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Abstract—This paper presents an advanced modeling of Sub-
strate Integrated Waveguide (SIW) structures by 2D vector Finite
Element Method (FEM). All types of losses are considered,
together with input/output coupling by rectangular waveguide
and coaxial cable. Multiple dielectric regions can be defined,
allowing the modeling of partially air-filled SIW structures with
excellent accuracy and efficiency.
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I. INTRODUCTION

SUBSTRATE Integrate Waveguide (SIW) has consolidated
as an extremely attractive technology because of its low

cost, simple fabrication ad good compromise between perfor-
mance and easy integration with on-chip components [1]–[6].
SIW structures offer flexible design features, such as strong
miniaturization (achieved by the use of a high permittivity)
and the possibility to easily alternate vacuum regions and
dielectric filled regions [3], increasing the quality factor and
providing additional design flexibility in SIW filters with
complex transfer functions implementing transmission zeros
[2] or in new applications for slow wave components [4].

In spite of the planarity of SIW structures, in the literature
the full-wave modeling often resorts to full 3D Finite Element
Method (FEM), especially because of its capability to model
losses and coaxial-type input. Owing to the reduced thickness
of SIW structures, losses often play a significant role and as a
general rule they cannot be neglected. However, the indepen-
dency of the fields with respect to the out-of-plane coordinate
allows in principle SIW components to be analyzed by 2D
codes. In [7], [8] and [9] 2D-FEM was used, but losses were
not considered because of the use of the scalar formulation
which uses as a variable the out-of-plane component of the
electric field. Moreover, only waveguide input was considered.
In [10] and [11] equivalent square posts were used to simulated
the circular posts, and this allowed the use of an efficient 2D
mode-matching technique (MM). This permits a fast analysis
of some devices, but with MM complex shapes are hard
to implement and partially air-filled regions are even more
challenging. In those papers, losses were introduced either by
an equivalent lossy material [10] or by asymptotic boundary
conditions [11]. Methods based on Green’s function with some
modifications to include losses have been successfully used
in [13], [14], [15], with very good efficiency, but partially
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Fig. 1. A sketch of the SIW structure with coax-type input. The structure
is divided into two regions, SIW region and coaxial region, separated by a
radial port.

filled air regions of general shape were not presented. With
those techniques, partially air filled regions are complex to
implement because they require a segmentation of the structure
and a consequent increase of the computation time. In [16]
air-filled region of circular shape have been modeled by a
cylindrical mode expansion. That technique, although very
efficient too, was not applied to arbitrarily shaped air regions
and losses were not modeled.

In [5] SIW were analyzed by 2D version of BI-RME and
losses were included by introducing a quality factor for each
mode in the modal expansion of BI-RME. Although this
technique is very efficient, again the analysis of partially air-
filled SIW structure by BI-RME is difficult, because it requires
a segmentation of the device and a further connection of
the partial admittance matrices, similarly to what reported in
[17] in which a general segmentation technique is discussed
combining 3D FEM and addition theorem with cylindrical
wave functions.

In order to overcome some limitations in the available
literature and to increase the efficiency of the analysis, in
this work we propose a vector 2D FEM modeling of SIW
that uses the magnetic field component as the unknown [20].
Although vector FEM is slightly less efficient than scalar
FEM for equal degree of the shape functions, we show that
with the vector formulation we can easily model all losses
present in the structure. Partially air-filled regions can be
very easily introduced in the structure with no increase of
the problem size and, thanks to the simple circular arc shape
element obtained by coordinate transformation [24], perfectly
circular posts are easily implemented in our code without the
need of isoparametric elements. Finally, input and output of
waveguide type and coaxial type are also modeled in the
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frame of the 2D formulation, thanks to the use of a very
efficient decomposition of the structure obtained using a radial
admittance matrix approach for the coaxial region (see e.g.
[22]). As a whole, thanks to the 2D analysis, a remarkable
accuracy and efficiency has been obtained. Validation of the
results by comparison with full 3D code for several SIW
components has been carried out and discussed in this paper.

The organization of the paper is the following: we present
the formulation in section II, outlining all necessary boundary
and volume terms accounting for all types of losses. The
discretization of the SIW structure is presented in section
III, together with the computation of the admittance matrices.
In section IV we discuss in more detail the port terms and
in particular the important problem of excitation by coaxial
ports. For these, we present a 2.5D radial FEM formulation
in cylindrical coordinates. The final admittance matrix for
the final structure is obtained by block connection of partial
admittance matrices at common radial ports (section V). Some
examples are finally discussed in section VI, comprising
filters with homogeneous materials, air-filled cavities and a
comparison with measured results. A final section presents
some conclusions and summarizes the results obtained.

