
A personalized walking bus service requiring optimized route decisions: a
real case

Emanuele Tresoldi1

Università degli Studi di Milano - Dipartimento di Informatica

Federico Malucelli

Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria

Maddalena Nonato

Università degli Studi di Ferrara - Dipartimento di Ingegneria

Abstract

We address the design of the lines of a Walking Bus service according to a new paradigm, where

children are picked up at home. The scarcity of accompanying persons together with the limit on

the length of the deviations from the shortest itinerary of each child make the problem different

from the traditional school bus and walking bus design. We propose an arc-based model, a path-

based model tackled by column generation, and a heuristic procedure. Solution approaches are

tested on a set of real and realistic instances. Real instances refer to the case study of a primary

school in Italy.

Keywords: Transportation, Walking school bus, Network design, Capacitated spanning tree,

Column generation

2010 MSC: 00-01, 99-00

1. Introduction

Scientific research over the last 20 years has provided increased evidence in favor of children

active commuting to school (Dijk et al., 2014). In fact, any walking or biking during the trip

from home to school requires some physical activity which provenly i) fights childhood obesity,

which is a major health concern among parents (McDonald et al., 2011); ii) improves reaction to

1Corresponding author: emanuele.tresoldi@unimi.it

Preprint submitted to European Journal of Operational Research July 25, 2019

stress, helping children to cope with cognitive stressors often experienced during the school-day

(Lambiase et al., 2010). Nevertheless, in the developed world most parents drive their children to

school and school gates get congested by traffic. Data support this claim: McDonald & Aalborg

(2009) reports that the percentage of elementary school pupils being driven to school in the US

raised from 18% in 1969 to 55% in 2001, while the share of those walking or cycling has dramatically

decreased, dropping from 41% to 13%. Direct negative consequences include environmental damage

due to traffic pollution near schools, and children getting accustomed to passive travel modes.

Subtler perils were recently uncovered: in Sunyer & et al. (2017) it is proved that exposure to

traffic emissions is associated with children impaired cognitive development due to their impact

on memory. Investigations into parents motivations (Westman et al., 2017) revealed that distance

from school is only partially accountable for modal choice: even parents living within walking

distance elect driving rather than walking as their preferred travel mode due to convenience and

time saving and do not allow children to walk without adult supervision for fear of traffic and

strangers perils.

Several projects have been carried out to reverse this trend (Chillón et al., 2011). The most

effective initiative within such projects is the so-called Walking School Bus also known as Pedibus,

where a group of children is led to school by an adult. Pedibus allows children to enjoy a safe walk

to school at no parental burden. In addition to active travel mode benefits, walking to school with

peers helps children to develop self-confidence, improves social r elations, teaches them pedestrian

safety rules, and increases their independent mobility (Kingham & Ussher, 2007; Mendoza et al.,

2012). A Pedibus service can be realized according to a variety of paradigms, ranging from informal

agreements among neighbors to formal programs sponsored by the school. Trained adults, so called

Pedibus drivers, follow an assigned route, a so called Pedibus line, and make stops at specified times

and locations to collect children (McDonald & Aalborg, 2009). Setting up a long term Pedibus

service is a complex task involving the collaboration of the schoolteachers and management, the

children families, and the municipality. A main step in the service planning is the design of

the lines. These are usually proposed by the organizing committee and grounded on common

sense. In the traditional service, very few stops are located along each line and parents take

children to their closest stop. As lines tend to stay the same, year after year, the service remains

sufficiently attractive as far as lines cross neighborhoods where demand remains high over time,

such as restricted areas with historically high density of school pupils. Other neighborhoods where

demand varies along time or is scarce and diffused are likely to be out of the service reach. Children

live too far from the closest stop of a fixed line, but local demand does not justify the presence

of another fixed line stop. Experience from public transport suggests that sparse demand can

be captured only by a personalized service, where lines adjust to demand. In this framework,

this means to pick up children at home, yielding the Door-to-School Pedibus (D2SP) discussed

in this paper. Since i) the length of the lines must be kept within walkable distance and ii) lines

require drivers but drivers are scarce, the lines design step yields new challenging combinatorial

optimization problems.

This study is part of an ongoing project aimed to establish the D2SP service in a medium size

city in Italy. Previous works (Malucelli et al., 2017, 2018) addressed a simplified version of the line

design problem, targeting the minimum number of lines. Here we take it a step further, introducing

a binding feature of the real application related to the number of drivers and discuss how this

issue impacts on the structure of the lines. We present two problem variants (section 2), discuss

related works (sections 3), provide arc-based (section 4) and path-based mathematical models

and describe how to tailor a column generation solution approach in this framework (section 5).

Ad-hoc heuristics are presented in section 6. We experimentally compare the effectiveness of all

presented approaches on real and realistic instances (section 7), computationally investigate the

trade-off among the service quality (related to the distance walked along the lines), the service cost

(related to the number of drivers) and we draw conclusions (section 8). The list of main symbols

used for variables, sets, and parameters throughout the paper is reported in Tables 1 and 2 in the

supplementary material available online.

2. The door to school walking bus

For safety reasons, in the traditional Pedibus services i) no more than a maximum number

of children per driver is allowed on each line, ii) drivers start their service at line terminals and

reach the school with the group. When designing a line, the number of drivers is fixed a priori by

estimating the maximum number of children that could be collected along the line.

As mentioned, the traditional Pedibus service is suited for serving children in densely populated

neighborhoods (usually within about 1.5 km from school) or those living much further who can

autonomously reach the terminal. This type of service, though, fails in capturing whole the demand

uniformly distributed around school and children who cannot be brought to the Pedibus stop at

the convened time. This is the case for the school tackled in our study, but it extends to many

other cases where the school is located in the historical center of a city, surrounded by residential

neighborhoods.

Formally, the service here proposed can be described as follows. We are given: i) a set of

locations corresponding to the children homes H = {1, . . . , n} and the school s; ii) for each home

i, the number of children to be accompanied to school qi and the walking distance Si from i to s

along the shortest path; iii) the maximum number of children per driver ρ. The Door-to-School line

design problem (D2S) arises in two different variants. In D2S1 the problem is to find the minimum

number of drivers needed to walk all children to school, provided that, for each child, the actual

walked distance does not exceed δ times the shortest one (δ > 1), with δ potentially varying based

on the location of each i. In D2S2 the number of drivers and their locations are given, and the

problem is to design a set of lines serving all the demand so that the maximum over all children of

the ratio of the actual walked distance over the shortest one is minimized.

Beside the main target, a second issue concerns safety. First of all, during preprocessing any

road link not meeting a minimum safety standard for children walkability, such as for example

sidewalk continuity, is discarded from the road network on which shortest paths between locations

are computed. Then, for each pair of locations i and j a weight coefficient denoted as dij is devised

that is inversely correlated to walkability along the shortest walking path from i to j (the highest the

worst). The aim is to favour itineraries featuring safety related traits, such as wide sidewalks, high

curbs, and low speed areas, by penalizing the potential occurrence of negative characteristics, such

as sidewalk uneven surface or traversing congested zones. We consider such measure as additive

on the arcs. Both problems D2S1 and D2S2 can thus include it as a secondary objective so that,

among the solutions with equal primary target value, the most safety aware is selected.

