by stacking one per

column the column vectors listed in the argument and setting
to zero the other entries, and X(ω) the source signal at the
center of the coordinate axes. The output signal of the global
array is thus expressed as

Z(ω) = gH(ω)
¯
y(ω). (6)

where g(ω) is called the global array filter and can be
conveniently decomposed as follows [16]

g(ω) = diag(w1(ω), . . . ,wK(ω))h(ω), (7)

where h(ω) = [H1(ω), . . . ,HK(ω)]T is referred to as virtual
array filter. A look at eq. (7) reveals that the combined
effect of the filter of each DMA unit wk(ω) with the virtual
array filter h(ω), when used in a two-stage spatial filtering
system, is equivalent to the effect of the global filter g(ω)
acting on all microphone signals in a single-stage beamformer
configuration. It is also worth noting that the global array filter
expression in eq. (7) is more general than the corresponding
Kronecker product-based expression used in [17], since it
accounts for DMA units with different geometries and possibly
different numbers of sensors. In fact, eq. (7) includes the
expression for the global filter in [17] as the special case of a
two-stage beamformer employing identical DMA units.

C. Metrics

We now briefly revise important metrics that are commonly
used in the literature on microphone arrays [7], and will be
used in this manuscript to characterize the spatial response
of a beamformer. Two metrics quantify the Signal-to-Noise-
Ratio (SNR) gain (i.e., the ratio between the output SNR and
the input SNR) achieved by the beamformer. The first, called
White Noise Gain (WNG) [7], refers to spatially white noise,
and it is often used as a robustness measure against sensor
gain or phase errors, and sensor misplacement. The WNG is
defined as

WNG[g(ω)] =
|gH(ω)d(ω, θs)|2

gH(ω)g(ω)
, (8)

where θs is the steering angle. A second metric, called
Directivity Factor (DF) [7] measures the robustness of the
array against diffuse noise (e.g., in a reverberant room) with
covariance matrix Γdn(ω),

DF[g(ω)] =
|gH(ω)d(ω, θs)|2

gH(ω)Γdn(ω)g(ω)
, [Γdn(ω)]i,j =

sin[ωρij/c]

ωρij/c
(9)

where ρij is the Euclidean distance between the ith and the
jth microphones. A further metric is the beampattern, i.e., the
spatial response of the beamformer, expressed as a function
of the direction of arrival θ as [7]

B[g(ω), θ] = gH(ω)d(ω, θ). (10)

Finally, the Front-to-Back Ratio (FBR) measures the ability
of a spatial filter to attenuate signals coming from the rear of
the array with respect to the frontal direction. The “front” and
the “back” are defined according to a desired steering angle
θs. Mathematically, the FBR is expressed as [7]

FBR[g(ω)] =

∫ θs+π/2

θs−π/2
|B[g(ω), θ]|2dθ∫ θs+3π/2

θs+π/2
|B[g(ω), θ]|2dθ

. (11)

III. DESIGN OF THE SPATIAL FILTER

This section first offers a brief overview on the design
of traditional spatial filters, namely the DAS and the SD
beamformers. We then address the design of the global array
filter g(ω) in (7) by discussing the design of each DMA unit
filter wk(ω) and the virtual array filter h(ω) separately. Note
that the design of any spatial filter also depends on the desired
steering angle θs, but we omit this dependence for ease of
reading. We assume that the DMA units are implemented
using FIB-LSE filters [11], [12], while the virtual array filter
is either a DAS or a SD beamformer. Finally, we propose an
optimization problem that, set the virtual array filter, provides
the beam shape coefficients of the local filters that maximize
the WNG or the DF of the resulting two-stage beamformer at
each frequency of interest.

