
ON THE SQUEEZING FUNCTION FOR FINITELY CONNECTED
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PAVEL GUMENYUK AND OLIVER ROTH

Abstract. In a recent paper, Ng, Tang and Tsai (Math. Ann. 2020) have found an
explicit formula for the squeezing function of an annulus via the Loewner differential
equation. Their result has led them to conjecture a corresponding formula for planar
domains of any finite connectivity stating that the extremum in the squeezing function
problem is achieved for a suitably chosen conformal mapping onto a circularly slit disk.
In this paper we disprove this conjecture. We also give a conceptually simple potential–
theoretic proof of the explicit formula for the squeezing function of an annulus which has
the added advantage of identifying all extremal functions.

1. Introduction

Let Ω ⊂ Cd, d > 1, be a domain such that the class U(Ω) of all injective holomor-
phic mappings f : Ω→ B := {z ∈ Cd : |z1|2 + · · ·+ |zd|2 < 1} is not empty. We denote by
dist(0, ∂f(Ω)) the Euclidean distance of the origin 0 from the boundary of f(Ω). The
squeezing function SΩ : Ω→ R of the domain Ω is defined by

SΩ(z) := sup
{
dist
(
0, ∂f(Ω)

)
: f ∈ U(Ω), f(z) = 0

}
, z ∈ Ω. (1.1)

This notion was introduced in 2012 by Deng, Guang and Zhang [6] inspired by the
works of Liu, Sun and Yau [16, 17] (2004) and Yeung [26] (2009). Squeezing functions
and their properties have since been investigated by many authors; we refer to the papers
[5, 7 – 11, 14, 15, 20, 27] and the references therein.

Clearly, the squeezing function is a biholomorphic invariant. Moreover, it is known [6,
Theorem 2.1] that the supremum in the definition of the squeezing function is always
attained; in other words there exists an extremal mapping, i.e. an injective holomorphic
map f : Ω→ B such that f(z) = 0 and dist

(
0, ∂f(Ω)

)
= SΩ(z).

Recently, Ng, Tang and Tsai [19] have determined the squeezing function for an annu-
lus Ar := {z ∈ C : r < |z| < 1}, and they have formulated a conjectural formula for the
squeezing function of planar domains of higher (but finite) connectivity. The aim of this
paper is the construction of a counterexample to the conjecture of Ng, Tang and Tsai for
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domains of connectivity beyond two. Moreover, we give a simple proof of their result for
the doubly connected case. Unlike the approach in [19], which is based on the Loewner
differential equation on an annulus, we use only rather elementary potential-theoretic rea-
soning. An advantage of our method is that it allows us to identify all extremal functions.

2. Main results

In order to state our results we briefly recall some basic concepts. A circularly slit disk
is a subdomain D of the unit disk D := {z ∈ C : |z| < 1} containing the origin such that
D \D consists of the unit circle ∂D and (closed) arcs lying on concentric circles centered
at the origin. It is admissible that the arcs degenerate to points.

Remark 2.1. Let Ω be a domain in C with at least one non-degenerate (i.e., different from a
singleton) boundary component. It is known, see e.g. [25, 12, 23] that for any such domain
Ω and any fixed z ∈ Ω there is always a conformal mapping of Ω onto some circularly
slit disk that takes z to 0. If the domain Ω is finitely connected with non-degenerate
boundary components Γ0,Γ1, . . . ,Γn, say, then for each z ∈ Ω and each j = 0, 1, . . . , n
we can find a unique conformal map fz,j of Ω onto a circularly slit disk normalized by
fz,j(z) = 0, f ′z,j(z) > 0, and fz,j(Γj) = ∂D. Note that, in general, fz,j does not have to
admit a continuous extension to ∂Ω; writing f(Γj), where f is any conformal map of Ω,
we mean the boundary component Cj of f(Ω) that corresponds to Γj under the map f in
the following sense: if (zk) is a sequence of points in Ω which converges to a point on Γj,
then every limit point of the sequence (f(zk)) belongs to Cj.

In the notation and terminology of Remark 2.1 the following conjecture was formulated
in [19].

Conjecture 1. Let Ω ⊂ C be an m-connected domain without degenerate boundary com-
ponents. Then for any z ∈ Ω the squeezing function SΩ is equal to

SΩ(z) = max
j=0,...,m−1

dist
(
0, ∂fz,j(Ω)

)
. (2.1)

Our main result states that this conjecture fails if the connectivity of Ω is higher than two.

Theorem 1. For each m > 3, there exists an m-connected domain Ω ⊂ C without
degenerate boundary components and a point z ∈ Ω such that (2.1) does not hold.

Conjecture 1 is however true in the doubly connected case. This is the main result
of [19]. The following theorem gives slightly more precise information by identifying all
extremal functions.

Theorem 2. Formula (2.1) holds for any doubly connected domain Ω with at least one
non-degenerate boundary component and for any z ∈ Ω. Each extremal function is a con-
formal map onto a circularly slit disk. In particular, for any r ∈ (0, 1) and any z ∈ Ar,

SAr(z) = max{|z| , r/|z|}. (2.2)
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The proof of (2.2) in [19] is based on a representation of conformal maps in terms of
the Loewner differential equation. It is well–known that one disadvantage of the Loewner
method is its possible failure to identify all of the extremal functions. Our proof of Theo-
rem 2 is based on potential theory and more or less automatically gives complete descrip-
tion of the extremal functions.

Remark 2.2. It is worth mentioning that there is an infinitesimal version of Conjecture 1
which in fact does hold for any finitely connected domain and which, incidentally, will be
one of the key ingredients for the proof of Theorem 1. To state this result, we fix z ∈ Ω and
j ∈ {0, . . . ,m− 1} and consider the set of all injective holomorphic functions f : Ω→ D
normalized by f(z) = 0, f ′(z) > 0 and such that f(Γj) is the outer boundary of f(Ω),
i.e. f(Γj) is the boundary of the unbounded component of C \ f(Ω). Then the maximum
of f ′(z) is achieved for f = fz,j and only for this function. To prove this remarkable
fact, we notice that if f maximizes f ′(z), then according to the Schwarz Lemma, the
outer boundary of f(Ω) must be the unit circle ∂D. It remains to apply the following
well-known result for D := f(Ω) and ϕ := fz,j ◦ f−1.

Proposition 2.3 (Tsuji [25, Lemma 2(i) on p. 409]). Let D ⊂ D be a finitely connected
domain with outer boundary ∂D and let ϕ be the conformal mapping of D onto a circularly
slit disk normalized by ϕ(0) = 0, ϕ′(0) > 0, and ϕ(∂D) = ∂D. Then ϕ′(0) > 1, with
ϕ′(0) = 1 if and only if D is a circularly slit disk, in which case ϕ = idD.