Finally, the main peculiarity that distinguishes the D2S line design problem from other better

known ones, such as the school bus routing problem (Riera-Ledesma & Salazar-González, 2013),

is the limit ρ on the maximum ratio of children per driver together with the possibility of having

multiple drivers acting together on the same line, from terminal to school, or on joint lines upon

merging till destination (joint lines proceed to school as a whole), which makes capacity rise to

a2

b

c

s10
10

10 19

19

3

3 10

Figure 1: Demand at service points a, b, c, and travel time on the arcs. Lines l1 = (a, b, s) and l2 = (c, b, s) require

one driver each and merge at b to share excess capacity and comply with the maximum number of children per driver

requirement.

multiples of ρ according to the current number of drivers. Such feature helps to efficiently handle

cases with qi ≥ 2, which frequently arise, e.g. think of children in the same family or living in

the same building. As such demand cannot be split on different lines, it may turn advantageous

to merge two or more lines into a single one at an intermediate stop. In fact, line merging can

be exploited to decrease the number of required drivers, as shown in the toy example depicted in

figure 1. Consider 3 homes, namely a, b, c, with qa = 2, qb = 3, and qc = 3 children, respectively.

The walking distances between pairs of locations is as follows: cab = cac = cbc = 10, cbs = 10, cas =

ccs = 19. If ρ = 4, it easy to see that any line serving two stops requires at least 2 drivers, 2 drivers

are sufficient to manage the whole demand whether it is served either along a single line or by

two merged lines, whereas a solution made of 2 separate lines would require 3 drivers. In case of

lines with many stops, children at or near terminal are the most affected regarding walking time.

In the example, take line lH along the shortest Hamiltonian path which starts at a, visits c and

b, and ends at s. Users at terminal node a take 30 time units to reach school, thus the ratio of

their traveling time over Sa is 30/19, while the total user traveling time along lH is 150. Consider

instead a solution with one driver leading line l1, which goes from a to s passing through b, and a

second driver leading line l2 which starts at c, merges with l1 in b, and ends at school; the whole

demand is served using 2 drivers as in lH , but the sum of the traveling time of all users is 130 and

users in a, in particular, experience a ratio close to one. Thus, merging effectively allows to reduce

drivers as well as walking time.

Both problem variants D2S1 and D2S2 are modeled on a directed graph G = (N,A), where

i) the set of n + 1 nodes N = H ∪ {0} corresponds to the home locations (client nodes) and the

school s (node 0), ii) the arc set A is complete and each arc (i, j) ∈ A corresponds to the pedestrian

connection between i and j on the street network, once it has been filtered to remove unsafe links,

along the minimum traveling time path. Each arc (i, j) is thus characterized by the travel time cij

of such a path and a weight dij related to its walkability, as discussed before. Each client node i is a

source of qi flow units and 0 is the only sink. Since lines that have merged are not allowed to split,

it follows that a solution is made of a set of paths on G, each path going from a node i to 0 such that

i) each client node belongs to at least one path, and ii) from each client node there is exactly one

outgoing arc. Therefore, the service network is an arborescence centered at node 0 (not necessarily

shaped as a star) whose leaves identify the line terminals and where each client’s flow travels along

the unique path on the tree from its source node to the sink. Since drivers are allowed to join the

line only at terminal stops, their assignment to the tree leaves must be compliant with the number

of children along the path. The network is capacitated, capacity intended as the maximum number

of children allowed on eac arc, but capacity is a variable and not a given parameter. In addition, a

solution is feasible in D2S1 if for each client node i the unique path from i to 0 fulfills the distance

constraint. In D2S2 a solution is feasible if paths start from drivers’ location and the demand

collected along each path is compliant with the given number of drivers. This structure is at the

core of the two mathematical models that we propose in Sections 4 and 5, one based on decisions

on the arcs and the other based on decisions on the paths, respectively.

3. Related works

Few related papers stemming from telecommunication applications tackle tree shaped network

design problems. We mention the most pertaining ones and underline problem differences. Mixed

Integer Linear Programming (MILP) models for the minimum spanning tree with a given number

of leaves are presented in Fernandes & Gouveia (1998) and Gouveia & Simonetti (2017). In terms of

Pedibus, that problem corresponds to ρ = ∞, i.e., one adult per line terminal, with unlimited route

duration and a given number of drivers, though not pre-allocated to specific n odes. The objective

function is a linear function of the arcs in the tree, as in our secondary objective. Another related

problem in telecommunication concerns delay-constrained minimum spanning trees (Salama et al.,

1997). In Pedibus terms it corresponds to choosing the lines along the most walkable network (our

secondary objective function) complying with a fixed maximum walking distance, disregarding the

number of drivers. In multi-level capacitated spanning tree problems arising in local access network

design (Gamvros et al., 2006) the focus is on capacity, since nodes have traffic requirements and

links can be equipped with different types of facilities, each one with its own cost and capacity.

In Pedibus terms it means that drivers could join the line at any stop rather than only at the

terminals.

Regarding the optimization of the home-to-school children itineraries, Porro (2015) solves the

planning of traditional Pedibus lines by a three steps heuristic procedure, previously developed

for the School Bus Routing Problem (SBRP). Exact approaches for the SBRP by MILP models

are deeply discussed in Riera-Ledesma & Salazar-González (2013). Actually, once stops have been

located and children assigned to them, the resulting problem, i.e., an Open Distance-constrained

Capacitated Vehicle Routing Problem (O-D-CVRP), shares many features with D2S. Nevertheless,

the two problems do not coincide. While in VRPs there is a route for each vehicle and vice versa, in

D2S this one to one correspondence may not hold. In fact, a few drivers can be active on the same

line, and upon merging more lines share the final part of their r oute. This issue and its impact on

the arc-based models is further discussed in Section 5.

Two studies address the risk of home-to-school itineraries. In Japan it is quite common for

children living in urban environments to walk to school unescorted. Since safety increases the more

the journey is shared with peers, Tanaka et al. (2016) consider as a measure of risk the distance

of the sub-path that each child walks alone. As individual shortest paths to school are likely to

differ from child to child, sharing part of the itinerary leads to routes with increased distance. A

bi-criteria MILP formulation is proposed which minimizes total risk and total walking distance.

Tanaka et al. (2018) generalize it to allow multiple visits of the same location, a required feature

if working directly on a graph that is a physical representation of the street network.

This work builds upon an arc-based model (Malucelli et al., 2017) and a path-based model (Malu-

celli et al., 2018) developed for the uncapacitated version, where the number of drivers per line

does not depend on the number of children served along the line. In that case, minimizing the

number of drivers corresponds to minimizing the leaves of the arborescence. As a whole, we argue

that no previous work tackles neither D2S1 nor D2S2, which motivates the present study.