A. Traditional Single-Stage Filtering Approaches
In traditional microphone array processing, DAS and SD

beamformers are certainly among the most commonly used.
Considering all the sensors in the system of Fig. 1, and the
corresponding propagation vector d(ω, θ), a spatial filter f(ω)
can be derived by solving an optimization problem whose
solution is a general form that includes both the DAS and
SD beamformers as special cases. The optimization problem
aims to reduce unwanted noise and interference while keeping
the signal from a desired direction of arrival θs unmodified,
and it can be written as [19]

argmin
f(ω)

fH(ω)R(ω)f(ω)

subject to fH(ω)d(ω, θs) = 1
(12)

where R(ω) = E[v(ω)vH(ω)] is the noise covariance matrix
and E[·] the expectation operator. The solution to (12) is given
by

f(ω) =
R−1(ω)d(ω, θs)

dH(ω, θs)R−1(ω)d(ω, θs)
. (13)
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Setting R either equal to the identity matrix I or Γdn(ω),
obtained as in eq. (9), gives the DAS or the SD beamformers,
respectively.

B. Two-Stage Filtering Approach

1) DMA Unit Filter: The local filters of the DMA units are
designed as FIB-LSE beamformers, which allow us to design
continuously steerable beampatterns that approximate a target
beampattern (e.g., cardioid, supercardioid, hypercardioid) of
any order N . The filter of the kth DMA unit is derived as
[12]

wk(ω) = Ψ†
k(ω)Υ

∗(θs)b2N , (14)

where b2N is a column vector collecting the 2N + 1 beam
shape coefficients characterizing the target beampattern we

wish to approximate, Ψ†
k(ω) = ΨH

k (ω)
[
Ψk(ω)Ψ

H
k (ω)

]−1

is
the right Moore-Penrose inverse of Ψk(ω), which is defined
as

Ψk(ω) =



(−j)−NψH
k,−N (ω)

...
ψH

k,0(ω)
...

(−j)NψH
k,N (ω)

 , (15)

with

ψk,n(ω) =

 Jn
(ωrk,1

c

)
e−jnϕk,1

...
Jn

(ωrk,Mk

c

)
e−jnϕk,Mk

 , (16)

where Jn is the nth-order Bessel function of the first kind,
and finally

Υ(θs) = diag
(
ejNθs , . . . , 1, . . . , e−jNθs

)
. (17)

This filter design approach can be thought of as a modal
matching problem based on circular harmonics, where the goal
is to derive the spatial filter taps wk(ω) that yield a least-
square optimal approximation of a target beampattern, given
the array geometry, the steering angle θs, and the beam shape
coefficients in vector b2N .

In the case of a symmetric target beampattern only a reduced
set of N+1 beam shape coefficients aN = [a0,N , . . . , aN,N ]T

is sufficient to fully characterize the target spatial response
[11], [12]. The relationship between the two sets of beam
shape coefficients is given by

b2N = LaN (18)

where L is a (2N + 1)× (N + 1) matrix of the type

L =



0 0 . . . 1
2

...
...

...
...

0 1
2 . . . 0

1 0 . . . 0
0 1

2 . . . 0
...

...
. . .

...
0 0 . . . 1

2


. (19)

From now on, with the term beam shape coefficients we
will refer to the reduced set of coefficients aN . The beam
shape coefficients for generating the most common low-order
symmetric beampatterns are well-known in the literature on
DMAs and are summarized in [20].

2) Virtual Array Filter: In this work, we assume the virtual
array filter to be either a DAS or a SD beamformer, although
other spatial filters may also be employed. It is known that the
DAS beamformer achieves the highest possible WNG, while
the SD beamformer maximizes the DF.

3) Global Array Filter: Once the design of the local and
virtual array filters is chosen, the resulting global array filter
can generally be computed using (7). Since all the DMA units
are assumed to be characterized by the same beampattern, after
substituting the DMA filter equation (14) into (7), the global
filter equation can be rewritten as

g(ω) = Λ(ω)Υ∗(θs)b2N = Λ(ω)Υ∗(θs)LaN , (20)

where

Λ(ω) =


H1(ω)Ψ

†
1(ω)

H2(ω)Ψ
†
2(ω)

...
HK(ω)Ψ†

K(ω)

 .