II. FORMULATION

A quick review of magnetic field formulation of FEM is
now presented for clarity, with a description of the various
terms that contribute to the final linear system of equations.
We start assuming that the SIW structure is placed in xy plane
and has a thickness h (Fig. 1). Fields are independent of z by
hypothesis, so that

E(x, y, z) = izEz(x, y) (1)

H(x, y, z) = Ht(x, y) = ixHx(x, y) + iyHy(x, y) (2)

where ix, iy, iz are the unit vectors along the coordinate
axes and the subscript t indicates transverse-to-z component.
Letting then ∇t be the transverse Nabla operator and being
by hypothesis ∂/∂z = 0 for all fields, we state the problem
as follows: we look for Ht such that∫

V

∇t × T · ϵ̄−1
r ∇t ×HtdV − k20

∫
V

T · µ̄rHtdV+

−
∫
∂V

T · (ϵ̄−1
r ∇t ×Ht)× iνdS = 0,

∀T ∈ H(curl, V ) (3)

where H(curl, V ) is the Sobolev space of vector functions
that are square integrable in V together with their curl. In
(3) iν is the unit vector normal to the volume and outward
drawn, ϵ̄r is the relative permittivity tensor, µ̄r is the relative
permeability tensor, k0 is the free space wavenumber and ∂V
is the boundary of volume V .

Since we are mostly interested in the case of permittivity
and permeability being scalar functions of position, we can
write

ϵ̄r = ϵrΛ̄, µ̄r = µrΛ̄ (4)

in which Λ̄ is the equivalent anisotropic material originating
from the coordinate transformation that yields perfectly circu-
lar arc elements in a triangular 2D mesh (see [24] for details).

We then split the boundary ∂V into four terms: the ports
(∂V p), the conductors surface of the vias (∂V via), the up-
per and lower metal planes (∂V u,l) and the outer boundary
(∂V ext). Unlike losses in the dielectric, that can be accounted
for by introducing a complex permittivity ϵr = ϵ′r(1−j tan δϵ),
being tan δϵ the loss tangent of the dielectric material, losses
due to finite conductivity conductors or radiation require
specific boundary terms. We start defining all these boundary
terms and then define the discretization and the solution
process for the computation of the admittance matrix.

Port term is defined in detail in section IV, since the case
of coaxial type input requires a further FEM discretization.

A. Boundary Terms for the Vias and for the Upper and Lower
Conductors

For the metallic part of the boundary we can use the
well known Leontovich boundary condition [18] and write on
∂V via and on ∂Vu,l

iν ×E = Zsiν × (H × iν) (5)

where Zs = (1+j)
√
ωµ/(2σ), being σ the metal conductivity.

We use the customary perturbative hypothesis that assumes
that the magnetic field variation due to finite conductivity is a
small fraction of the field in the lossless case. Letting E′,H ′

the fields in the lossless case and E = E′+δE,H = H ′+δH
the fields for the lossy case, we have that on the metallic
boundaries

iν ×E = iν × (E′ + δE) = iν × δE (6)

since iν ×E′ = 0 and being

jωϵ0δE × iν = (ϵ̄−1
r ∇×H)× iν (7)

we can write

−(ϵ̄−1
r ∇×H)× iν = jωϵ0Zsiν × (H × iν). (8)

By noting that the fields are z-independent and that iν = ±iz ,
we have ϵ̄−1

r (∇×H)×iν = ϵ̄−1
r (∇t×Ht)×iν and H×iν =

Ht × iν . The corresponding boundary term in the weak form
becomes therefore, for the vias

−
∫
∂Vvia

T · (ϵ̄−1
r · ∇t ×Ht)× iνdS =

jωϵ0Zs,viah

∫
Lvia

T · [iν × (Ht × iν)]dl (9)

where Lvia is the 2D boundary of the vias, and for the upper
and lower plates

−
∫
∂Vu,l

T · (ϵ̄−1
r · ∇t ×Ht)× iνdS = 2jωϵ0Zs

∫
S

T ·HtdS

(10)
where S is the 2D surface of the SIW structure in xy plane.
The factor ’2’ accounts for the equal contribution of the upper
and lower surface. Note that the surface impedance for the
vias was set to Zs,via that can be different from Zs for the
upper and lower conductor because vias could be realized with
a different material. Eq. (10) was never previously used to the
authors’ knowledge to compute losses in SIW.
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B. Outer Boundary Term
Thanks to the flexibility of FEM, different outer boundary

conditions can be easily implemented. The case of perfect
magnetic conductor (PMC) is obtained by eliminating the
unknowns corresponding to edges on the external boundary.
For most purposes, this is the most convenient boundary
condition because it reduces the size of the problem. A well
designed arrangement of vias together with PMC side walls
is the most convenient modelization of SIW.