4. Arc-based models

The first class of formulations introduces three families of variables associated with each arc

(i, j) ∈ A: i) integer flow variables wij , giving the number of children traveling directly from i to j;

ii) integer variables xij , representing the number of drivers traveling from i to j; iii) binary design

variables yij , equal to 1 if j is the next stop after i along a line, 0 otherwise. Variables associated

with the nodes are: i) integer variables zi ∀i ∈ H representing the number of drivers starting their

duty from i; ii) πi ≥ Si associated with the walking time of the itinerary along the line from i to

0. Moreover, in D2S1 for each i ∈ H the maximum ratio between πi and Si is given and denoted

as δi > 1, and the maximum allowed traveled distance from i to 0 is denoted as ∆i = δiSi. Both

problem versions involve two criteria, therefore we introduce a trade-off parameter ε and merge

them in a unique utility function, where ε is sized to yield a hierarchical objective function in which

walkability is used to elect the highest quality network among those optimizing the other criterion.

A MILP model for D2S1, i.e., minimizing the number of drivers, is reported below.

min
∑

i∈N
zi + ε

∑

(i,j)∈A
dijyij (1)

−
∑

(j,i)∈A
wji +

∑

(i,j)∈A
wij = qi ∀i ∈ H (2)

−
∑

(j,i)∈A
xji +

∑

(i,j)∈A
xij = zi ∀i ∈ H (3)

wij − ρxij ≤ 0 ∀(i, j) ∈ A (4)

yij − wij ≤ 0 ∀(i, j) ∈ A (5)

yij − xij ≤ 0 ∀(i, j) ∈ A (6)

xij −Myij ≤ 0 ∀(i, j) ∈ A (7)
∑

(i,j)∈A
yij = 1 ∀i ∈ H (8)

πj − πi + (∆j − Si + cij)yij + (∆j − Si − cji)yji ≤ ∆j − Si ∀(i, j) ∈ A : i 6= 0 (9)

πi ≤ ∆i ∀i ∈ H (10)
∑

(j,i)∈A
yji + zi ≥ 1 ∀i ∈ H (11)

zi −M(1− yji) ≤ 0 ∀(j, i) ∈ A (12)

wij ∈ Z+
0 , xij ∈ Z+

0 , yij ∈ {0, 1} ∀(i, j) ∈ A (13)

zi ∈ Z+
0 , πi ≥ 0 ∀i ∈ H (14)

Constraints (2-3) are flow conservation constraints of children and drivers, respectively. To-

gether with constraints (11-12) they ensure that drivers are on the line from the start as they join

it only at terminals. Constraints (4), by stating the maximum number of children per driver, are

actually linking the two sets of flow variables. Constraints (5, 6, 7) link the 0-1 variables to the

corresponding flow variables. Constraints (8) establish the arborescence structure of the solution:

a non-terminal node may have multiple inflow arcs, but from each client node there must be exactly

one arc carrying flow out. Inequalities (9), defining the value of distance variables πi, represent

line continuity and subtour elimination constraints. These constraints are an extension of Miller-

Tucker-Zemlin subtour elimination constraints presented by Laporte et al. (1987) for the Distance

Constrained Vehicle Routing Problems (DVRP) and further studied in Kara (2010) and Bektaş &

Lysgaard (2015). Inequalities (10) define the maximum deviation constraints for each child and set

the range [Si,∆i] for variable πi. Constraints (11-12) relate drivers flow to the network structure,

binding the sources of drivers flow to the leaves of the arborescence. Indeed, constraints (11) state

that if a node is a leaf, at least one unit of driver flow must originate from there, while (12) state

that if a node is not a leaf, no driver flow will originate from there. The value of M in constraints

(7) and (12) can be bounded by the number of drivers in any feasible solution for D2S1.

When modeling D2S2, let us introduce: i) the continuous variable Θ representing the maxi-

mum, over all i ∈ H, of the ratio between the travel time from i to 0 along the line and Si, as

stated by (17); ii) an integer parameter ui representing the number of drivers that start their duty

on the line at node i, ∀h ∈ H. In particular, ui becomes the right-hand side of the drivers flow

conservation constraints (16) and allows to rewrite (11-12) as (18-19); iii) the set of terminal nodes

H̄ = {h ∈ H : uh > 0} (in D2S1 H̄ = H as any demand node is a potential terminal); iv) values

Θlb < Θub providing a lower and an upper bound on Θ. D2S2 can be formulated as follows:

min Θ + ε
∑

(i,j)∈A
dijyij subject to (2), (4-9), (13) (15)

−
∑

(j,i)∈A
xji +

∑

(i,j)∈A
xij = ui ∀i ∈ H (16)

πi −ΘSi ≤ 0 ∀i ∈ H (17)
∑

(j,i)∈A
yji ≥ 1 ∀i ∈ H \ H̄ (18)

∑

(j,i)∈A
yji = 0 ∀i ∈ H̄ (19)

Θlb ≤ Θ ≤ Θub ∀i ∈ H̄ (20)

πi ≥ 0 ∀i ∈ H (21)

Note that in D2S2 the value of M in constants (7) can be set to
∑

i∈H ui. Moreover, since the

maximum ratio between πj and Sj over all j ∈ H is now a variable to be minimized, in D2S2 the

value ∆i is set to ΘSi in constraints (10) now (17) and ∆j is equal to ΘubSj in (9). Constraint (20)

is not required for the correctness of the formulation but can provide a tighter linear relaxation.

Lower and upper bounds on Θ can be obtained as follows. Let Θi = minj∈H\H̄(
cij+cj0
ci0

) be the

minimum ratio between the travel time from i to 0 on a line starting from i ∈ H̄ and serving at

least one node j in H \H̄ and Si. Since all nodes must be visited by at least one line then a feasible

value for Θlb is given by maxi∈H̄ Θi. An upper bound on Θ is provided by any feasible solution for

D2S2.

Additional constraints based on the walking distance as in (see Kara, 2010) can be included in

both formulations.

πi ≥
∑

(i,j)∈A
(Sj + cij)yij ∀i ∈ H (22)

πi ≤ Siyi0 + ∆i(1− yi0) ∀i ∈ H (23)

πj ≤ ∆j −∆jyij +min(∆j ,∆i − cij)yij ∀(i, j) ∈ A (24)

Constraints (22) reinforce the lower bound on the value of π. Inequalities (23) force πi = Si when

i is the last client node on the line before s, and may replace (10) in the arc model for D2S1.

Constraints (24) provide an upper bound on the value of π. It is worth noting that, the two-

commodity network flow approach proposed in Baldacci et al. (2004) as well as capacity bounding

constraints for the Capacitated Vehicle Routing Problem (CVRP), first presented in Desrochers &

Laporte (1991) and further studied in the context of Distance and Capacity Constrained Vehicle

Routing Problem (DCVRP) in Kara & Derya (2011), cannot be used in our models since capacity

is not an input parameter but depends on a decision variable. Finally, in both models, the linear

relaxation can be further strengthened by adding i) standard subtour elimination constraints on

the binary design variables yij (Applegate et al., 2006), ii) capacity cuts, as in the CVRP (Lysgaard

et al., 2004) and iii) k-path inequalities (see Kohl et al., 1999).