C. Design of DMA Unit Beam Shape Coefficients

In this subsection we discuss a possible strategy to derive
the DMA unit beam shape coefficients aN which, leaving
fixed the virtual array filter, maximize the WNG or the DF of
the resulting global filter. Since the optimization is performed
for any frequency ω, we express the vector of beam shape
coefficients as a function of frequency, i.e., aN (ω). Such
an optimization can be recast to a constrained minimization
problem in the form

arg min
aN (ω)

g(ω)HR(ω)g(ω)

subject to gH(ω)d(ω, θs) = 1
(21)

where R is set equal to either I or Γdn(ω) depending on
whether we maximize the WNG or the DF of the two-stage
beamformer, and the constraint imposes a unitary gain in the
steering direction. We can rewrite the optimization problem in
(21) by making explicit the dependence of the global filter on
the beam shape parameters aN (ω) of each DMA unit. Using
(20), the minimization problem becomes

arg min
aN (ω)

aN (ω)TA(ω, θs)aN (ω)

subject to aN (ω)TB(ω, θs) = 1
(22)

where

A(ω, θs) = LTΥT (θs)Λ
H(ω)R(ω)Λ(ω)Υ∗(θs)L

B(ω, θs) = LTΥT (θs)Λ
H(ω)d(ω, θs).

(23)

Since the problem in (22) is a quadratic minimization problem
with linear constraints, it has a closed-form solution in the
form [19]

aN (ω) =
A(ω, θs)

−1B(ω, θs)

B(ω, θs)HA(ω, θs)−1B(ω, θs)
. (24)
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Unfortunately, this minimization problem may lead to DMA
unit beampatterns having amplified sidelobes (i.e., sidelobes
with gain greater than one) in directions other than the steering
direction θs. In this regard, ill-designs of beampatterns are
known since early work on higher-order DMA [21]. In our
two-stage beamforming context, such an undesired result is
due to the zeros in the beampattern of the fixed virtual
array filter, which cause the DMA unit sidelobes in the same
directions as the zeros of the virtual array to grow in an
unbounded way. This fact will become clearer in the light of
the considerations drawn in the next section, where it is shown
that the global beampattern is the product between the local
DMA unit beampattern and the virtual array beampattern. In
scenarios in which the outputs of DMA units are not directly
used, local DMA beampatterns with amplified sidelobes are
still acceptable as they lead to a global beamformer with a
single maximum in the steering direction θs. However, in
case the outputs of the DMA units are of some use, it is
better to avoid amplified sidelobes in directions other than the
steering direction. For the latter case, we propose a modified
version of (22) that addresses the amplified sidelobes problem
by bounding the squared norm of the coefficient vector aN (ω),
through the addition of a term in the cost function. A scalar
coefficient ϵ within the range [0; 1] is used to weight the
contribution of the additional term with respect to the original
cost function. The solution to the modified minimization
problem can be computed using (24) where

A(ω, θs) = (1− ϵ)LTΥT (θs)Λ
H(ω)R(ω)Λ(ω)Υ∗(θs)L+

ϵIN+1

(25)
and B(ω, θs) remains unchanged.

IV. PRODUCT OF BEAMPATTERNS

In this section we show that, under the assumption of DMA
units with identical beampatterns, the global beampattern turns
out to be the product of the beampattern of the DMA units and
the beampattern of the virtual array. This property has already
been proved using the KP beamformer formalism in [17].
We extend this result to our more general framework, where
the DMA units can have different geometries and different
numbers of sensors. We can safely assume that the DMA
units have the same beampattern, since FIB-LSE filters have
high accuracy in approximating arbitrary target beampatterns,
unless inappropriate array geometries are used [12].