The paper is organized as follows. In Section 3 we describe the potential–theoretic tools
on which our work is based, namely harmonic measure, logarithmic potentials and confor-
mal mappings as well as their behaviour w.r.t. kernel convergence. This section contains
several auxiliary statements which are either new or otherwise only implicitly contained
in the vast literature on the subject. Strictly speaking, for the purpose of this paper, some
of these results would only be needed for domains of connectivity two or for domains with
degenerate boundary components. However, for the sake of clarity and consistency, and in
view of potential further applications, we state and prove these auxiliary results in their
natural setting for domains of any finite connectivity. In Section 4 we prove Theorem 2.
The proof is based on the doubly connected case of Theorem 3 in Section 3, which ex-
presses the harmonic basis (i.e. the harmonic measures of boundary components) for a
finitely connected domain Ω in terms of logarithmic potentials of specific positive Borel
measures which are supported on the individual boundary components of Ω. In Section 5
we discuss in detail the mapping properties and dependence on parameters of the canonical
conformal mapping of the standard annulus Ar onto a circularly slit disk. Our treatment
is based on the Schottky – Klein prime function. In the final Section 6, these mapping
properties are then combined with the results of Section 3 to prove Theorem 1.

Throughout the paper we will denote by D(a, ρ) the open disk {z ∈ C : |z − a| < ρ}.
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3. Harmonic measure, logarithmic potentials, and kernel convergence

In this section we suppose that Ω ⊂ C is a bounded finitely connected domain with
n+ 1 non-degenerate boundary components Γj, j = 0, 1, . . . , n.

For z ∈ Ω, we denote by ωΩ(z, ·) the harmonic measure for a point z ∈ Ω relative to
the domain Ω. For the definition and fundamental properties of the harmonic measure we
refer the reader to [22, §4.3].

Remark 3.1. Finite sets are removable for bounded harmonic functions, see e.g. [3, Corol-
lary 1.5 on p. 73]. This well-known fact together with Perron’s theory of the Dirichlet
problem for harmonic functions [22, Theorems 4.1.5 and 4.2.2] imply that under the
above assumptions, for any continuous function ϕ : ∂Ω→ R there exists a unique contin-
uous function ψ : Ω → R which is harmonic in Ω and which coincides with ϕ on every
non-degenerate boundary component of Ω. This function is given by the generalized Pois-
son integral

ψ(z) =

∫
∂Ω

ϕ(ζ)ωΩ(z, dζ) =

∫
P

ϕ(ζ)ωΩ(z, dζ) for all z ∈ Ω, (3.1)

where P := Γ0 ∪ Γ1 ∪ . . . ∪ Γn is the union of all non-degenerate boundary components
of Ω. The Maximum Principle asserts in this case, see e.g. [22, Theorem 4.1.2], that

max{ψ(z) : z ∈ Ω} = max{ϕ(ζ) : ζ ∈ P}.

Remark 3.2. Formula (3.1) leads to the following representation for the Green function
GΩ of the domain Ω,

GΩ(z, w) = log
1

|z − w|
−
∫
P

log
1

|z − w|
ωΩ(z, dζ) for all z, w ∈ Ω, z 6= w. (3.2)

For any fixed w ∈ Ω, we will assume that GΩ(·, w) is extended to ∂Ω by continuity.

To state the first theorem of this section we need to introduce some more notation.
Denote by Kj the connected component of C \ Ω bounded by Γj. We adopt the convention
that, unless explicitly stated otherwise, the boundary components are labelled such that
Γ0 is the outer boundary of Ω, i.e. the component K0 is the unbounded one.

Let ωj(z) := ωΩ(z,Γj), j = 0, . . . , n. Note that ωj is the unique harmonic function in Ω
admitting a continuous extension to Ω with ωj|Γj ≡ 1 and ωj|Γk ≡ 0 for k 6= j.

Consider the integrals

λjk :=
1

2π

∫
∂Dk

∂ωj
∂n

ds, k = 0, . . . , n,

where Dk is a Jordan domain (unbounded in case k = 0) with C1-smooth boundary
∂Dk ⊂ Ω and such that Dk ∩

(
C\Ω

)
= Kk. Here ∂/∂n stands for the derivative along the
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inner normal w.r.t. Dk. Note that
n∑
j=0

λjk = 0, k = 0, . . . , n, (3.3)

because
∑n

j=0 ωj = ωΩ(·, ∂Ω) ≡ 1. Moreover, thanks to Green’s formula,

λj0 = −
n∑
k=1

λjk, j = 0, . . . , n. (3.4)

The functions ω1, . . . , ωn form the so-called harmonic basis in the domain Ω and the num-
bers λjk are known as periods; for more details see, e.g., [3, §15.1]. To fix the terminology
in a more precise way, we will say that λjk is the period of ωj associated with the boundary
component Γk.

Remark 3.3. The harmonic basis and the period matrix are conformally invariant in the
following sense. Let f be a conformal mapping of Ω onto another bounded domain in C.
Then for any j ∈ {0, . . . , n} and all z ∈ Ω,

ωf(Ω)

(
f(z), f(Γj)

)
= ωΩ(z,Γj) = ωj(z). (3.5)

It follows easily that for any k ∈ {0, . . . , n} the period of ωf(Ω)

(
· , f(Γj)

)
associated

with f(Γk) equals λjk.
To establish equality (3.5), it is sufficient to recall that ωf(Ω)

(
· , f(Γj)

)
and ωΩ(·,Γj)

extend continuously to the boundaries of Ω and f(Ω), respectively, and notice that for
any k ∈ {0, . . . , n} and any sequence (zn) ⊂ Ω, dist(zn,Γk) → 0 as n→ +∞ if and only
if dist

(
f(zn), f(Γk)

)
→ 0 as n→ +∞.

Remark 3.4. It is known that the period matrix Λ0 := [λjk]16j,k6n is invertible and sym-
metric. The proof of this fact for smooth boundaries can be found, e.g., in [3, Proposi-
tion 1.7 on p. 74] and [18, p. 39]. Since any finitely connected domain can be mapped
conformally onto a domain with smooth boundary, the general case holds thanks to
Remark 3.3. Moreover, equalities (3.3) and (3.4) show that the extended period ma-
trix Λ := [λjk]06j,k6n is symmetric as well and that for any m ∈ {0, . . . , n}, the matrix
Λm := [λjk]j,k∈Jm , where Jm := {0, . . . , n} \ {m}, is invertible.

Below we will see that the harmonic functions ω1, . . . , ωn can be represented in terms
of logarithmic potentials. For a finite Borel measure µ with compact support in C, the
logarithmic potential Vµ is defined by

Vµ(w) :=

∫
log

1

|w − z|
dµ(z).

Note that Vµ is a harmonic function in C \ suppµ. Moreover,

Vµ(w) = |µ| log
1

|w|
+O(1/|w|) as w →∞, (3.6)
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where |µ| denotes for the total mass of µ, i.e. |µ| := µ(suppµ). See, e.g., [22, Sect. 3.1] for
more details.

The following theorem is certainly known to the specialists. Since we have not been
able to trace any suitable precise reference, we state it here and include a proof.