5. Path-based models

In the path-based formulations, lines are seen as paths along which drivers walk from terminal

to destination. In the models, indeed, a line is represented by a decision variable associated with

the drivers active along that line. Let P be the set of all feasible paths from any node i ∈ H to

0. Let us extend the notation to consider the following subsets of P : let Pi ⊂ P denote the set of

paths visiting node i ∈ H, Pij ⊂ P be the set of paths using arc (i, j) ∈ A, and P̄i ⊂ Pi be the set

of paths whose terminal node is i ∈ H. Moreover, Hp (Ap) stands for the set of nodes in H (arcs

in A) covered by path p while, for each i ∈ Hp, c
p
i0 denotes the time to destination along p.

Path p is feasible with respect to D2S1 if i) it is elementary, ii) for each node i on the path,

cpi0 is no greater than ∆i. Note that the children per driver ratio is not involved in D2S1 path

feasibility, since such requirement can be verified only once potential mergings concerning the path

have been set. Variables wij and yij previously introduced are retained from the arc models with

the same meaning and domain, while we introduce: i) integer variables ξp ∀p ∈ P representing the

number of drivers traveling along path p; ii) binary variables ζi ∀i ∈ H, where ζi = 1 if i is the

terminal stop of a line and 0 otherwise. A path-based formulation for D2S1 is the following.

min
∑

p∈P
ξp + ε

∑

(i,j)∈A
dijyij (25)

−
∑

(j,i)∈A
wji +

∑

(i,j)∈A
wij = qi ∀i ∈ H (26)

ρ
∑

p∈Pi

ξp −
∑

(i,j)∈A
wij ≥ 0 ∀i ∈ H (27)

Myij −
∑

p∈Pij

ξp ≥ 0 ∀(i, j) ∈ A (28)

Mζi −
∑

p∈P̄i

ξp ≥ 0 ∀i ∈ H (29)

∑

(j,i)∈A
yji − (n− 1)(1− ζi) ≤ 0 ∀i ∈ H (30)

∑

(i,j)∈A
yij = 1 ∀i ∈ H (31)

ζi ∈ {0, 1} ∀i ∈ H (32)

yij ∈ {0, 1} ∀(i, j) ∈ A (33)

wij ∈ Z+
0 ∀(i, j) ∈ A (34)

ξp ∈ Z+
0 ∀p ∈ P (35)

As in the D2S1 arc model, the hierarchical objective function (25) is made of the number of

drivers plus a secondary term related to the service network walkability, properly weighted by ε.

Constraints (31) and (26) are retained from the D2S1 arc model, (2) and (8) respectively, and

here reported for reader sake. The children per driver ratio at each node i is enforced by (27).

Constraints (29) activate variable ζi if there is at least (one driver on) a path originating from i.

Constraints (30) state that if at least one line enters i then i is not a terminal, i.e. no driver can

start at i. Constraints (28) link variables ξ and y, stating that any arc traversed by at least one

driver is part of the service network. Constant M in (28) and in (29) can be bounded by the total

number of drivers in any feasible solution for D2S1. Constraints (32-35) provide variable domains.

When dealing with D2S2, the general structure of the D2S1 path-based model can be retained

but for few modifications to account for the different objective function and the additional require-

ments. In particular: i) non-negative variable Θ is retained from the D2S2 arc-based model with

the same meaning and domain; ii) variables ξp are restricted to be binary, equal to 1 if path p is

selected and 0 otherwise. Since in D2S2 drivers and their allocation to terminals are given, the

number of drivers on a path depends on its terminal. Then, a path p is D2S2 feasible if i) it is

elementary, ii) it starts from i ∈ H̄, i.e., the terminal node set, iii) for each node i ∈ Hp, c
p
i0 is no

greater than ΘSi. As in D2S1, path feasibility does not involve the check for the children-per-driver

ratio that depends on potential line mergings. A path-based formulation for D2S2 follows:

min Θ + ε
∑

(i,j)∈A
dijyij subject to (26), (28), (31), (33), (34) (36)

ρ
∑

h∈H̄
uh

∑

p∈Pi∩P̄h

ξp −
∑

(i,j)∈A
wij ≥ 0 ∀i ∈ H (37)

1−
∑

p∈P̄i

ξp ≥ 0 ∀i ∈ H̄ (38)

Θ−
∑

p∈P̄i

Θpξp ≥ 0 (39)

ξp ∈ {0, 1} ∀p ∈ P (40)

where, for each path p ∈ P originating from h ∈ H̄, Θp = maxi∈Hp(
cpi0
Si

) denotes the maximum

walking time ratio over the path nodes. (36) is the hierarchical objective function of the D2S2 arc-

based model, section 4. Constraints (37) enforce the children-per-driver ratio at each node i ∈ H.

Note that the number of drivers at i depends on the terminal node of all the paths traversing i.

Inequality constraints (38) ensure that there is only one path originating from each leaf i ∈ H̄.

Actually, they will be satisfied as equalities due to the arborescence structure. Inequalities (39)

bound Θ from below, being no less than each Θp for all selected path. The value of M in constraint

(28) can be set to |H̄|.
Both path-based models can be strengthened by adding the following constraints, which can

be violated in the linear relaxation.

∑

p∈Pi

ξp ≥ 1 ∀i ∈ H (41)

1− ζi −
∑

(j,i)∈A
yji ≤ 0 ∀i ∈ H (42)

Since the number of paths is exponential in n, the models are addressed by column generation.

Integer solutions are provided by a primal heuristic. As the tailing o

can be rather time consuming

while the application requires limited computing time (about 2 hours on a regular PC), we do not

perform a full branch and price scheme but, once the root node has been solved to optimality,

we execute a partial branching strategy to improve the quality of the incumbent solution. In

the following we present the main building blocks of the solution approach, i.e., the pricing sub-

problem, the partial branching scheme, the primal heuristic procedure and heuristic algorithms to

provide an upper bound.

A Column Generation approach. In our column generation procedure the Restricted Master Prob-

lem (RMP) is given by the linear relaxation (25 - 31, 41, 42) for D2S1 and (36 - 42) for D2S2, and

it is initialized with the columns corresponding to the solution found by the heuristic algorithms

described in section 6. In the pricing sub-problem, we look for the path p associated with the

variable ξp with minimum reduced cost, taking into account the dual representation of the RMP.

Consider a path p(h) originating from h ∈ H̄ (H̄ = H in D2S1) and ending at 0. Let αi, α
′
i, βi, γij ,

µh, µ′h and ωh be the non-negative dual variables associated with constraints (27), (37), (41), (28),

(29), (38) and (39) respectively. The reduced cost of path p(h), here denoted as λp(h), is given by

(43) for D2S1 and by (44) for D2S2:

(D2S1) λp(h) = 1−
∑

i∈Hp(h)

(ραi + βi) +
∑

(i,j)∈Ap(h)

γij + µh (43)

(D2S2) λp(h) = 0−
∑

i∈Hp(h)

(ρuhα
′
i + βi) +

∑

(i,j)∈Ap(h)

γij + µ′h + Θpωh (44)

i

Therefore, for both D2S1 and D2S2, the pricing problem is an elementary shortest path problem

with resource constraints (see Irnich & Desaulniers, 2005) with respect to arc costsγ¯ij =γ ij −
(ραi + βi) for D2S1 andγ̄ ij =γ ij − (ρuhα′ + βi) for D2S2. At each iteration, given the current dual

variables, for each h ∈ H̄ we search for p(h) such that λp(h) < 0 and ci
p
0 ≤ ∆i ∀i ∈ Hp (∆i = ΘubSi

in D2S2). Indeed, the resource monotonically consumed along the path is the time available for

completing the path to destination and each arc (ij) consumes cij . In particular, the residual time

available to reach destination from any internal node j is the minimum, over all the nodes i from

origin to j, of ∆i minus the time needed along the current path from i to j. This pricing sub-

problem has a similar structure to the one in Malucelli et al. (2018). At each iteration of the column

generation procedure, |H̄ | independent pricing sub-problems, one for each node in H̄ , are solved.