We can express the beampattern of the global filter by
exploiting the decomposition into local and virtual array filters
from eq. (7), as

B[g(ω), θ] = gH(ω)d(ω, θ)

= hH(ω)[diag(w1(ω), . . . ,wK(ω))]Hd(ω, θ).
(26)

If we expand accordingly the steering vector of the global
array, we obtain

B[g(ω), θ] = hH(ω)[diag(w1(ω), . . . ,wK(ω))]H×
diag(d1(ω, θ), . . . ,dK(ω, θ))d̄(ω, θ).

(27)

As a result, the global array beampattern can be expressed as

B[g(ω), θ] =
hH(ω)diag(B[w1(ω), θ], . . . ,B[wK(ω), θ])d̄(ω, θ).

(28)

Since all the beampatterns of the DMA units are assumed to
be equal, we have that B[w1(ω), θ] = · · · = B[wK(ω), θ] =
BDMA(ω, θ), and eq. (28) simplifies to

B[g(ω), θ] = hH(ω)BDMA(ω, θ)d̄(ω, θ). (29)

Finally, since BDMA(ω, θ) is a scalar quantity, we obtain

B[g(ω), θ] = BDMA(ω, θ)h
H(ω)d̄(ω, θ)

= BDMA(ω, θ)B[h(ω), θ],
(30)

which shows that the global array beampattern is the product
of the DMA unit beampattern and the virtual array beampat-
tern.

Note, however, that DMA units with different geometries
are characterized by different approximations to the same
target beampattern, thus B[w1(ω), θ] ≈ · · · ≈ B[wK(ω), θ].
Therefore, the zeros in each DMA directional response are
shifted around their ideal positions. We will now show that
even in this more general case, the beampattern approximation
errors introduced by the DMA units are negligible when prop-
agated to the global beamformer. As an example, Fig. 2 illus-
trates the beampattern at 1500Hz of a two-stage beamformer
consisting of an arbitrary configuration of 10 DMA units with
different geometries and different numbers of microphones,
where the microphones are randomly placed as described in
Section V-A. At the top of Fig. 2, we show the virtual array
filter, designed as a DAS, and an ideal target beampattern
to be approximated by the DMA units through eq. (14), i.e.,
a first-order hypercardioid Bideal(θ) =

∑N
n=0 an,N cos(nθ)

with aN = [0.3339, 0.6661]T . Below in Fig. 2 we show a
comparison between the global array beampattern B[g(ω), θ]
and its ideal counterpart, which is given by the product
BidealB[h(ω), θ]. The result shows that the difference between
the ideal beampattern product and the global array beampattern
is negligible.

To further evaluate the accuracy with which the proposed
two-stage beamformer matches the ideal beampattern product,
we define the Mean Square Error (MSE) as

MSE(ω, θ) =

1

Nr

Nr∑
r=1

(|B[g(r)(ω), θ]| − |Bideal(θ)B[h(r)(ω), θ]|)2,

where Nr is the number of realizations of arbitrary geometries,
and the superscript (r) is used to denote the rth realization.
Fig. 3 shows the MSE as a function of both frequency ω and
angle θ. From the figure, it can be seen that the MSE is larger
at the angles corresponding to the nulls of the target DMA
unit beampattern. This effect is due to the error introduced
by the DMA units in approximating the target beampattern at
higher frequencies, where the nulls deviate slightly from their
ideal positions. Considering that the beampattern values are
dimensionless scalars in the range [0;1], the MSE lies in the
same interval and we can see from the figure that the MSE



6

0

30

60
90

120

150

180

210

240
270

300

330

-40
-30
-20
-10

0

0

30

60
90

120

150

180

210

240
270

300

330

-40
-30
-20
-10

0

0

30

60
90

120

150

180

210

240
270

300

330

-40

-30

-20

-10

0

Fig. 2. Virtual array beampattern (top left), target DMA units beampattern
(top-right), ideal beampattern product and resulting global array beampattern
(bottom), at 1500 Hz. The virtual array filter is a DAS, while the target
beampattern is a first-order hypercardioid.
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Fig. 3. MSE of the beampattern as a function of frequency f = ω/(2π) and
angle θ, obtained through Nr = 1000 realizations of arbitrary geometry. The
virtual array filter is a DAS, while the DMA units approximate a first-order
hypercardioid through (14).

is in the order of 10−3 at all frequencies except for localized
peaks of 10−2 in proximity of the nulls at high frequencies.