Theorem 3. In the above notation, for each j = 1, . . . , n, there exist finite positive Borel
measures µj0, . . . , µjn supported on Γ0, . . . ,Γn, respectively, such that

ωj(z) = Vµjj(z) −
∑

06k6n
k 6=j

Vµjk(z) for all z ∈ Ω. (3.7)

The measures µjk are uniquely defined by Ω. Moreover,

suppµjk = Γk, k = 0, . . . , n, (3.8)

|µjk| = |λjk|, k = 0, . . . , n, (3.9)

λjj > 0 and λjk < 0 for all k = 0, . . . , n, k 6= j. (3.10)

Proof. The functions ω0, ω1, . . . , ωn extend harmonically to every isolated point of ∂Ω.
Therefore, without loss of generality we may suppose that Ω has no degenerate boundary
components, i.e. ∂Ω = Γ0 ∪ Γ1 ∪ . . . ∪ Γn.

Fix j ∈ {1, . . . , n} and consider the function u : C→ R defined by

u(z) =


ωj(z), if z ∈ Ω,

0, if z ∈ Kk with k ∈ {0, . . . , n}, k 6= j,

1, if z ∈ Kj.

This function is continuous in the whole plane, see e.g. [22, Theorems 4.2.2 and 4.3.4].
Clearly, u is harmonic in C \ ∂Ω. Moreover, comparing u(z0) for points z0 ∈ ∂Ω with the
mean values of u over sufficiently small circles centered at z0 and taking into account that
u(C) ⊂ [0, 1], one can easily see that u is subharmonic in C \Kj and superharmonic in
C \K, where

K :=
⋃

06k6n
k 6=j

Kk.

Therefore, combining Riesz’s Representation Theorem for subharmonic functions (see,
e.g., [13, Theorem 3.9 on p. 104]) with the fact that the logarithmic potential of a finite
Borel measure is harmonic in an open set A if and only if this measure vanishes on A,
one may conclude that there exist two uniquely defined finite positive Borel measures µ
and ν, supported on ∂Kj = Γj and ∂K =

⋃
k 6=j Γk, respectively, such that

u = Vµ − Vν + u0,

where u0 is a harmonic function in C. Put µjj := µ and µjk = ν|Γk
for k = 0, . . . , n, k 6= j.
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By Gauß’ Theorem (see, e.g., [24, Theorem 1.1 on p. 83]) we have

λjk =

{
|µjj|, if k = j,

−|µjk|, if k ∈ {1, . . . , n}, k 6= j.

This proves (3.9) and the non-strict inequalities in (3.10) for k 6= 0. The fact that λjk 6= 0
for all k ∈ {0, . . . , n} follows from (3.8), which we will prove below.

Applying Gauß’ Theorem in the disk D(0, R) for R > 0 large enough, we see that
|µ| = |ν|. With (3.3) taken into account, it follows that (3.9) and (3.10), again with the
non-strict inequality, hold also for k = 0.

Moreover, thanks to (3.6), we have Vµ(z)− Vν(z)→ 0 as z → ∞. By construction, u
vanishes identically in a neighbourhood of ∞. Hence, applying the Maximum Principle
to the harmonic function u0 = u− (Vµ − Vν), we see that u0 ≡ 0. This proves (3.7).

To show that suppµ = Γj suppose on the contrary that there exists a neigbourhood U
of a point z0 ∈ Γj such that µ(U) = 0. Replacing U , if necessary, with a smaller neighbour-
hood, we may suppose that U ∩K = ∅. Then u is harmonic in U ; moreover, u(z) 6 1 for all
z ∈ U and u(z0) = 1. By the Maximum Principle u(z) = 1 for all z ∈ U . Since U ∩Ω 6= ∅,
this contradicts the fact that u is not constant in Ω. The equality supp ν =

⋃
k 6=j Γk can

be proved in a similar way. �

Remark 3.5. For a non-empty set J ⊂ {1, . . . , n} denote

ΓJ :=
⋃
j∈J

Γj and J∗ := {0, . . . , n} \ J.

Repeating the argument of the above proof with u : C→ [0, 1] defined by u(z) := ωΩ(z,ΓJ)
if z ∈ Ω, u(z) := 1 if z ∈ Kj for some j ∈ J , and u(z) := 0 if z ∈ Γk with k ∈ J∗, we can
conclude that

ωΩ( · ,ΓJ) =
∑
j∈J

ωj = Vµ − Vν , (3.11)

where

µ :=
∑
j∈J

(
µjj −

∑
k∈J\{j}

µjk

)
=
∑
k∈J

(
µkk −

∑
j∈J\{k}

µjk

)
and ν :=

∑
j∈J

∑
k∈J∗

µjk

are positive finite Borel measures supported on ΓJ and
⋃
k∈J∗ Γk, respectively, with

|µ| = |ν| =
∑
j,k∈J

λjk = −
∑
j∈J

∑
k∈J∗

λjk =
∑
j,k∈J∗

λjk . (3.12)

(Here we have also taken into account relations (3.3) and (3.4).)

Remark 3.6. It is clear from the proof of Theorem 3 that the representation (3.7), as well
as formula (3.11), are valid also on the boundary of Ω.
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As a simple application of Theorem 3, we recover the following known result, see e.g. [3,
Proof of Lemma 6.3, pp. 97-98].

Corollary 3.7. Let m ∈ {0, 1, . . . , n} and z0 ∈ Ω, and let f be a conformal mapping of Ω
onto a suitable circularly slit disk

D := D
∖( ⋃

06k6n
k 6=m

Ck

)

with f(z0) = 0, f(Γm) = ∂D, and f(Γk) = Ck for all k 6= m. Then the radii rk of the
circular arcs Ck satisfy the following system of linear equations:∑

06k6n
k 6=m

λjk log
1

rk
= ωj(z0), 0 6 j 6 n, j 6= m. (3.13)

Remark 3.8. Note that the linear system (3.13) has a unique solution because its coefficient
matrix is invertible; see Remark 3.4.

Proof of Corollary 3.7. Since the harmonic basis and the periods λjk, j, k ∈ {0, . . . , n},
are conformally invariant, see Remark 3.3, we may suppose that Ω = D, m = 0, and
f = idΩ. Accordingly, we have z0 = 0. Fix j ∈ {1, . . . , n} and apply Theorem 3. By (3.7),

ωj(0) = |µjj| log
1

rj
−
∑

16k6n
k 6=j

|µjk| log
1

rk
, (3.14)

where we took into account that µjk, k = 1, . . . , n, are supported on circles of radius rk
centred at the origin and that µj0 is supported on ∂D and hence Vµj0(0) = 0.

Taking into account (3.9) and (3.10), from (3.14) we obtain

ωj(0) =
n∑
k=1

λjk log
1

rk
,

as desired. �

In the doubly connected case, which is the relevant case for the proof of Theorem 2,
the above results allow us to deduce the following statement.

Corollary 3.9. Let r ∈ (0, 1) and let f be a conformal mapping of Ar onto a bounded
domain Ω such that ∂D corresponds under f to the outer boundary Γ0 of Ω. Then the
following two assertions hold.