Two different procedures are employed: the pricing sub-problem is first tackled heuristically by

15

a simple greedy procedure based on a nearest neighbor search. This procedure is mainly used to

rapidly populate the set P in the first iterations of the column generation. The second procedure

solves the problem exactly using a slightly modified version of the pulse algorithm, presented in

Lozano et al. (2016), whose performance heavily depends on its ability to exploit the constrained

resource, i.e., time, to reduce the search space. For each h ∈ H̄, the greedy procedure builds the

path p(h) incrementally, starting from h. The residual time in h is initialized to ∆h and let ∆′i

denote the residual time at the current node i. Let us introduce FS(i) as the notation for the set

of arcs originating from node i. The arc (ij) in FS(i) with the lowest γ̄ij is chosen and the residual

time is updated as ∆′j = min{∆′i − cij ,∆j}; the search backtracks to i if ∆′j is below Sj and

ends when it reaches 0. If the greedy procedure fails to produce any negative cost path, then the

problem is solved to optimality using the recursive pulse algorithm. The exact pricing algorithm

is executed once for each node h ∈ H̄ taking h as the starting point. Since each search is an

independent process, this step can take advantage from a parallel implementation. We introduced

the following modifications with respect to Malucelli et al. (2018) to speed up the solution process.

In a pre-processing phase we remove from A every arc (i, j) such that cij + Sj > ∆i obtaining

a restricted set of arcs A′. Indeed, as mentioned, ∆i is the maximum time available to reach

destination from i, while cij + Sj is a lower bound when the path has to go through j on its way

from i to s. Then, if (ij) /∈ A′, not only no path will ever go directly from i to j but it will never

visit j if i has already been visited, since walking distances on which coefficients cij are based, by

definition satisfy triangular inequalities. Now, consider the reduced graph G′ = (N,A′): whenever

a node i ∈ H has no incoming arcs the associated variable ζi is fixed to 1.

Graph G′ can be further shrunk considering the value of the dual variables. Remind that all dual

variables are non-negative and that in (43) and (44) αi, α
′
i and βi are subtracted while the γij , µh,

µ′h and ωh variables are summed. Therefore, visiting a location i ∈ H is profitable only provided

that ραi + βi > 0 in D2S1 or ρuhα
′
i + βi > 0 in D2S2, and potentially increases λp(h) otherwise.

We can now define a new node set N ′ removing from H all non-profitable children. The pricing

algorithms are run on the reduced graph G′′ = (N ′, A′).

Now, we can bound from below the reduced cost of any path originating from h ∈ H̄ in order

to discard h as a starting node if that bound is non-negative. The optimistic guess is obtained by

taking an upper bound of the absolute value of the contribution provided by variables αi and βi

16

and a lower bound of the one provided by the γij variables. In detail, consider h and its neighbors

{i : (hi) ∈ FS(h)}. The reduced cost of any p(h) amounts of a part which is a constant or depends

just on h, i.e., 1+µh−(ραh+βh) in D2S1 or µ′h+ωh−(ρuhα
′
h+βh) in D2S2. An optimistic guess of

the rest is given by the minimum γhi over all (hi) ∈ FS(h), plus the sum of the minimum γ̄ij over

all neighboring nodes {i : (hi) ∈ FS(h)} such that γ̄ij < 0 for at least one arc (ij) ∈ FS(i) : j 6= h.

Formally, the bound for D2S1 and D2S2 is:

(D2S1) Λh = 1 + µh − (ραh + βh) + min
(hi)∈FS(h)

{γhi}+
∑

i:(hi)∈FS(h)

min{0, (min(ij)∈FS(i)j 6=hγ̄ij)}

(D2S2) Λh = µ′h + ωh − (ρuhα
′
h + βh) + min

(hi)∈FS(h)
{γhi}+

∑

i:(hi)∈FS(h)

min{0, (min(ij)∈FS(i)j 6=hγ̄ij)}

Finally, if Λh > 0 we do not execute pricing algorithm starting from h.

Primal heuristic procedure. At each iteration of the column generation procedure, given the values

ξ∗p of variables ξp in the optimal solution of the current RMP, a simple primal heuristic procedure

is applied to find feasible solutions. Variables are ordered in descending order by their ξ∗p values

and the set T is initialized to ∅. Then, following this order, a variable ξp is selected and path p is

inserted in T if no other path in T starts from the same terminal.The process ends as soon as the

paths in T cover all the nodes in H. Then we check wether the paths in T define a proper tree,

as well as wether rounding up the ξ∗p values of the selected paths meets the maximum children

per driver ratio. In such a case a new feasible solution is found, the incumbent T ∗ is updated

if necessary, and, in problem D2S2, considering Θ∗ the associated value of variable Θ in T ∗, all

columns in P such that Θp > Θ∗ are discarded.

Partial branching scheme. At the end of the column generation process, if the final RMP solution

is not integer we perform a partial branching strategy in order to find feasible integer solutions.

Note that one such solution exists, as the columns of the heuristic solution belong to P . Now,

consider UB as the cost of the best integer solution found during the column generation process

(the incumbent solution) and LB as the floor of the final fractional RMP solution cost. Let F be,

in D2S1, the set of all integer numbers from UB to LB and, in D2S2, the set of values obtained

subtracting UB−LB
10 from UB until LB is reached. We generate |F | branching nodes, one for each

element f ∈ F . In each branching node we add constraint (45) in D2S1 and constraint (46) in D2S2.

(D2S1)
∑

p∈P
ξp = f (45)

(D2S2) Θ ≤ f (46)

We explore these nodes one by one starting from f = max(F). At each step either we find a better

integer solution, update the incumbent, and iterate on f − 1, or the problem cannot be solved and

the search stops, returning the incumbent. In D2S1,at every iteration the current problem inherits

all additional columns generated so far. Additional ones are potentially generated by resuming the

column generation and solving the linear relaxation taking into account constraint (45). In the

pricing sub-problem the dual variable νp associated with (45) contributes to the reduced cost of

each ξp. In D2S2, at every iteration the current problem inherits only columns representing paths

with Θp ≤ f . In both cases, no substantial modification to the pricing algorithm is required.

6. Heuristic algorithms

Two heuristic algorithms are introduced, one for each problem variant. Both algorithms are

based on a three-step procedure: 1) Initial greedy solution; 2) Local search improvement; 3)

MILP refinement. In particular, for a given number of times, steps 1 and 2 are executed and the

information gathered during this process is forwarded to the MILP model of the associated problem

variant. Each step is detailed in the following.