In accordance to the shown experiment, when considering
two-stage beamformers with different DMA units approaching
the same target beampattern, the difference between the global
array beampattern and the ideal beampattern product is gen-
erally small. As a result, if we have both the DMA unit filter
and the virtual array filter, we can estimate the global array
beampattern with good accuracy by performing the product
between the target DMA beampattern and the virtual array
beampattern. Moreover, the fact that a null in the local array
beampattern causes a null to appear in the global array beam-
pattern simplifies the attenuation of unwanted interferences
placed at known angular positions.

V. PERFORMANCE ANALYSIS

In this section, we analyze through simulations different de-
sign choices for the proposed two-stage beamforming system

and evaluate them using the metrics discussed in Section II-C.
In all the following analyses, we set the desired steering angle
to θs = 0◦. We derive the beam shape coefficients of the
DMA units according to the optimization strategy discussed
in Subsection III-C, in which the matrix A(ω, θs) is computed
according to eq. (25) with ϵ = 0.05. The virtual array filter is
either the DAS or the SD beamformer. We evaluate the WNG,
the DF, and the FBR of the designed two-stage beamformers
and we compare them with the same metrics of traditional
single-stage DAS and SD beamformers.

A. Two-stage Beamformers with First-Order DMA Units

As a first subclass of two-stage beamformers, let us consider
those with DMA units characterized by first-order beampat-
terns. Depending on the filter chosen for the virtual array (DAS
or SD) and the optimization criterion used to design the beam
shape coefficients of the DMA units (WNG maximization or
DF maximization), we use the following naming convention
to identify the two-stage beamformer designs: DAS-maxWNG,
DAS-maxDF, SD-maxWNG, SD-maxDF.

We consider a system consisting of K = 10 randomly
distributed DMA units, each characterized by an arbitrary
geometry. The virtual array geometry is generated by distribut-
ing the reference points of DMA units according to the two
uniform distributions rk ∼ U(5cm, 25cm) and Φk ∼ U(0, 2π),
where symbol U(a, b) is used here to denote a continuous
uniform distribution with boundaries a and b. Also, the DMA
reference points are placed at least 10 cm apart. The mi-
crophones of the DMA units are randomly placed according
to rk,m ∼ U(0.3cm, 1.5cm) and ϕk,m ∼ U(0, 2π), with
the sensors at least 3 mm apart. In addition, each DMA
unit contains an arbitrary number of sensors drawn from the
discrete uniform distribution Mk ∼ U(4, 6). All the following
analyses consider 1000 realizations of arbitrary geometry.

Fig. 4 shows the average values and the standard deviations
of the beampatterns of the considered two-stage beamformers
for all the four designs at some frequencies of interest (i.e., 500
Hz, 1 kHz, 4 kHz). The average beampatterns are represented
with solid lines, while the standard deviations around the mean
are shown by dashed lines. Fig. 5 shows WNG, DF, and FBR
of the same beamformers as a function of frequency. The solid
and dashed lines in the figure represent the averaged values,
while the shaded areas represent the standard deviations of the
results around the mean values. The results in Fig. 5 show that
the considered two-stage beamformer is generally a good com-
promise between a DAS beamformer achieving the maximum
WNG and the SD beamformer achieving the maximum DF at
almost any frequency. As far as the FBR is concerned, on the
other hand, the proposed beamforming method outperforms
the traditional designs, especially at higher frequencies and for
designs in which the WNG is maximized. Observing Fig. 4 and
Fig. 5, we see that the distribution of the beampattern and the
quality metrics around the mean value is narrow. This suggests
that the placement of the microphones on the plane has a small
impact on performance. We note that this is also true for the
virtual array filter, whose contribution to the metrics is very
limited compared to the choice of DMA unit filters, especially
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Fig. 4. Average beampattern of the first-order of two different designs of the two-stage beamformer with arbitrary geometry at three different frequency, i.e.,
500 Hz, 1 kHz, 4 kHz.
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Fig. 5. Averaged global beamformer metrics (i.e., WNG, DF and FBR) of two-stage spatial filters using randomly distributed first-order DMA units with
arbitrary geometry and based on four different designs.

at higher frequencies. For this reason, in the following we
will only consider designs where the virtual array filter is a
DAS beamformer because its implementation is generally less
computationally expensive than the one of a SD beamformer.