In order to take into account possible leakage through the
boundary, an impedance boundary condition of the type

iν ×E = ηextiν × (H × iν) (11)

can be implemented very easily too. In (11) ηext represents in
equivalent form leakage by radiation and local reactive energy
storage. Since a good design should try to minimize leakage
as much as possible [5], the contribution of this term to losses
is generally extremely small. An approximate expression for
ηext can be obtained by the slot admittance formulas originally
derived for microstrip patch antennas, in which a resistive term
accounts for radiation and a capacitive term represents excess
capacitance due to fringing fields [19]. Its expression, slightly
simplified and modified so as to represent a local field ratio,
reads in our case

1

ηext
=

h

120λ0
+ jωϵ0ϵrh 0.412

ϵr + 0.3

ϵr − 0.258
(12)

where λ0 is the free space wavelength and ϵr is the dielectric
constant of the SIW. Expression (12) is clearly approximate
and its purpose is to model the effects of widely spaced
vias, a condition that should not be used in practice. The use
of (12) allows anyway to outline possible spurious radiation
effects in the SIW and it introduces a very small additional
computational effort.

An alternative is represented by the use of artificial ports
connected to fictitious waveguides, as previously discusses in
[12]. This type of boundary condition is capable to model
attenuation due to radiation in a SIW waveguide, but leads to
a large number of modes with consequent larger computation
time. For a description of this case, we refer to the following
subsection, in which we define the port terms corresponding to
waveguide inputs. For the case of impedance loading, which
is our preferred approach, the corresponding boundary term is

−
∫
∂Vext

T · (ϵ̄−1
r · ∇t ×Ht)× iνdS =

jωϵ0ηexth

∫
Lext

T · [iν × (Ht × iν)]dl. (13)

where Lext is the outer boundary of the SIW structure.

C. The 2D Equation in the SIW Region
We are now able to setup the complete 2D weak form for

magnetic field accounting for all types of losses. The boundary
terms relative to the ports are discussed in more detail in the
following sections. To proceed, we divide all terms by h and
move the port term to the right of the equal sign. Moreover,
at the ports we let

(ϵ̄−1
r ∇t ×Ht)× iν = jωϵ0Eξ × iν (14)

where Eξ is an applied electric field. We therefore look for
Ht such that∫

S

∇t × T · ϵ̄−1
r ∇t ×HtdS − k20

∫
S

T · µ̄rHtdS+

jωϵ0Zs,via

∫
Lvia

T · [iν × (Ht × iν)]dl+

jωϵ0ηext

∫
Lext

T · [iν × (Ht × iν)]dl+

2jωϵ0Zs

h

∫
S

T ·HtdS = jωϵ0

∫
Lp

T · (Eξ × iν)dl (15)

∀T ∈ H(curl, S)

where S is the surface of the SIW structure in xy plane and
Lp is the segment or collection of segments representing the
port. Eq. (15) is the final 2D weak form for magnetic field, in
which only surface integrals or line integrals appear.

III. FEM DISCRETIZATION IN THE SIW AND
ADMITTANCE MATRIX COMPUTATION

When the structure is fed by waveguide ports only, we
only deal with the discretization and subsequent admittance
computation of (15). In case of coaxial type input, solving
(15) is an intermediate step for the computation of the final
admittance matrix.

For the discretization of (15) we use first order or second
order edge elements [20]. So we write the magnetic field in
the SIW region as

Ht =
∑
q

Iqτq(x, y) (16)

where τq(x, y) is the generic edge element and the Iq are
unknown coefficients. Using the same τq as testing functions
(Galerkin’s method), we obtain the following matrix equation{

A− k20B+ jωϵ0

[
ZsCvia +

2Zs

h
Cu + ηextCext

]}
I

= jωϵ0Cp (17)

in which I = [I1 I2 . . .]
T is the vector of unknown coefficients

and the matrix elements are defined by

A(p, q) =

∫
S

1

ϵr
∇t × τp · Λ̄−1∇t × τqdS (18)

B(p, q) =

∫
S

µrτp · Λ̄τqdS (19)

Cvia(p, q) =

∫
Lvia

τp · [iν × (τq × iν)]dl (20)

Cu(p, q) =

∫
S

τp · τqdS (21)

Cext(p, q) =

∫
Lext

τp · [iν × (τq × iν)]dl (22)

Cp(p, ξ) =

∫
Lp

τp · (Eξ × iν)dl. (23)

The solution of (17) allows to compute the admittance matrix
Y of the structure. Rewriting (17) as

LI = jωϵ0Cp (24)
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one finds
I = jωϵ0L

−1Cp (25)

which is the ”short-circuit” magnetic field, from which, by
testing with the port mode functions, one finds the admittance
matrix Y. The final expression is

Y = CT
p I = jωϵ0C

T
p L

−1Cp. (26)

Matrix Y is the final admittance matrix when only waveguide
ports are present in the structure and we only have to specialize
the forcing term Eξ. The case of coaxial type input is more
complex and matrix Y is just an intermediate result. These
two cases are now discussed.