6.1. Heuristic algorithm for D2S1

In the first step, an initial solution is found by a multi-start greedy method (GR1), as sketched

in Algorithm 1. The idea is to have a set of nodes S ⊂ H, each one acting as the seed of the path

it will belong to. S is randomly generated by sampling the set of nodes H, according to a uniform

distribution, until nS nodes have been selected. nS has been calibrated as discussed in section 7.

At each execution, GR1 generates a set of disjoint paths T that eventually will compose a

feasible walking bus arborescence rooted in 0. The construction phase operates in the outbound

direction from school, i.e. paths originate from 0 and get reversed upon construction. At first

T = ∅, then, at each iteration a new path is computed and added to T , as follows. a node i ∈ S is

sampled and removed from S to act as the first node after 0 of the current path p = (0, i). Path p

is extended by appending one node at a time, if feasible with respect to constraints (10), selected

(and removed) from Q = H \ S according to a nearest neighbor criterion. When the path can no

longer be extended, it is reversed, i.e., the last node in p becomes the line terminal, and added to T .

The procedure iterates until S is empty. If S = ∅ and Q 6= ∅, then the next seed node is sampled

from Q and the process iterates until each client node belongs to a path. Then T is returned.

As each sampling introduces some randomness in the process, each run of the algorithm tends to

yield different solution. Finally, the minimum number of drivers required to cover all paths in T

is trivially computed and the incumbent T ∗ is updated if necessary, while T̄ := T̄ ∪ T collects all

the paths generated so far. In the second step T is improved by a local search procedure (LS). In

detail, LS operates on the terminal node i of each line and applies two different moves consisting

of: i) given two lines, swap their terminal node; ii) remove the terminal node from a line (whose

terminal node is updated) and append it to another line thus becoming its new terminal node.

Let Dp =
∑

i∈Hp
qi denote the demand of all client nodes in p. Note that moves i) and ii) may

reduce the number of drivers. For move ii) it happens when i is moved from path p to r, and

qi ≥ (Dp − ρ bDp/ρc), while qi < (ρ− (Dr − ρ bDr/ρc)). In move i) the same condition must hold

with respect to qi − qj , where i and j are the two swapping terminals. Indeed, such moves are

performed first, if any, before looking for others that only impact on the second objective function

component. The resulting neighborhood size is thus rather small, which allows to perform an

exhaustive search and to run the LS procedure until convergence to a local optimum. T̄ and T ∗

are updated accordingly. Finally, the D2S1 MILP model (1 - 12) is solved on a restricted graph

G′ = (N,A′) where A′ is made of all the arcs belonging to at least one path in T̄ , and with a time

limit on the execution time (see section 7).

6.2. Heuristic algorithm for D2S2

In D2S2 the terminal stops are given and each path is built by iteratively adding extra stops

within the two extremes of the line, i.e., the given terminal and node 0. Formally, consider the

following sets: H̄ the set of terminal nodes as described in section 4; T = {p(i) = (i, 0) ∀i ∈ H̄}
as the set of the paths made of a terminal stop and node 0; Q = H \ H̄ as the set of client nodes

that are not yet part of a path.

Each path p(i) has a residual capacity equal to D̄p(i) = uiρ − Dp(i), and a time ratio Θp(i) given

by the maximum over its nodes j ∈ p(i) of the ratio of the walking time to destination along the

Algorithm 1: Greedy procedure for D2S1.

Input : G, demand vector q, max deviation vector δ, walking time vector c, seed nodes S

Output: T , feasible solution to D2S1.

1 T ← ∅;
2 Q H \ S; // set of non-seed nodes to be served

3 forall the i ∈ S do

4 p (0, i), S S \ {i}; // start a new path

5 if Q = ∅ then
6 T T ∪ p; // add path to T

7 while Q 6= ∅ do // until all nodes are served

8 f False; // flag

9 forall the j : (ij) ∈ FS(i) do

10 if Θ′p∪j ≤ ∆j then // Θ′p∪j computes Θp∪j for path p ∪ j and reversed

11 p append(p, j), Q Q \ j; // update p and Q

12 f True, i j;

13 break;

14 if f = False then // close the path

15 T T ∪ p; // add path to T

16 if S = ∅ ∧Q 6= ∅ then // start path from non-seed

17 i first(Q); // first node in Q assigned to i

18 p (0, i); // new path

19 return T

path and Sj . In particular, at start D̄p(i) = uiρ − qi and Θp(i) = 1. The greedy procedure GR2

iteratively inserts a client node j in Q within a path p(i) right before node 0. One such pair (j, p(i))

is chosen randomly among those that minimally increase Θ = maxi∈H̄Θp(i), so that successive runs

of the procedure are likely to yield different outcomes. In detail, given a path p(i), the candidate

node j is the first one whose insertion does not increase Θp(i) more than a randomized threshold,

computed drawing samples from a uniform distribution between 1 and 1.2 (function Rand(1, 1.2)

in Algorithm 2), provided that qj ≤ D̄p(i). Then, the node-path pair with the minimum increase

over all paths is selected. Each macro-iteration either yields an insertion and iterates or exits the

procedure with failure if Q 6= ∅. The algorithm for D2S2 is sketched in Algorithm 2 where p(i)∪{j}
represents the path obtained by inserting node j in p(i) right before 0. In the second step of the

algorithm, each path in T is improved by a local search procedure whose move swaps two internal

nodes of the path, i.e., any two nodes but 0 and the terminal. Step 1 and 2 are executed several

times in order to generate multiple solutions whose paths are collected in T̄ . In the last step,

the incumbent solution is refined by solving the MILP associated with D2S2 (see 15 - 19) on a

restricted graph G′ = (N,A′) where A′ is made of all the arcs in the paths in T̄ and their reverse.

Again, the solver running time is limited. It is worth mentioning that, although the constructive

procedure does not contemplate line merging, on our benchmark it never failed to provide feasible

solutions, as reported in section 7.

Algorithm 2: Greedy procedure for D2S2.

Input : G, demand vector q, walking time vector c, terminal nodes H̄, residual clients Q,

initial solution T = {p(i) = (i0) ∀i ∈ H̄}
Output: Θ, T

1 Θ 0 ; // solution value

2 while |Q| > 0 do // all demand is served

3 Θ∗ ∞, j∗ ← 0, i∗ 0;

4 forall the i ∈ H̄ do

5 forall the j ∈ Q do

6 if qj ≤ D̄p(i) then

7 Θp Θ(p(i) ∪ {j}, c) ; // compute Θp of p(i) ∪ {j}
8 if Θp < Θp(i) ×Rand(1, 1.2) then

9 break;

10 if Θ∗ > Θp then

11 j∗ j, i∗ i, Θ∗ Θp;

12 if j∗ = 0 then // Manage pathological cases

13 return Θ, T

14 Θ max(Θ,Θ∗); p(i∗)← p(i∗) ∪ {j∗}; Q← Q \ {j∗};

15 return Θ, T

7. Computational results

To assess effectiveness and efficiency of our approaches we performed a test campaign on several

instances. The description of the test beds and a discussion of the obtained results are reported in

the following sections.