B. Two-Stage Beamformers with Higher-Order DMA Units

In this subsection, we examine how the performance of the
global beamformer benefits from the use of higher order DMA
units. For comparison, we also consider zero-order DMA units
computed as FIB-LSE beamformers with N = 0, which
provide an approximation to an omnidirectional microphone

regardless of local geometry. We consider the same system
configuration with K = 10 DMAs as in the previous sub-
section, except that we increase the number of microphones
in each DMA unit to allow for higher order DMA filters.
Therefore, the number of sensors in each DMA unit is taken
from the distribution Mk ∼ U(8, 10). In this analysis, the
virtual array filter is set as DAS beamformer. The spatial filter
of the individual DMA units is optimized by maximizing the
WNG or the DF, as in Sec. III-C.

Fig. 6 and Fig. 7 show the results in terms of WNG, DF, and
FBR as a function of frequency. All the metrics are averaged



8

0 1000 2000 3000 4000 5000 6000 7000 8000

-30

-20

-10

0

10

20

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

14

16

18

20

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

Fig. 6. Averaged global beamformer metrics (i.e., WNG, DF and FBR) for the maximum WNG two-stage beamformer design with a DAS as the virtual
array, and N-order DMA units.
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Fig. 7. Averaged global beamformer metrics (i.e., WNG, DF and FBR) for the maximum DF two-stage beamformer design with a DAS as the virtual array,
and N th-order DMA units.

quantities obtained over 1000 realisations of arbitrary geome-
tries. Solid lines in the figures represent the averaged values,
while the shaded areas represent the standard deviations of the
results around the mean. It can be noticed that increasing the
order generally lowers the WNG but increases the DF, and this
effect is more pronounced for two-stage beamformers designed
to maximize the DF. Conversely, the designs that maximize the
WNG exhibit a performance difference that is less pronounced
when the order of the DMA units is increased. Note also that
zero-order designs do not change using different optimization
criteria, as expected.

C. Frequency-Independent approach

The solution aN (ω) to the optimization problem in (21)
depends on the angular frequency ω. Here, we propose a
method to obtain frequency-independent DMA unit beam
shape coefficients that yields results similar to a frequency-
dependent design with a small performance reduction. Such
a frequency-independent approach may be useful in contexts
where the proposed two-stage beamformer is implemented in
resource-constrained systems (e.g., embedded systems), since
it requires fewer operations and a smaller number of coefficient
updates.

There are several ways to obtain a vector āN of frequency-
independent beam shape coefficients, e.g., by solving a mod-
ified optimization problem that considers all frequencies of
interest at once, or by averaging the results of the frequency-
dependent design over all frequencies. In this work, we opt

for the latter option, since it leads to a two-stage beamformer
that well approximates the performance of the frequency-
dependent case. A further justification to this choice is il-
lustrated in Fig. 8, where we show how the beam shape
coefficients resulting from the optimization problem in (22)
vary with frequency. In particular, Fig. 8 shows the coefficients
in aN (ω) for the cases in which DMA units are first- and
second-order beamformers maximizing either the WNG or the
DF of the global two-stage spatial filter, and the virtual array
filter is a DAS beamformer. Fig. 8 shows average results over
1000 realizations, considering the same simulation parameters
of the previous subsection.