IV. PORT TERMS

We can have two type of port terms: rectangular waveguide
port and coaxial port. We now specialize the forcing electric
field Eξ to these two cases.

A. Rectangular waveguide port

For a rectangular waveguide port we can write

Eξ = izEn = iz

√
2

a
sin

nπs

a
(27)

being s a coordinate local to the port and a the port size.
Eq. (27) defines the field of TEn0 mode in the input/output
waveguide, n being the mode index. In order to properly
describe the field at the waveguide ports, several modes can
be used as input/output. Waveguide ports can also efficiently
model ”SIW” ports, in which an effective waveguide size in
used to simulated a SIW waveguide connected to input/output
port, as discusses in [1] and [21].

B. Coaxial Port

In the literature, coaxial excitation is often modeled by a
simple pin with an impressed current. We found that this model
is only valid at very low frequencies, and thus we developed
a better model that holds its validity up to much higher
frequencies. We divide the SIW structure in two regions as
shown in Fig. 1, a SIW region and a coaxial region, connected
by a radial port. The two regions are solved separately and
then connected at the common radial port by their Generalized
Admittance Matrices (GAM). On the common radial port,
using a local cylindrical coordinate system (ρ, ϕ, z) centered
at the center of the coaxial region, we define for the SIW and
for the coaxial region a common excitation field in the form

Eξ = iz

M∑
m=0

{
cosmϕ
sinmϕ

(28)

For the coaxial region, if the material is the same in the
SIW region and in the coaxial region (ϵr,cx = ϵr,siw in
Fig. 1), the computation of the GAM can be carried out as
discussed in [22]. Since this case is completely documented
in the cited paper, we discuss the case of unequal materials,
which is also the most common case. For this case we use
FEM in cylindrical coordinates to compute the GAM of

Fig. 2. An example of the mesh for the coaxial region, together with the
ports used for GAM computation.

the coaxial region. Cylindrical coordinates are clearly very
advantageous in this case, because each circular harmonic is
solved separately. An example of the mesh for the coaxial
region is shown in Fig. 2. The mesh is a 2D mesh in ρ, z
plane and the problem is 2.5D, since the ϕ dependency is not
constant. Note that the inner conductor of the coaxial cable
is in contact with the bottom ground, since this is the most
common configuration. A non contacting inner conductor can
be implemented with no modifications in the formulation.

Using the cited local cylindrical coordinate system we
assume in the cylindrical region a dependency of magnetic
field in the form of a transverse-to-ϕ field ht and a ϕ directed
field hϕ = iϕhϕ, namely:

H(ρ, ϕ, z) =

M∑
m=0

h
(m)
ϕ (ρ, z)

{
cosmϕ
sinmϕ

+

M∑
m=0

h
(m)
t (ρ, z)

{
cos(mϕ− π/2)
sin(mϕ− π/2)

(29)

in which we indicate with superscript (m) the harmonic field
component. Note that, contrary to the previous section, we now
use subscript t to indicate transverse to ϕ. Eq. (29) is quite
general but when applied to a body of revolution (such as the
coaxial feed) it provides a complete decoupling of the various
circular harmonics, so that the 3D problem is decomposed into
M +1 problems in 2D, one for each value of parameter m (it
can be shown the the two terms in parenthesis correspond to
the same 2.5D problem). In our case the value of M is very
small and we found excellent results for M = 1. The weak
form for magnetic field is similar to (3) and reads:∫

V

1

ϵr
∇× T · ∇ ×HdV − k20

∫
V

T ·HdV

= jωϵ0

∫
∂V

T ·Eξ × iνdS (30)

where T is a generic testing function, iν is the outward drawn
normal unit vector, Eξ is the externally applied electric field,
dV = ρdϕdρdz and dS = R2dϕdz for the radial port (see
Fig. 1) and dS = ρdϕdρ for the coaxial port. It is easily
demonstrated that the different terms in (29) corresponding to
different values of parameter m (different circular harmonics)
are mutually orthogonal because of the integrals in ϕ and
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therefore each circular harmonic corresponds to a separate
FEM problem. In more detail, using (29) and letting