7.1. Dataset

Our dataset is made up of three different types of instances:

1. Random instances: 80 instances, n from 10 to 300, qi randomly generated between 1 and

3. The topology of these instances and the weight coefficients dij are randomly generated

using a uniform distribution function in the range [0.01, 0.30].

2. School Bus Problem instances: 72 instances are from Schittekat et al. (2013). We

considered all instances with n ranging from 25 to 200, qi randomly generated from 1 to 3.

We kept the topology as in the original instances but ignored all potential bus stop locations

and generated weight coefficients dij following the same scheme as in the instance set 1.

3. Real-world instances: two real scenarios with n = 32 and n = 116, corresponding to a

total of 35 and 133 children respectively. Data for both scenarios come from the elementary

school Biagio Rossetti in Ferrara (Italy). For each arc (ij) ∈ A weight coefficient dij has

been assumed to be inversely proportional to the pedestrian speed along the path (ij). In

details, given Ωij as the speed on arc (ij) and ΩM as the maximal speed among all arcs

in the graph then dij is equal to 1 − Ωij

ΩM . In these instances all children locations are real

GPS positions. Distances and speeds are computed using OpenStreetMap (OpenStreetMap

contributors, 2017) as real walking distances and speeds. Starting from these scenarios we

have generated 16 instances with different input parameters.

In all instances the nodes are divided in three tiers T1, T2, T3, depending on their distance

from school. In particular, considered Sm and SM as the distance to school from the closest and

from the furthest students and computed ST = (SM −Sm)/3, then the tiers are defined as follows:

T 1 = {i ∈ H : Sm ≤ Si ≤ ST }.

T 2 = {i ∈ H : ST < Si ≤ 2 × ST }.
T 3 = {i ∈ H : 2 × ST < Si ≤ SM}.

For problem D2S1 we considered two values for ρ: 5 and 10 and 4 different values δ′: 0.1, 0.2,

0.5, 1.0. In order to prevent children from walking long distances, as described in section 2, we set

for each node i ∈ H the value of δi taking into consideration δ′ and the tiers. In particular, for

node i in T1 δi = 1 + δ′, for i in T2 δi = 1 + 0.7δ′ and finally for i in T3 δi = 1 + 0.4δ′.

For problem D2S2 we considered the same value for ρ as in D2S1. Moreover, to set the initial

locations of the drivers (parameter u in the model) we computed a lower bound on the number of

required drivers as lb = d
∑

i∈H qi
ρ e and then considering four different coefficients υ: 1.1, 1.2, 1.5,

1.8 we have randomly distributed υlb drivers among all nodes in T3. In the real word scenarios,

we also considered real locations of potential volunteers in order to define the values of u.

The trade-off parameter ε for D2S1 is equal to 0.1 for instances with n ≤ 30 and it is equal to

0.01 for all other instances. With such values the secondary objective function does not interfere

with the primary one since its value is always lower than 1. In D2S2 ε is equal to 10−5 for all

instances, in this way the contribution of the secondary objective is always lower than 0.001.

7.2. Implementation Details

All algorithms presented in this paper have been implemented in Python 2.7 using Pyomo

5.5 as optimization modeling language (Hart et al., 2017) and GUROBI 8.0 as LP an MIP solver

(Gurobi Optimization, 2018). All tests have been carried out using a computer equipped with Intel

i7-6700K processor, 16GB of RAM and running Ubuntu Linux 16.04.

In a preliminary testing phase the best setting for the heuristic algorithms (see sections 6.1 and

6.2) have been identified. In particular, when solving D2S1 we run phases one and two 1 + dn/10e
times for each instance and we use ns = 1 + d

∑
i∈H qi
ρ (1− δ′)e in the greedy procedure. The time-

limit on the third phase is equal to n/2 seconds. The first a nd s econd p hases o f t he heuristic

algorithm for D2S2 have been run twenty times, each time with a different random seed while the

time-limit on the third phase is set to n seconds. The time-limit on the total computational time

is 7200 seconds.

Cuts separation. In compact models described in section 4, subtour elimination constraints, ca-

pacity cuts and k-path inequalities can be included to improve the value of the linear relaxation.

In our implementation, subtour elimination constraints on binary variables yij are separated using

a max-flow-based procedure inspired by Fischetti & Toth (1997). Capacity cuts impose both the

connectivity of the solution and the capacity requirements. In order to separate them we start from

the values x∗ij of the variables xij in the optimal solution of the linear relaxation of the arc-based

model. Then we generate several sets of nodes C using multiple heuristic procedures based on

Naddef & Rinaldi (2002) and Lysgaard et al. (2004) and we check whether

∑

(i,j):i∈C,j 6∈N\C
x∗ij <

⌈∑
i∈C qi
ρ

⌉
(47)

then we impose
∑

(i,j):i∈C,j 6∈N\C
xij >=

⌈∑
i∈C qi
ρ

⌉
(48)

Note that if
⌈∑

i∈H qi
ρ

⌉
= 1 inequality (48) represents a subtour elimination constraint and can also

be imposed on binary variables yij . Finally, for each set of nodes C : |C| ≤ 15 that did not yield

a capacity cut, we look for violated k-path inequalities. We solve the arc-based model (1 - 14) on

a restricted graph where only nodes belonging to set C ∪ {0} are considered (using Θub instead of

∆ in D2S2). Then, we use the value of the first c omponent o f t he o bjective f unction (1) i n the

optimal solution as the right-hand side for (47) and (48). If (47) holds then (48) represents a valid

cut.

In our procedure, all violated cuts found are included in the formulation. Then the new linear

relaxation of the model is solved and we look for violated cuts again. We stop when no effective

cut is found or when a time-limit equal to n in reached.

7.3. D2S1 Results

The arc-based and the path-based approaches have been tested on all 152 instances in test sets

1 and 2 using the solution found by the heuristic algorithm (see section 6.1) as starting point for

the optimization.

The arc-based model is able to achieve the optimal solution in 62 instances, 32 random instances

and 30 school bus instances. Results are particularity good on small instances, indeed all instances

with n ≤ 30 are solved to optimality. However, the optimal solution is found for only 12 instances

with n ≥ 80. In 90 instances the time-limit is reached and the final MIP gap i s on average equal

to 8.71%, the average MIP gap being especially large (> 14%) on instances with n ≥ 100, δ′ ≥ 0.5

and ρ = 10. All such cases are characterized by an initial poor linear relaxation at the root node

whose value does not improve much (less than 1% on average) with the inclusion of additional cuts.

The column generation procedure reaches its natural end on all instances with n ≤ 50 and hits

the time-limit in 58 instances, 33 random instances and 25 school bus instances. The average gap

between the optimal continuous solution of the RMP and the best integer solution found is 9.18%.

However, in almost half of the instances the gap is below 5%. The average number of branching

nodes to explore is 3.73. It is worth noting that on instances with n ≤ 150 the number of branching

nodes is always lower than 9 and that in 44 instances this value is either 0 or 1.