(A) For any ζ ∈ Ω,

log
1

|f−1(ζ)|
= Vµ∗(ζ)− Vν∗(ζ), (3.15)
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where µ∗ and ν∗ are suitable probability measures with

supp ν∗ = Γ0 and suppµ∗ = Γ1 := ∂Ω \ Γ0.

(B) Moreover, if Ω is a circularly slit disk, then Γ1 ⊂
{
ζ : |ζ| = |f−1(0)|

}
.

Proof. Apply Theorem 3 with n = j = 1. By Remark 3.3, ω1(ζ) = log |f−1(ζ)|/ log r for
all ζ ∈ Ω. Thanks to the same remark, in order to find λ1,1, we may suppose that f = idAr .
In this way we see that the measures µ1,1 and µ1,0 in formula (3.7) satisfy

|µ1,1| = |µ1,0| = λ1,1 =
1

log(1/r)
.

Hence to prove (A), it remains to set µ∗ := (1/λ1,1)µ1,1 and ν∗ := (1/λ1,1)µ1,0.
Assertion (B) is a well known fact, see e.g. [19, Lemma 2.2] or [23, Lemma 3]. Alterna-

tively, one can use system (3.13) in Corollary 3.7, which reduces in our case to the unique
equation λ1,1 log(1/r1) = ω1

(
f−1(0)

)
and hence yields r1 = |f−1(0)|. �

Remark 3.10. It is possible to show that the measure µ∗ in Corollary 3.9 coincides with the
so-called Green equilibrium distribution on K1 relative to the simply connected domain
D := Ω∪K1 = C\K0, where in accordance with the notation introduced at the beginning
of this section, K1 and K0 stand for the bounded and unbounded connected components
of C \ Ω, respectively. Formula (3.15) can be rewritten as

log
1

|f−1(ζ)|
=

∫
Γ1

GD(ζ, w) dµ∗(w), ζ ∈ D \K1,

where GD is the Green function of the domain D. For more details on Green equilibrium
distributions, see e.g. [24, Sect. II.5], or [25, p. 94-95] where the case D = D is considered.

The classical Kernel Convergence Theorem due to Carathéodory, see e.g. [21, Theo-
rem 1.8 on p. 14], relates the limit behaviour of a sequence of hyperbolic simply connected
domains with the convergence of the corresponding conformal mappings onto the canoni-
cal domain (the unit disk). The notion of kernel convergence extends naturally to multiply
connected domains, but no complete analogue of Carathéodory’s result seems to be known
even for the finitely connected case. Considerable progress in this direction has been made
in [1, 2]. In this regard, it is worth mentioning that the canonical mappings of a multi-
ply connected domain are closely related to its harmonic basis, see e.g. [3, Chapter 15].
However, to the best of our knowledge, no known results apply to the special, but rather
interesting, case in which the boundary consists of a non-empty constant part plus a vari-
able part, which shrinks in the limit to a single point. The following theorem describes the
limit behaviour of the harmonic measure, Green’s function, and the conformal mappings
onto circularly slit disks in this special case.
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Theorem 4. Let Ω0 and Ωn  Ω0, n ∈ N, be bounded finitely connected domains in C
and let ζ∗ ∈ Ω0. Suppose that

sup
{
|ζ − ζ∗| : ζ ∈ Ω0 \ Ωn

}
→ 0 as n→ +∞.

Then the following five statements hold.

(A) If ϕ is continuous on ∂Ω0 and in a neighbourhood of ζ∗, then for all z ∈ Ω0 \ {ζ∗},∫
∂Ωn

ϕ(ζ)ωΩn(z, dζ) →
∫
∂Ω0

ϕ(ζ)ωΩ0(z, dζ) as n→ +∞. (3.16)

Moreover, for any ε > 0, the convergence in (3.16) is uniform in Ω0 \ D(ζ∗, ε).

(B) For any ε > 0, the sequence (GΩn) converges to GΩ0 uniformly in{
(z, w) : z ∈ Ω0 \ D(ζ∗, ε), w ∈ Ω0 \ D(ζ∗, ε), z 6= w

}
.

(C) Let Γ be a non-degenerate boundary component of Ω0 and let (zn ∈ Ωn) be a
sequence converging to some z0 ∈ Ω0 \ {ζ∗}. For each n ∈ {0} ∪ N, denote by
fn the unique conformal mapping of Ωn onto a circularly slit disk normalized by
fn(zn) = 0, f ′n(zn) > 0, fn(Γ) = ∂D. Then the sequence (fn) converges locally
uniformly in Ω0 \ {ζ∗} to f0.

(D) For each n ∈ N, let gn be a conformal mapping of Ωn with gn(Ωn) ⊂ D. Further,
suppose that for any n ∈ N the outer boundary of gn(Ωn) corresponds under g−1

n to
a subset of ∂Ωn \ ∂Ω0. If the sequence (ζn) :=

(
g−1
n (0)

)
is contained in a compact

subset of Ω0 \ {ζ∗}, then the sequence (gn) converges locally uniformly in Ω0 \ {ζ∗}
to g0 ≡ 0.

(E) For the sequences (fn) and (gn) defined above, we have

dist
(
0, ∂fn(Ωn)

)
→ dist

(
0, ∂f0(Ω0 \ {ζ∗})

)
and (3.17)

dist
(
0, ∂gn(Ωn)

)
→ 0 as n→ +∞. (3.18)

Remark 3.11. Using Moebius transformations it is easily seen that the above theorem
holds also for unbounded domains Ω0 ⊂ C with external points. A similar approach allows
one to extend Theorem 4 to the case of an unbounded domain without external points,
provided it has at least one non-degenerate boundary component. In such a case, however,
the argument becomes slightly more complicated because one should use a conformal map
of the form z 7→

√
(z − a)/(z − b), which does not extend to a one-to-one map on the

boundary.

Proof of Theorem 4. Denote Υn := ∂Ωn \ ∂Ω0. We are going to show that:

Claim 1. For any ε > 0, as n→ +∞, ωΩn(z,Υn)→ 0 uniformly in Ω0 \ D(ζ∗, ε).

Denote by P0 the union of all non-degenerate boundary components of Ω0 and let Pn,
n ∈ N, stand for the union of all non-degenerate connected components of Υn. If Pn = ∅,
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then ωΩn(z,Υn) ≡ 0. Therefore, we may suppose that Pn 6= ∅ for any n ∈ N. Then Theo-
rem 3 together with Remark 3.5 implies that for each n ∈ N,

ωΩn(z,Υn) = Vµn(z)− Vνn(z) for all z ∈ Ωn, (3.19)

where µn and νn are suitable positive Borel measures supported on Pn and P0, respectively.
Moreover,

cn := |µn| = |νn|.
It follows from the very definition of the logarithmic potential that

inf
z∈Pn

Vµn(z) > −cn log diam(Pn) and sup
z∈Pn

Vνn(z) 6 −cn log dist(P0, Pn)

for all n ∈ N. Taking into account that Vµn(z)−Vνn(z) = 1 for all z ∈ Pn, we deduce that

1/cn > log
dist(P0, Pn)

diam(Pn)
→ +∞, i.e. cn → 0, as n→ +∞. (3.20)

Using (3.19) we see that for any ε > 0 with ∂D(ζ∗, ε) ⊂ Ω0, ωΩn(Υn, z)→ 0 uniformly
on ∂D(ζ∗, ε) as n→ +∞. Now Claim 1 follows easily from the Maximum Principle, see

Remark 3.1, applied to the harmonic functions ωΩn(·,Υn) in the domain Ω0 \ D(ζ∗, ε).