E
(m)
ξ = e

(m)
ξ (ρ, z)cmϕ (31)

be the excitation field for circular harmonic m, where cmϕ =
cosmϕ (only the upper term in the curly bracket in (29) and
(31) is shown because the final equation is the same for both
the upper term and the lower term in parenthesis), one finds
that

∇× (h
(m)
ϕ cmϕ) =

1

ρ
∇th̃

(m)
ϕ × iϕcmϕ (32)

∇×(h
(m)
t cmϕ0) = ∇t×(h

(m)
t cmϕ0)+

m

ρ
iϕ×h

(m)
t cmϕ (33)

where where cmϕ0 = cos(mϕ − π/2), h̃
(m)
ϕ = ρh

(m)
ϕ and

where we introduced the transverse-to-ϕ nabla operator

∇t = iρ∂ρ + iz∂z. (34)

The weak form can now be specialized to the value of
parameter m as follows: we define two types of testing
functions, tϕ(ρ, z)cmϕ (directed along ϕ) and tt(ρ, z)cmϕ0

(in the transverse ρ, z plane) having the same dependence on
ϕ as the corresponding magnetic field components. Testing
the weak form (30) with these functions and carrying out the
integrals in ϕ one finds that only terms corresponding to the
same value of parameter m survive. For those terms, we end
up with the following two ϕ-independent functional equations:∫

S

(
∇t × tt · ∇t × h

(m)
t +

m2

ρ2
tt · h(m)

t −

m

ρ2
tt · ∇th̃

(m)
ϕ − k20tt · h

(m)
t

)
ρ

ϵr
dρdz = 0. (35)

∫
S

(
−m

ρ2
∇tt̃ϕ · h(m)

t +
1

ρ2
∇tt̃ϕ · ∇th̃

(m)
ϕ −

k20tϕ · h(m)
ϕ

) ρ

ϵr
dρdz = jωϵ0

∫
L

tϕ · (e(m)
ξ × iν)ρdl (36)

where t̃ϕ = ρtϕ. These are the equations we discretize
and we point out that they are 2D equations involving line
integrals and surface integrals and relaying on a 2D mesh.
The discretization with Galerkin’s method is now discussed in
some detail.

C. FEM Discretization and GAM Computation for the Coaxial
Region

For the solution of (35) associated to parameter m we use
the following mixed expansion:

ρh
(m)
ϕ (ρ, z) =

∑
q′

I
(m)
ϕ,q′Nq′(ρ, z) (37)

h
(m)
t (ρ, z) =

∑
q′′

I
(m)
t,q′′τq′′(ρ, z) (38)

where Nq′ are standard Lagrange node elements and τq′′ are
edge elements of matching degree [23]. From (37)–(38) one
also finds that

∇× iϕ

(
Nq′

ρ
cmϕ

)
=

∇tNq′ × iϕ
ρ

cmϕ (39)

∇× (τq′′cmϕ0
) = ∇t × τq′′cmϕ0

+
m

ρ
iϕ × τq′′cmϕ. (40)

Using Galerkin’s method the weak form (35) associated to
the generic parameter m is converted to the following matrix
equation:{[

A′
tt +m2A′′

tt mAtϕ

mAϕt Aϕϕ

]
− k20

[
Btt 0
0 Bϕϕ

]}[
I
(m)
t

I
(m)
ϕ

]
=

= jωϵ0

[
0
Cϕ

]
(41)

where I
(m)
t = [I

(m)
t,1 I

(m)
t,2 . . .]T, I(m)

ϕ = [I
(m)
ϕ,1 I

(m)
ϕ,2 . . .]T,

A′
tt(p, q) =

∫
S

∇t × τp · ∇t × τq
ϵr

ρdρdz (42)

A′′
tt(p, q) =

∫
S

τp · τq
ϵrρ

dρdz (43)

Aϕt(p, q) = −
∫
S

∇tNp · τq
ϵrρ

dρdz (44)

Atϕ(p, q) = −
∫
S

τp · ∇tNq

ϵrρ
dρdz (45)

Aϕϕ(p, q) =

∫
S

∇tNp · ∇tNq

ϵrρ
dρdz (46)

Btt(p, q) =

∫
S

τp · τq ρdρdz (47)

Bϕϕ(p, q) =

∫
S

NpNq

ρ
dρdz (48)

and for the radial port

Cϕ(p, 1) =

∫ h

0

Npdz (49)

whereas for the coaxial port, only when m = 0,

Cϕ(p, 1) = −
[
ln

R2

R1

]− 1
2
∫ R2

R1

Np

ρ
dρ (50)

where R2 and R1 are respectively the outer and inner radius of
the coaxial port. At the coaxial port Cϕ(p, 1) = 0 for m > 0.
Rewriting (41) as

L(m)