Interestingly when the DF is maximized, it can be seen
from Fig. 8 that the coefficients approach a constant value
above 1.5 kHz. Thus, we may investigate the extent to which
a frequency-independent approach differs from a frequency-
dependent approach in terms of array metrics.

The results in Fig. 9 and Fig. 10 show that the perfor-
mance difference between the frequency-dependent design
and frequency-independent design in terms of WNG and DF
is small. Both configurations with first- and second-order
DMA units are considered. The subscript “fi” is introduced
to indicate the frequency-independent design. Results show
that the frequency-independent approximation is close to the
frequency-dependent design, especially when the optimization
objective is to maximize the DF. Therefore, the frequency-
independent approach is desirable whenever we want to sac-
rifice little performance in favor of efficient implementations
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Fig. 8. Comparison between frequency-dependent beam shape coefficients resulting from the optimization problem in (21) and their average values over all
frequencies.
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Fig. 9. Comparison between frequency-dependent and frequency-independent first-order two-stage beamformer metrics. Pedix fi is used to denote frequency-
independent designs obtained according to subsection V-C.
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Fig. 10. Comparison between frequency-dependent and frequency-independent second-order two-stage beamformer metrics. Subscript “fi” is used to denote
frequency-independent designs obtained according to subsection V-C

of the two-stage beamformer. In the next section we discuss
some possible implementations of the sort.

VI. IMPLEMENTATIONS

In this section, we propose two possible implementations of
the two-stage beamformer and compare them in terms of their
computational complexity. In evaluating the computational
cost, we consider the tasks of spatial filtering, steering, and
beampattern switching. The latter consists of changing the
directivity of the beamformer by updating the beam shape
coefficients (e.g., using the optimal design strategies discussed
in Sec. III-C). In this analysis, we estimate the computational
cost as the number of multiplications required for each task.
We also make the following assumptions:

• spatial filtering is performed in the frequency domain;
• only the frequency-independent design is considered;
• optimal beam shape coefficients aN are computed in

advance and stored in memory;

• DMA units use the same number of microphones, i.e.,
M1 = · · · = Mk;

• the virtual array filter is a DAS beamformer.
Two possible implementations of the two-stage beamformer

are shown in Fig. 11, Fig. 12 and are referred to as implemen-
tation A and implementation B, respectively. Implementation A
is based on the straightforward application of the global filter
g(ω) to all microphone signals. This implementation allows
for efficient spatial filtering, which is trivially performed by
computing the dot product gH(ω)

¯
y(ω) for each frequency bin.

However, this comes at the cost of a high number of operations
to recalculate the filters in order to change beampattern shape
or to perform steering in a different direction. This is because
to steer or change the beampattern, the global filter g(ω) must
be recomputed for each frequency bin, which in turn means
that the local filters and the virtual filter must be updated in
order to apply eq. (7).

Instead, implementation B is based on the global filter
formulation in eq. (20), which collects the vector of beam
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Fig. 11. Implementation A of the proposed two-stage beamformer.

shape coefficients and the matrix Υ, since they are the same
for all DMA units. At the cost of higher computational cost for
the filtering task, implementation B is more efficient at steering
and changing beampattern, and it allows us to switch from a
maximum WNG design to a maximum DF design by updating
just N + 1 coefficients. As for the steering, we only need to
update 2N+1 coefficients in Υ(θs) for steering all DMA units
and then recalculate the virtual array filter for each frequency
bin. Note that this implementation of the steering task does not
require the beam shape coefficients to be updated. However, in
case the beam shape coefficients are obtained by the optimiza-
tion problem in Sec. III-C, they also depend on the steering
angle θs. Therefore, we would use sub-optimal beam shape
coefficients after steering. Through experiments we found that
these sub-optimal beam shape coefficients are almost identical
to those obtained by solving the optimization problems of
Sec. III-C for the new desired steering angle. Thus, we can
say that the beam shape coefficients are practically invariant
with respect to the steering angle and we can avoid updating
them.