Proof of (A). By Remark 3.1, for each n ∈ N the function

ψn(z) :=

∫
∂Ωn

ϕ(ζ)ωΩn(z, dζ) −
∫
∂Ω0

ϕ(ζ)ωΩ0(z, dζ)

is harmonic in Ωn and extends continuously to the boundary of Ωn with ψn|P0 ≡ 0. Hence,
again by Remark 3.1, for all z ∈ Ωn,

|ψn(z)| =

∣∣∣∣∫
Pn

ψn(ζ)ωΩn(z, dζ)

∣∣∣∣ 6 ωΩn(z,Υn) max{|ψ(ζ)| : ζ ∈ Pn}

6 2ωΩn(z,Υn) max{|ϕ(ζ)| : ζ ∈ ∂Ωn},
where we have applied the triangle inequality and the Maximum Principle in order to
estimate |ψn| on Pn. Combined with Claim 1 the above inequality easily implies (A).

Proof of (B). Let ε > 0. Fix some w ∈ Ω0 \ D(ζ∗, ε). Bearing in mind formula (3.2),
consider the functions

ψn(z) := GΩ0(z, w) − GΩn(z, w) =

=

∫
∂Ωn

log
1

|ζ − w|
ωΩn(z, dζ) −

∫
∂Ω0

log
1

|ζ − w|
ωΩ0(z, dζ).

For n ∈ N large enough, we have Pn ⊂ D(ζ∗, ε/2) and hence 0 6 GΩ0(ζ, w) 6M for all
ζ ∈ Pn and some constant M > 0 depending on ε but not on w. Since GΩn(ζ, w) = 0 for
all ζ ∈ Pn, we have |ψn| 6 M on Pn, and it only remains to apply the argument used in
the above proof of assertion (A).
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Proof of (C). Since fn(Ωn) ⊂ D for all n ∈ N, the functions fn form a normal family
in Ω0 \ {ζ∗}. Therefore, passing if necessary to a subsequence, we may suppose that (fn)
converges locally uniformly in Ω0 \ {ζ∗} to a holomorphic function f : Ω0 \ {ζ∗} → D.
Since f is bounded in Ω0 \ {ζ∗}, it extends holomorphically to ζ∗.

To prove (C) it is sufficient to show that f = f0. Clearly f(z0) = limn→+∞ fn(zn) = 0.
Moreover, f ′(z0) > f ′0(z0). Indeed, for each n ∈ N, let Tn be the automorphism of D such
that Tn(f0(zn)) = 0 and T ′n(f0(zn)) > 0. Note that Tn◦f0 maps Ωn conformally onto a sub-
domain of D in such a way that the boundary component Γ corresponds to ∂D. Bearing in
mind that (Tn ◦ f0)(zn) = 0 and (Tn ◦ f0)′(zn) > 0, by the extremal property of the confor-
mal mappings onto circularly slit disks, see Remark 2.2, we have f ′n(zn) > (Tn ◦ f0)′(zn).
Passing to the limit as n→ +∞ and taking into account that Tn → idD yields the desired
conclusion. In particular, this means that f ′(z0) 6= 0. Hence f is a conformal mapping
of Ω0 onto a subdomain of D.

In order to show that Γ corresponds under f to the outer boundary of f(Ω0), consider
a C1-smooth Jordan curve C ⊂ f(Ω0 \ {ζ∗}) that separates the outer boundary of f(Ω0)
from all other boundary components of f

(
Ω0\{ζ∗}

)
. Let D be the connected component of

C \ f−1(C) that contains Γ. Then D ∩Ω0 ⊂ Ωn for all n ∈ N large enough and moreover,
for all such n’s, fn(D ∩ Ω0) lies in the unbounded component of C \ Cn, where Cn :=
fn
(
f−1(C)

)
, because fn(Γ) = ∂D. Using this fact, we conclude that for any ζ ∈ D ∩ Ω0,∫

C

dw

w − f(ζ)
=

∫
f−1(C)

f ′(z) dz

f(z)− f(ζ)

= lim
n→+∞

∫
f−1(C)

f ′n(z) dz

fn(z)− fn(ζ)
= lim

n→+∞

∫
Cn

dw

w − fn(ζ)
= 0.

It follows that f(Γ) lies in the unbounded connected component of C \ C. By the very
construction, the only boundary component of f(Ω) possessing this property is its outer
boundary. Recalling that f(z0) = 0 and f ′(z0) > f ′0(z0), we see now that f = f0 thanks
to the extremal property stated in Remark 2.2.

Proof of (E). With (C) having been already proved, relation (3.17) is an immediate
consequence of the following two facts:

(i) if K ⊂ f0(Ω0 \ {ζ∗}) is compact, then K ⊂ fn(Ωn) for all n ∈ N large enough;

(ii) for any w ∈ ∂f(Ω0 \ {ζ∗}) there exist a sequence wn ∈ ∂fn(Ωn) converging to w.

We omit the proof of assertions (i) and (ii) because, up to a few light adjustments, it
repeats the standard argument used in the proof of Carathéodory’s Kernel Convergence
Theorem, see e.g. [21, Theorem 1.8 on p. 14].
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To prove relation (3.18), consider the functions un(z) := ωΩn

(
g−1
n (z), ∂Ω0

)
defined on

the domains Dn := gn(Ωn). Applying Theorem 3 and Remark 3.5, we see that

un = Vµ′n − Vν′n for each n ∈ N,

where µ′n and ν ′n are positive Borel measures supported on the union of the (non-
degenerate) boundary components of Dn corresponding under gn to the connected
components of P0 and to those of Pn, respectively. Moreover, |µ′n| = |ν ′n|.

In fact, |µ′n| = |ν ′n| = cn for all n ∈ N. Indeed, thanks to the conformal invariance of
the periods, see Remark 3.3, this equality follows from relation (3.12) applied twice: for
the measures µn, νn and for the measures µ′n, ν ′n.

Therefore, on the one hand, by (3.20), we have |µ′n| = |ν ′n| → 0 as n→ +∞. On the
other hand, by Claim 1, un(0) = 1− ωΩn(ζn,Υn)→ 1 as n→ +∞. It follows that

dist
(
0, supp(µ′n + ν ′n)

)
→ 0 as n→ +∞,

which is equivalent to (3.18).