[
I
(m)
t

I
(m)
ϕ

]
= jωϵ0

[
0
Cϕ

]
(51)

one finds [
I
(m)
t

I
(m)
ϕ

]
= jωϵ0[L

(m)]−1

[
0
Cϕ

]
. (52)

Finally, the expression of the admittance matrix Y(m) for the
coaxial region is

Y(m) = CT
ϕ I

(m)
ϕ . (53)

As a final notice, using the lower term in curly bracket in (29)
one gets the exact same problem and therefore the same result
for the GAM.
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V. ADMITTANCE MATRIX CONNECTION AND SCATTERING
MATRIX COMPUTATION

The admittance matrix (26) is the final admittance matrix
Ytot if only waveguide ports are present, and we can write

Ytot = Y. (54)

If one or more coaxial ports are present, in addition to the
standard waveguide ports we have in the SIW region one radial
port for each coaxial port (see Fig. 1). We can therefore split
the admittance matrix in blocks as

Y =

[
Ywg,wg Ywg,rad

Yrad,wg Yrad,rad

]
(55)

in which Ywg,wg is the admittance submatrix for the waveg-
uide ports only, Ywg,rad and Yrad,wg are the mutual admit-
tance submatrices between waveguide ports and radial ports
and Yrad,rad is the admittance submatrix of the radial ports
only. From [22] or using the procedure described in the
previous section, we compute the admittance matrix Y(m) for
each harmonic m in the coaxial regions. Matrix Y(m) can be
partitioned as

Y(m) =

[
Y

(m)
rad,rad Y

(m)
rad,cx

Y
(m)
cx,rad Y

(m)
cx,cx

]
(56)

in which again subscript ’rad’ refers to the radial port and ’cx’
to the coaxial port. We introduce now

Y′ =

[
Y′

rad,rad Y′
rad,cx

Y′
cx,rad Y′

cx,cx

]
(57)

as the total admittance matrix of the coaxial region, obtained
by assembling the various Y

(m)
a,b for all harmonics. The as-

sembly process builds the following matrices:

Y′
rad,rad =


Y

(0)
rad,rad 0 . . .

0 Y
(1,1)
rad,rad 0 . . .

. . . 0 Y
(2,2)
rad,rad . . .

. . .

 (58)

Y′
cx,rad =

[
Y

(0)
cx,rad Y

(1)
cx,rad Y

(1)
cx,rad Y

(2)
cx,rad . . .

]
(59)

Y′
rad,cx =

[
Y′

cx,rad

]T
(60)

Y′
cx,cx = Y(0)

cx,cx (61)

where

Y
(m,m)
rad,rad =

[
Y

(m)
rad,rad 0

0 Y
(m)
rad,rad

]
. (62)

Note that, except for case m = 0, each harmonic-related
submatrix is repeated twice to account for both polarizations
(both terms in parenthesis in (29)). For the coaxial port self-
term, only Y

(0)
cx,cx needs be computed (case m = 0), since

higher order evanescent modes coefficients at the coaxial port
can be made arbitrarily small by choosing hsup in Fig. 1
sufficiently large (hsup ≃ 2R2 is usually sufficient). The size of
matrix Y′ for each coaxial port is then 2M+2 since there are
2M+1 radial ports and 1 coaxial port. A corresponding sorting

and assembling is carried out on Yrad,rad, so that matrices can
be connected with matching azimuthal index and polarization.

We can now obtain the final admittance matrix Ytot of the
SIW that includes the case of coaxial ports as

Ytot =

[
Ytot

wg,wg Ytot
wg,cx

Ytot
cx,wg Ytot

cx,cx

]
(63)

where
Ytot

wg,wg = Ywg,wg −Ywg,radZYrad,wg (64)

Ytot
cx,cx = Y′

cx,wg −Y′
cx,radZY

′
rad,cx (65)

Ytot
wg,cx = −Ywg,radZY

′
rad,cx (66)

Ytot
cx,wg = −Y′

cx,radZYrad,wg (67)

and
Z = (Yrad,rad +Y′

rad,rad)
−1. (68)

A. Scattering Matrix

From the total admittance matrix we can obtain the scatter-
ing matrix S as

S = −
√
Yref(Yref +Ytot)−1(Yref +Ytot)

√
Zref (69)

where Yref is the diagonal matrix of reference admittances
at the ports and Zref = Y−1

ref . For both waveguide ports
and coaxial ports, the reference admittance matrix is the
wave admittance. The generic element Yref(i) of the wave
admittance is therefore

Yref(i) =

[√
(niπ/ai)2 − k20ϵr,siw

jωµ

]
(70)

being ϵr,siw the relative permittivity in the SIW region, ni the
mode index relative to index i and ai the port size relative to
index i. For the coaxial case we have then

Yref(i) =

√
ϵ0ϵr,cx
µ0

(71)

being ϵr,cx the relative permittivity in the upper coaxial region
in Fig. 1.