We now propose a numerical analysis of the computational
complexity of both implementations of the beamformer system
by examining the cost of performing the aforementioned tasks.
In this analysis, we consider K = 10 DMA units consisting
of 2N +1 microphones, with N = 1, 2, 3, and an FFT of size
128. The results are shown in Table I, where complexity is
given as the estimated number of multiplications required for
each task. The results show the trade-off between the cost
of filtering and the cost of beampattern steering/switching
in the two implementations. Indeed, implementation A is
computationally cheaper than implementation B in terms of
spatial filtering, but requires more computations for beampat-

tern steering/switching and vice versa. Note also that imple-
mentation B has a fixed cost for the steering task, which is
also independent of the order, and that multiplications are not
required to change the beampattern.

In future application scenarios, we can envision DMA units
with their own processors, so that the cost of local filtering
is distributed in all DMAs and the execution time required
for filtering is reduced. In this scenario, the execution time
required by implementation B becomes comparable to that of
implementation A, while maintaining the advantage of more
efficient steering and beampattern switch. This implementation
can be useful in any application where steering is performed
frequently, such as source localization and tracking algorithms.

Note that the implementations of Fig. 11 and Fig. 12 are
not the only options, and other computational schemes can
be derived, since all the operations involved in the evaluation
of the global filter output are linear and we can swap the
order of such operations without affecting the final result. It
is also worth noting that the proposed computational schemes
can accommodate both frequency-dependent and frequency-
independent beam shape DMA unit parameters.

VII. CONCLUSIONS AND FUTURE WORKS

In this article we have described some properties of a broad
class of two-stage beamformers characterized by arbitrary
planar configurations of multiple DMA units with arbitrary
geometry and order, all having the same beampattern. A
global spatial filter is created by combining the local spatial
filters of the DMA units and a virtual array filter applied
to their outputs. Decomposing a global array into local and
virtual arrays has several advantages, both in terms of design
flexibility and implementation.

Beampattern design flexibility stems from the separate de-
sign of the local and the virtual array filters, since the product
of the corresponding beampatterns yields the beampattern of
the global array, greatly simplifying the design of the latter.
Also, fixed the virtual array beamformer as either DAS or
SD, we presented a closed-form solution to an optimization
problem aimed at deriving the beam shape coefficients of the
DMA units that maximize the WNG or the DF of the resulting
global beamformer at each frequency. We have shown that the
choice of virtual filter type (DAS or SD) has little effect on
the resulting global beamformer metrics, as does the actual
microphone placement.

As far as the implementation of the presented beamforming
systems is concerned, we have proposed an approach in which
frequency-invariant beam shape coefficients of the DMA units
are computed as averaged values over frequency. Moreover, we
have discussed two computational schemes, one more efficient
for spatial filtering and the other more efficient for beampattern
steering/switching. It is also worth noticing that, as discussed
in [16], if we restrict ourselves to first-order DMA units, it
is possible to employ implementations of DMA units in both
the frequency domain and the discrete-time domain that are
computationally lighter than the ones used in this work.

As for future developments, we would like to extend the
technique to DMA-based multi-stage beamformers with more
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Fig. 12. Implementation B of the proposed two-stage beamformer. Terms ψ†
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TABLE I
COMPUTATIONAL COSTS FOR THE SPATIAL FILTERING (FILTER), BEAMPATTERN STEERING (BP. STEER), AND BEAMPATTERN SWITCHING (BP. SWITCH)

TASKS FOR BOTH IMPLEMENTATIONS A AND B. THE COSTS ARE EXPRESSED AS THE ESTIMATED NUMBER OF MULTIPLICATIONS.

N=1 Filter BP. Steer BP. Switch

Imp. A 3840 16644 15362

Imp. B 15872 1536 -

N=2 Filter BP. Steer BP. Switch

Imp. A 6400 39688 38404

Imp. B 39296 1536 -

N=3 Filter BP. Steer BP. Switch

Imp. A 8960 72972 71686

Imp. B 72960 1536 -

than two stages and explore their potential advantages in
spatial audio processing applications.
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