Proof of (D). Recall that by the hypothesis, there exists a compact set K ⊂ Ω0 \ {ζ∗}
such that ζn := g−1

n (0) ∈ K for all n ∈ N. Moreover, the functions gn are all univalent in
their domains and form a normal family in Ω0 \ {ζ∗}. Therefore, it is sufficient to show
that g′n(ζn)→ 0 as n→ +∞. According to Koebe’s 1/4-Theorem, see e.g. [3, Theorem 7.8
on p. 64],

|g′n(ζn)| 6 4 dist(0, ∂Dn)

dist(ζn, ∂Ωn)
for all n ∈ N.

Thus, (D) follows from (3.18). �

4. Proof of Theorem 2

Let Ω ⊂ C be a doubly connected domain with at least one non-degenerate boundary
component. Fix z ∈ Ω. As we mentioned in the Introduction, the supremum in (1.1) is
achieved for at least one injective holomorphic function f∗ : Ω → D and such a function
is said to be extremal in the squeezing function problem. Let K ⊂ D be the bounded
connected component of C \ f∗(Ω). Denote by ϕ the conformal mapping of the simply
connected domain D := f∗(Ω)∪K onto D normalized by ϕ(0) = 0 and ϕ′(0) > 0. On the
one hand, since f∗ is extremal, we have

dist
(
0, ∂f∗(Ω)

)
> dist

(
0, ∂ϕ(f∗(Ω))

)
= dist

(
0, ϕ(K)

)
.

On the other hand, if ζ∗ ∈ D is the point of ϕ(K) closest to the origin, then by the Schwarz
Lemma applied for ϕ−1,

dist
(
0, ∂f∗(Ω)

)
6 |ϕ−1(ζ∗)| 6 |ζ∗| = dist

(
0, ϕ(K)

)
.
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This means that equality takes place in all the above inequalities. Hence, ϕ−1 = idD, i.e.
D = D. Consequently, the outer boundary of f∗(Ω) coincides with ∂D and

SΩ(z) = dist(0, ∂K). (4.1)

In particular, the statement of Theorem 2 is now obvious for doubly connected domains Ω
with one degenerate boundary component. Therefore, without loss of generality we may
suppose that Ω = Ar for some r ∈ (0, 1) and that f∗(∂D) = ∂D. Otherwise we would
replace f∗ by f∗ ◦ g−1 and z by g(z), where g is a conformal mapping of Ω onto Ar taking
f−1
∗ (∂D) to ∂D.
Then by Corollary 3.9 (A) applied for f := f∗,

log
1

|z|
= log

1

|f−1
∗ (0)|

= Vµ∗(0)− Vν∗(0),

where µ∗ and ν∗ are two probability measures with suppµ∗ = ∂K and supp ν∗ = ∂D.
Clearly, Vν∗(0) = 0. Hence, taking into account (4.1), we have

log
1

|z|
=

∫
∂K

log
1

|w|
dµ∗(w) 6 log

1

SΩ(z)
.

The equality can occur only if ∂K is contained on the circle of radius SΩ(z) centered at
the origin, because suppµ∗ coincides with ∂K.

Taking into account that by Corollary 3.9 (B), SΩ(z) > |z|, we conclude that in fact,
SΩ(z) = |z| and that f∗(Ω) is a circularly slit disk.

To obtain formula (2.2), it remains to recall that in case f−1
∗ (∂D) is ∂D(0, r) rather than

∂D, we have to replace z by g(z), where g is a conformal automorphism of Ar permuting
the boundary components. The proof is now complete. �

5. Conformal mapping of an annulus onto a circularly slit disk

Fix r ∈ (0, 1) and consider the annulus Ar := {z ∈ C : r < |z| < 1}. According
to Remark 2.1, for any fixed x ∈ (r, 1) there exist a unique conformal map fx from Ar
into D with fx(x) = 0, fx(∂D) = ∂D and such that Γx := D \ fx(Ar) is a circular arc
centred at the origin, symmetric w.r.t. the real axis, and intersecting the interval (−1, 0);
see Figure 1. Note that fx and Γx depend also on r ∈ (0, 1), but since r ∈ (0, 1) will be
fixed throughout, we suppress the dependence of fx on r in our notation.

In the following lemma we collect some auxiliary statements, which will be used in
Section 6 to prove Theorem 1.
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x

fx

0
Γx

Figure 1. The map fx for r = 1/2 and x = 3/4

Lemma 5.1 (Properties of the conformal map fx). Let r ∈ (0, 1) be fixed.

(A) For each x ∈ (r, 1) the map fx has a holomorphic extension to the annulus

Ar,x := {z ∈ C : r2/x < |z| < 1/x}

and (x, z) 7→ fx(z) is a C∞– function on {(z, x) : z ∈ Ar,x, x ∈ (r, 1)}.
(B) For each x ∈ (r, 1),

fα(x) = −fx(α) for all α ∈ (r, 1) (5.1)

and

d

dα

∣∣∣∣
α=x

fα(x) = −f ′x(x) < − 1

1− x2
. (5.2)

(C) For each x ∈ (r, 1) the circular arc Γx intersects the real line at the point −x.

(D) If Γ+
x denotes the endpoint of the arc Γx in the upper half-plane, then x 7→ Γ+

x

is a C∞– function in (r, 1).

Remark 5.2 (The map fx via the Schottky –Klein prime function of Ar).
The proof of Lemma 5.1 can conveniently be based on the Schottky – Klein prime function
ω(z, a) of the annulus Ar, which is defined for all z, a ∈ C∗ := C \ {0} by

ω(z, a) := (z− a)
+∞∏
n=1

(r2nz − a)(r2na− z)

(r2nz − z)(r2na− a)
= (z− a)

+∞∏
n=1

(1− r2nz/a)(1− r2na/z)

(1− r2n)2
, (5.3)
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see [4, formula (14.57)]. It is known [4, Section 5.6] that for each a ∈ Ar, the function

ga(z) :=
1

|a|
ω(z, a)

ω(z, 1/a)
(5.4)

maps Ar conformally onto a circularly slit disk, with ga(a) = 0 and ga(∂D) = ∂D.
The prime function ω : C∗×C∗ → C is holomorphic in both variables and satisfies the

following functional identities, see [4, Section 5.3]:

ω(a, z) = −ω(z, a) , (5.5)

ω(z, a) = ω(z, a) , (5.6)

ω(1/z, 1/a) = −ω(z, a)

za
, (5.7)

ω(r2z, a) = −aω(z, a)

z
, (5.8)

In particular, if x ∈ (r, 1), then (5.6) yields that gx(z) = gx(z). Hence gx(Ar) is symmetric
w.r.t. the real axis. A look at (5.3) reveals that gx(r) = x > 0, and it follows that gx maps
Ar onto D minus a circular arc symmetric w.r.t. R and intersecting the interval (0, 1).
This clearly implies fx = −gx, i.e.

fx(z) = −1

x

ω(z, x)

ω(z, 1/x)
(5.9)

for any x ∈ (0, 1).