VI. RESULTS

The advantage of 2D FEM is clearly the reduced number of
unknowns with respect to 3D FEM. As an example, using first
order edge elements in a 2D mesh (linear elements), a total of
eight functions per triangle are defined. On a tetrahedral grid,
first order edge elements correspond to twenty functions in
each tetrahedron [25] and since two tetrahedrons are needed
to model the field on a triangular prism, the total number
of functions per element is forty. Therefore the use of 2D
FEM leads to great time savings and reduced memory storage
for a given accuracy in the computation. Moreover, the use
of circular arc elements to define the vias allows to avoid
unnecessarily dense meshes. Finally, the temporary radial ports
to represent coaxial input preserve the 2D nature of the
problem and the accuracy in the computation.

The first example we show is a test of the radiation boundary
condition represented by (12). In general radiation is negligible
providing that the vias are close enough, the rule being dictated
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Fig. 3. Coaxial-fed rectangular resonator with open walls. Parameters are
a = 46.8 mm, b = 33.2 mm, (x, y) = (8.9, 7) mm with respect to the
center, h = 0.5 mm (SIW thickness), ϵr = 2.2 (SIW material), ϵr = 2.1
(coaxial cable), d = 0.4 mm (inner diameter of coaxial cable). Comparison
with FekoTM citeFeko.

by the simple formula s < 2d, being s the spacing between
vias (from the centers) and d the vias’ diameter. The radiation
boundary condition (12) can be useful to check for unwanted
radiation. In order to test it in the extreme case of no vias, we
have analyzed a simple patch resonator that is fed by a coaxial
cable and compared the results obtained with FekoTM [26].
The results obtained are shown in Fig. 3. Note that there is
a reasonable agreement between the results obtained with the
method in this work and Feko. The various resonances of the
structure are represented quite well and we found that eq. (12)
can be successfully used as an approximate check for possible
spurious radiation from the structure.

The next example is a waveguide-fed SIW filter. The filter
has been designed in [12] and analyzed by Bi-RME and
3D FEM. The comparison between our code and 3D FEM
(HFSSTM [27]) is shown in Fig. 4. The material parameters
are ϵr = 2, tan δ = 0.0011 and σ = 4 · 107 S/m. An excellent
agreement is observed, for the center frequency, the return
loss level and the insertion loss. Thanks to the use of circular
arc elements it was possible to keep the mesh density to a
very reasonable size, with 1271 triangles and 6640 degrees
of freedom (dof) using linear edge elements (degree 1 along
the edge). The analysis took 0.034 sec/freq with a Matlab
implementation of the code running on an Intel i7 pc with 4
GHz clock rate.

As a further test on the radiation boundary condition we
analyzed the same filter with just 6 vias per side and results
are shown in Fig. 5, together with results obtained by HFSS.
The main effect observed is a significant shift in the center
frequency. This is correctly modeled also with the method
discussed in this work. Note that in this case the rule s < 2d
to keep radiation small is not fulfilled, and the SIW structure
is far from optimal. In spite of that, radiation effects are
negligible since from the simulations the insertion loss level is
almost unchanged and the only observable effect is the cited
frequency shift. Because of the approximate nature of (12)

Fig. 4. Waveguide-fed SIW filter with two resonators. Data from [12] (mm):
A = 40, B = 24, a = 36, b = 21.06, d = d2 = 2, d1 = 0.5, x = 14,
h = 1, ϵr = 2(1 − j0.0011). Comparison between results obtained in this
work and HFSS. A closeup of the passband region is shown as an inset.

Fig. 5. Waveguide-fed SIW filter with two resonators, same dimensions as in
Fig. 4 but with just 6 vias on the sides. Comparison between results obtained
in this work and HFSS.

the agreement is not as good as in the previous case. HFSS
analysis was setup so as to account for any radiation losses by
enlarging the size of the structure and introducing absorbing
boundary conditions.

The third example is a coaxial-fed filter that comprises air
regions, realized by milling the SIW structure (Fig. 6). For
the SIW we used a material with a high value of permittivity
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Fig. 6. Coaxial-fed SIW filter with air regions analyzed in Fig. 7. Length
values in mm: A = 50, B = 21.7, a = 11.7, b = 18.7, c = 5.85,
x1 = −4.1, y1 = −8.4, x2 = 4.1, y2 = −8.4, d = 1. Materials: ϵr = 1
(light grey), ϵr = 10.2(1 − j0.003) (dark grey), ϵr = 2.1 (coaxial cable),
σ = 5.8 · 107 S/m (conductors).

Fig. 7. Coaxial-fed SIW filter with air regions. Data are shown in Fig. 6.
Comparison between results obtained in this work and HFSS. A closeup of
the passband region is shown as an inset.

in the dielectric filled parts (ϵr = 10.2, tan δ = 0.003, for
conductors σ = 5.8 · 107 S/m). In this example the number of
triangles was 4017 and the total number of dofs was 20856
using linear edge elements. The agreement with HFSS results
is very good over the wide bandwidth of analysis also for the
insertion loss level (an inset in the figure). For this case we also
carried out a comparison in terms of CPU time required for the
analysis, even if the implementation of the method presented
in this paper is far from optimal, since it has been carried
out in Matlab. Even so, using HFSS the discrete sweep took
3.2 sec/freq whereas the analysis with the method presented
in this paper took 0.32 sec/freq, corresponding to a speedup
factor of 10.

Fig. 8. The physical variables of the filter analyzed in Fig. 9. Length values
are in mm. L1 = 15.69, L2 = 12.91, L3 = 26.26, L12 = 25.05, D12 =
28.90, W23 = 8.99, WSIW = 30.6, Px = 14.961, Py = 5.2, ϵr = 2.2
(SIW structure), tan δ = 0.0009 (loss tangent of SIW structure), Dvia = 1
(diameter of the vias), h = 1.524 (dielectric thickness of SIW), Dout = 4,
Din = 1.2, ϵr = 2.2 (coaxial I/O structure), σ = 3.5 ·107 S/m (conductivity
of vias and ground planes).

Fig. 9. Coaxial-fed SIW filter realizing a transmission zero by frequency-
variant coupling. Comparison between results obtained in this work and HFSS.
Material used for the SIW has ϵr = 2.2, tan δ = 0.0009.

A further example is shown in Fig. 8-9. This filter represents
the implementation of a transmission zero by frequency variant
couplings [28]. The filter is fed with coaxial cables and
the analysis is concentrated in the passband. The dielectric
material has ϵr = 2.2, tan δ = 0.0009 and for the conductors
we used σ = 3 · 107 S/m. The mesh used comprises 11123
triangles and the use of linear edge elements corresponded
to 58226 dof’s. As shown in Fig. 9, the agreement with the
results of HFSS is excellent. HFSS results have been obtained
with linear elements in 3D, so the degree of approximation is
the same for both methods. The analysis took 0.57 sec/freq.
By comparison, the discrete frequency sweep with HFSS
(73987 tetrahedrons and 560150 dofs) took more than 9
sec/freq (speed up factor of about 15 using our code). This
example, that represents a rather complex structure, is a good
benchmark for the coaxial port model we have used and the
good agreement of the results in the filter passband confirm
the accuracy of the model.

As a final example we show a comparison with measured
data from [29]. The comparison refers to a SIW cavity that
is loaded with a textile material, whose parameters are εr =
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Fig. 10. Coaxial-fed SIW cavity. Dimensions in mm are: Lc = 74.7, d = 4
(diameter of vias), s = 8 (spacing of vias), a = 15 (offset from the center).
Moreover we have h = 3.94 mm, εr = 1.45, tan δ = 0.017 for the internal
material, Rs = 0.18 Ω/sq at 2.45 GHz for the upper and lower conductors,
σ = 1.5 · 107 S/m for the vias. Comparison between reflection coefficient
obtained in this work and measured value.

1.45, tan δ = 0.017. The purpose of the SIW cavity was to
characterize losses in the textile material. The thickness of the
material is h = 3.94 mm and the cavity dimensions are given
in the inset of Fig. 10. For the upper and lower conductors
Taffeta was used, with a surface resistivity Rs = 0.18 Ω/sq
at 2.45 GHz and the vias were realized in brass (σ = 1.5 ·
107 S/m). Parameter |S11| is computed by the method in this
work and compared in Fig. 10 to the measured value and a
very good agreement is observed. The SIW cavity is fed by
a SMA connector with inner radius 0.6 mm and Teflon as a
support material. Also in this case, virtually identical results
have been obtained with HFSS software, but with a much
larger computing time.

VII. CONCLUSIONS

A method for the analysis of SIW structures based on
2D vector Finite Element Method has been presented. The
formulation used includes losses, inhomogeneous dielectric
and excitation by rectangular waveguide or coaxial cable.
A simple approximate expression for spurious radiation by
the boundary has been introduced. Comparison with standard
3D FEM and with measured data has proven the excellent
accuracy of the technique. Based on several analysis, we
observed a speed up factor of the order of 10-20. Further work
is being carried out for the inclusion of microstrip-type input,
trying to preserve as much as possible the 2D nature of the
problem.
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