Proof of Lemma 5.1. To prove (A), notice that according to (5.9), for each x ∈ (r, 1),
fx extends to a meromorphic function in C∗. By (5.3), the zeroes of ω(·, 1/x) are exactly
the points zk := r2k/x with k ∈ Z. Hence, the extension of fx is holomorphic in Ar,x.
Moreover, (x, z) 7→ fx(z) is of class C∞ in {(x, z) : z ∈ Ar,x, x ∈ (r, 1)} because the
function ω is holomorphic in C∗ × C∗.
Proof of (B). For all x, α ∈ (r, 1), we have

fα(x) = − 1

α

ω(x, α)

ω(x, 1/α)

(5.5)
==== − 1

α

ω(α, x)

ω(1/α, x)

(5.7)
====

1

x

ω(α, x)

ω(α, 1/x)
= −fx(α) .

From this and the fact that α 7→ fα(x) = −fx(α) is C∞ in (r, 1) it follows immediately
that

d

dα

∣∣∣∣
α=x

fα(x) = −f ′x(x) .

Using (5.3) and (5.9), we obtain

f ′x(x) =
1

1− x2

+∞∏
n=1

(1− r2n)2

(1− r2nx2)(1− r2nx−2)
>

1

1− x2
.
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It is worth mentioning that this inequality can be alternatively deduced from the extremal
property of conformal mappings onto circularly slit disks, see Remark 2.2, by comparing fx
with a suitable automorphism of D restricted to Ar.

Proof of (C). See Corollary 3.9 (B).

Proof of (D). Fix x ∈ (r, 1). There exists a unique point rx ∈ ∂D(0, r) such that

fx(rx) = Γ+
x . Recall that fx(z) = fx(z) for all z ∈ Ax,r. Since fx is injective and f ′x(x) > 0,

it follows that Im fx(z) > 0 for some z ∈ Ar,x if and only if Im z > 0. In particular,
Im rx > 0. Note that the mapping properties of fx show that f ′x(rx) = 0, but f ′′x (rx) 6= 0.
Moreover, with the help of the Schwarz Reflection Principle we see that fx is locally
injective in Ar,x \ {rx, rx}.

Therefore, rx is the unique solution to the equation f ′x(z) = 0 in {z ∈ Ar,x : Im z > 0}.
Since in view of (A) the map (x, z) 7→ f ′x(z) is of class C∞, the Implicit Function Theorem
guarantees that this solution rx is also of class C∞ as a function of x. �

6. Proof of Theorem 1

The proof of Theorem 1 is divided into two steps. We will first show that the analogue
of Conjecture 1 fails for certain once-punctured circularly slit disks of the form

Ω = D \ (Γ ∪ {ζ∗}) ,

where Γ is a non-degenerate circular arc centered at the origin and ζ∗ is a point in D \ Γ.
In other words, formula (2.1) does not hold for such choice of Ω. In Section 6.2 we will see
that if the degenerate boundary component {ζ∗} is replaced by a compact set Υ consisting
of a finite number of non-degenerate circular arcs, then it is still possible to show that
formula (2.1) fails provided that Υ lies within a sufficiently small neighbourhood of ζ∗.

6.1. Degenerate case. Fix r ∈ (0, 1) and x0 ∈ (
√
r, 1) ⊂ Ar. Using the notation intro-

duced in Section 5, for x ∈ (r, x0] we let

φx := Tx ◦ fx ◦ f−1
x0

and Γ(x) := Tx(Γx), where Tx(z) :=
z − fx(x0)

1− fx(x0)z
.

Then φx maps the circularly slit disk Ω0 := fx0(Ar) = D \ Γx0 conformally onto D \ Γ(x),
with φx(0) = 0 and φx(∂D) = ∂D. The set Γ(x) is a closed subarc of the circle Tx

(
∂D(0, x)

)
symmetric w.r.t. the real line.

We will see that there exists x∗ ∈ (r, x0) and ζ∗ ∈ (−x0, 0) such that

dist
(
0, ∂(Ω0 \ {ζ∗})

)
< dist

(
0, ∂φx∗(Ω0 \ {ζ∗})

)
. (6.1)

Using this fact, it is easy to show that the formula (2.1) of Conjecture 1 does not hold
for Ω := Ω0 \ {ζ∗} and z := 0. The proof of (6.1) is based on the following lemma.
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Lemma 6.1. Let 0 < r < x0 < 1 be fixed. Then for any ε ∈ (0, x0) there exists x∗ ∈ (r, x0)
and δ ∈ (0, ε) such that

(i) φx∗(ξ) < ξ for all ξ ∈ (−x0,−x0 + δ);

(ii) dist(0,Γ(x∗)) > x0 − δ.

We postpone the proof to the end of this section. Choose any x0 ∈ (
√
r, 1) and, tak-

ing Lemma 6.1 for granted, apply it with ε := x0 − r/x0. By assertion (ii), there exists
ζ∗ ∈ (−x0,−x0 + δ) such that |ζ∗| < dist(0,Γ(x∗)). In combination with (i), this leads to

dist
(
0, ∂φx∗(Ω0 \ {ζ∗})

)
= min

{
|φx∗(ζ∗)|, dist(0,Γ(x∗))

}
> |ζ∗|. (6.2)

Then (6.1) holds because, trivially, dist
(
0, ∂(Ω0 \ {ζ∗})

)
< |ζ∗|.

Now, if formula (2.1) in Conjecture 1 would hold for Ω := Ω0 \ {ζ∗} and z := 0, then

dist
(
0, ∂φx∗(Ω)

)
6 dist

(
0, ∂f0,0(Ω)

)
or dist

(
0, ∂φx∗(Ω)

)
6 dist

(
0, ∂f0,1(Ω)

)
,

with f0,0 = idΩ and f0,1 = fr/x0 ◦
(
z 7→ r/z

)
◦ f−1

x0
. However, the first inequality is the

opposite of (6.1), while the latter one cannot hold because of the choice of x0 and ε > 0;
indeed,

dist
(
0, ∂f0,1(Ω)

)
6 dist

(
0, ∂fr/x0(Ar)

)
=

r

x0

= x0 − ε 6 x0 − δ < |ζ∗|. (6.3)

To facilitate the proof of Lemma 6.1, we will first establish the following statement.

Lemma 6.2. The map x 7→ dist
(
0,Γ(x)

)
is locally Lipschitz on (r, x0].

Proof. We know from Lemma 5.1 that x 7→ Γ+
x , where Γ+

x denotes the endpoint of the
circular arc Γx in the upper half-plane, as well as x 7→ fx(x0) are C∞– functions on (r, 1).
Hence

x 7→ Tx(Γ
+
x ) =

Γ+
x − fx(x0)

1− fx(x0)Γ+
x

is also C∞, in particular locally Lipschitz.
Note that for x ∈ (r, x0) the center of the circular arc Γ(x) is not the origin; in fact, it

belongs to (−1, 0) because fx(x0) > 0. It follows that

(r, x0] 3 x 7→ dist(0,Γ(x)) = |Tx(Γ+
x )|

is indeed locally Lipschitz. �

Now we are ready to prove Lemma 6.1.

Step 1. We first show that

φ′x(ξ)→ 1 uniformly on [−x0, 0] as x→ x0. (6.4)

Indeed, φx ◦ fx0 = Tx ◦ fx and hence

φ′x(ξ) f
′
x0

(f−1
x0

(ξ)) =
(
Tx ◦ fx

)′
(f−1
x0

(ξ)) for all ξ ∈ [−x0, 0].
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By Lemma 5.1 (A), the map (ξ, x) 7→
(
Tx ◦ fx

)′
(ξ) is of class C∞ on the set{

(ξ, x) : ξ ∈ (r2/x, 1/x), x ∈ (r, 1)
}
.

Since Tx0 = idD, it follows that, as x → x0,
(
Tx ◦ fx

)′ → f ′x0 uniformly on [r, x0] =

f−1
x0

(
[−x0, 0]

)
. It only remains to observe that f ′x0 does not vanish on [r, x0].

Step 2. Let x ∈ (r, 1) and denote by

q(x) := φx(−x0) = Tx(−x) = − x+ fx(x0)

1 + fx(x0)x

the point of intersection of Γ(x) with the real line. Lemma 5.1 shows that q : (r, 1) → R
is differentiable with

q′(x0) = −
(
1− (1− x2

0)f ′x0(x0)
)
> 0 and q(x0) = −x0.

Hence, there is x1 ∈ (r, x0) such that φx(−x0) = q(x) < −x0 for all x ∈ (x1, x0). In
particular, for any x ∈ (x1, x0) we can define

δ(x) := sup
{
α ∈ (0, x0) : φx(ξ) < ξ for all ξ ∈ [−x0,−x0 + α)

}
> 0 .

We claim that

lim
x↗x0

δ(x)

|x− x0|
= +∞ . (6.5)

In order to prove this, fix an arbitrary ε1 > 0. Thanks to (6.4), we can find x2 ∈ (x1, x0)
such that φ′x < 1 + ε1 on [−x0, 0] for all x ∈ (x2, x0). Then, for any fixed x ∈ (x2, x0) and
any ξ ∈ [−x0, 0] satisfying ξ 6 −x0 −

(
φx(−x0) + x0

)
/ε1, we have

φx(ξ) = φx(−x0) +

ξ∫
−x0

φ′x(s) ds

< φx(−x0) + (1 + ε1)(ξ + x0)

6 φx(−x0) + (ξ + x0)− (φx(−x0) + x0)

= ξ .

This shows that

δ(x) > −φx(−x0) + x0

ε1

for all x ∈ (x2, x0) ,

and therefore, recalling that x0 = −φx0(−x0), we have

lim inf
x↗x0

δ(x)

x0 − x
>

1

ε1

lim inf
x↗x0

φx0(−x0)− φx(−x0)

x0 − x
=
q′(x0)

ε1

.

Since q′(x0) > 0 as we have observed above and since ε1 > 0 can be chosen arbitrarily
small, the latter inequality implies (6.5).
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Step 3. Since by Lemma 6.2, x 7→ dist(0,Γ(x)) is locally Lipschitz and dist(0,Γ(x0)) = x0,
there exist a constant M > 0 and a point x3 ∈ (r, x0) such that

dist(0,Γ(x)) > x0 −M(x0 − x) for all x ∈ (x3, x0).

In view of (6.5), there exists x∗ ∈ (x3, x0) such that

M(x0 − x∗) 6 min{ε, δ(x∗)} =: δ ,

and with this choice of δ both conditions (i) and (ii) hold by construction. �

6.2. Non-degenerate case. As we have seen in the previous section, for any r ∈ (0, 1)
and any x0 ∈ (

√
r, 1), there exists ζ∗ ∈ fx0(Ar) such that formula (2.1) in Conjecture 1

fails for Ω := fx0(Ar) \ {ζ∗} and z := 0.
We will now use Theorem 4 to show that for any m > 3, there exist m − 2 pairwise

disjoint closed non-degenerate arcs Γ2, . . . ,Γm−1 ⊂ fx0(Ar) located on circles centered at
the origin, such that formula (2.1) fails also for

Ω := fx0(Ar)
∖m−1⋃
j=2

Γj = D
∖m−1⋃
j=1

Γj and z := 0,

where we set Γ1 := Γx0 and Γ0 := ∂D.
To this end we consider m − 2 sequences of arcs (Γjn)n∈N, j = 2, . . . ,m − 1, such

that for each n ∈ N fixed, Γ2
n, . . . ,Γ

m−1
n ⊂ fx0(Ar) are pairwise disjoint closed non-

degenerate arcs located on circles centered at the origin and Υn :=
⋃m−1
j=2 Γjn ⊂ D(ζ∗, 1/n).

Denote Ω0 := fx0(Ar). Further, for each n ∈ N, let Ωn := Ω0 \Υn and denote by f z,jn , with
z ∈ Ωn and j = 0, . . . ,m− 1, the conformal mappings of Ωn onto circularly slit disks, as
introduced in Remark 2.1. The slit disk mappings of the domain Ω0 will be denoted, as
in Section 6.1, by fz,0 and fz,1.

Clearly, f 0,0
n = idΩn . Taking into account that φx∗ is holomorphic at ζ∗, it is easy to see

that, as n→ +∞,

dist
(
0, ∂Ωn

)
→ dist

(
0, ∂ (Ω0 \ {ζ∗})

)
and dist

(
0, ∂φx∗(Ωn)

)
→ dist

(
0, ∂φx∗(Ω0 \ {ζ∗}

)
.

Hence in view of (6.1), for all n ∈ N large enough we have

dist
(
0, ∂f 0,0

n (Ωn)
)

= dist
(
0, ∂Ωn

)
< dist

(
0, ∂φx∗(Ωn)

)
. (6.6)

By relation (3.17) in Theorem 4 applied with Γ := Γ1 = Γx0 , dist
(
0, ∂f 0,1

n (Ωn)
)
→

dist
(
∂f0,1(Ω0 \ {ζ∗})

)
as n→ +∞. Therefore, in accordance with (6.2) and (6.3), for all

n ∈ N large enough we also have

dist
(
0, ∂f 0,1

n (Ωn)
)
< dist

(
0, ∂φx∗(Ωn)

)
. (6.7)

Finally, for each j = 2, . . . ,m− 1, thanks to relation (3.18) in Theorem 4,

dist
(
0, ∂f 0,j

n (Ωn)
)
< dist

(
0, ∂φx∗(Ωn)

)
(6.8)
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provided n ∈ N is large enough. From (6.6), (6.7), and (6.8), it immediately follows that
Conjecture 1 fails for Ω := Ωn and z := 0 if n ∈ N is sufficiently large. This completes the
proof of Theorem 1. �
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