Analyzing the results, it turns out that most of the computational time is spent solving the

RMP or the final M ILP p roblems w hile t he p ricing p hase u sually t akes l ess t han 1 0% o f the

computational time. This behavior is due to the fact that the decomposition is not particularly

efficient since all requirements associated with ρ (students per driver ratio), the structure of the

network, and the children flow are addressed in the RMP.

Comparing the arc-based and the path-based models, there is no ultimate winner. On the one

hand, the arc-based model provides better solutions in 110 instances but the average improvement,

with respect to the column generation, is about 2% and in only 14 instances the improvement is

above 5%. On the other hand, the path-based model is able to find b etter s olutions i n o nly 12

instances but the improvement is on average larger than 7%. All such instances are characterized

by n ≥ 50, δ′ ≥ 0.5 and ρ = 10 that is basically the same type of instances with large final MIP

gap in the arc-based model. Comparing the optimal value of the linear relaxation at the root

node in both methods we can see that the path model dominates when additional cuts are not

considered in the arc-based model. Indeed, it provides a value that is on average 5.32% better and

in 25 instances the difference is larger than 10%. However, the inclusion of the cuts improves, on

average, the linear relaxation of the arc model by more than 3.5%, reducing the gap from the linear

relaxation of the path model to less than 1%. It must be noted that, although in 57 instances cuts

are very effective, increasing the linear relaxation by almost 10%, in 53 instances the inclusion of

cuts does not improve the value of the linear relaxation and in 42 instances no effective cut can be

found.

The behavior of both models is similar on both sets of instances and it is not possible to find

any clear trend that differentiates one set from the other.

The input parameters ρ and δ′ influence t he s olution p rocess i n s imilar w ays. I ncreasing ρ

always makes the problem more difficult to solve and indeed the majority of the instances with

large MIP gap have ρ = 10. These instances are also characterized by the largest pricing time since

many pricing iterations are required for the column generation process to converge. The influence

of δ′ is similar but less noticeable. Higher values of δ′ lead to poor linear relaxations and to pricing

sub-problems that take more time to be solved in the path-based model. In details, the average

pricing time per iteration increases from 9 seconds in instances with δ′ = 0.1 to 68 seconds in

instances with δ′ = 1.0. On average, instances with larger δ′ take longer to be solved but feasible

solutions can be found sooner; this tends to increase the convergence rate of the column generation

(e.g. see results on instances R079, R080, B046, B072, R047, R055, R056 in the supplementary

material available online).

Finally, as regard as the quality of the heuristic algorithm (section 6.1), it provides solutions

that are on average within 5% from the best solution found. On almost half of the instances the

algorithm is able to generate a solution within 1% from the best found. Moreover, whether only the

first c omponent o f t he o bjective f unction i s c onsidered, t he h euristic a lgorithm fi nds th e optimal

solution in 66 instances. These solutions are equally spread among small and large instances with

any value for δ′ and ρ. It is worth noting that the third step of the heuristic is very effective

in enhancing the quality of the solutions. Indeed, it provides an average improvement of about

14% with respect to the solutions found at the end of the second step. This improvement is more

noticeable, about 20%, for large instances with n ≥ 200.

Detailed results are reported in the supplementary material available online. See tables 3, 4,

5 and 6 for results on all instances and figures 1 and 2 f or a graphical comparison o f the solution

quality.

7.4. D2S2 Results

In the testing campaign for D2S2 the arc-based model was able to find the optimal solution in

77 instances with an average computational time equal to 513 seconds. In particular, all instances

with n ≤ 30 have been solved to optimality. In 75 instances the execution reaches the time-limit.

Near optimal solutions (MIP gap lower than 1%) are achieved in 10 instances while in 36 instances

the computation terminates with residual MIP gap larger than 20%. On average, the value of the

linear relaxation is equal to 89% of the best-known solution and in 33 instances the value of the

linear relaxation and the value of the optimal solution are the same. It is worth noting that, on

both sets of instances, very few cuts have been found and that they do not have any impact on

the value of the linear relaxation. Since in all instances there are more adults on the lines than the

minimum required, the capacity constraints are rarely violated in the linear relaxation.

Input parameters υ and ρ greatly affect the difficulty of the problem and consequently the

performance of the arc-based model. On the one hand, the higher is υ the easier is the problem

to solve. With high υ there are more drivers and more, shorter lines. In fact, the model is able to

solve 75% of instances with υ = 1.8 but only 30% of instances with υ = 1.1. On the other hand,

increasing ρ makes the problem more difficult since longer lines have to be taken into account and

less drivers are provided (see 7.1). The arc-based model achieves optimality in 68% of the instances

with ρ = 5 and in only 35% of the instances with ρ = 10. Combining the effect of υ and ρ we

can identify two distinct classes of instances: easy instances with υ ≥ 1.5 and ρ = 5, which are

solved to optimality 87% of the times, and hard instances υ ≤ 1.2 and ρ = 10 in which the optimal

solution is reached in only 21% of the instances.

As regard as the path-based model, the column generation procedure terminates within the

time-limit in 126 instances. The gap between the optimal continuous solution of the RMP at root

node and the best-known integer solution is on average 1.89%. In 47 instances the value of the

linear relaxation is equal to the best-known solution. Analyzing how the computational time is split

between the solution of the RMP and the pricing sub-problems we notice that on average, almost

60% of the computational time is spent by the pricing. It is worth noting that this percentage is

substantially higher in D2S2 than in D2S1. This is mainly due to three reasons, i) in the pricing

algorithm of D2S2 paths basically have no a-priori maximum duration and infinite capacity. We

provide a limitation on the duration using the value of the heuristic solution, but this limitation

can be loose depending on the instance and on the quality of the heuristic procedure. Moreover,

since the value of best Θ is on average 30% larger than the average δ in D2S1 the paths to be

generated are 30% longer in D2S2. ii) The almost flat landscape of bottleneck functions, such as

the main objective function component of D2S2, typically poses a challenge to column generation

based solution approaches. Indeed, in several initial iterations of the column generation process

many columns with negative reduced cost are found but the value of the linear relaxation does

not change. iii) Removing columns with Θp > Θ every time the primal heuristic improves the

incumbent limits the time spent solving the RMP.

Comparing the results obtained by both models, we observed that on average, the arc-based

model achieves better solutions. The value of these solutions is about 4.61% lower than the ones

obtained by solving the path-based model. However, the column generation procedure takes on

average less than 50% of the computational time of the arc-based model. Moreover, in 14 instances

it is able to find a b etter s olution w ithin t he t ime-limit w ith a n a verage i mprovement e qual to

6.64%, and almost all of these instances belong to the hard class.

Finally, the heuristic algorithm finds solutions that are on average within 10% f rom the best-

known one. This gap is smaller, about 5%, on instances with less than 150 nodes while it is about

17% on larger ones. In 22 instances it finds the optimal s olution. In our test, the heuristic procedure

is always able to find feasible solutions after the first two st eps. These solutions are greatly enhanced

in the last step where the MILP model is solved on a restricted graph: the average improvement

from step two is 40.51%. On 22 instances the solution improves by more than 60% and only on

5 instances the third step has little effect on the solution quality (improvement below 1%). It is

worth noting that, although the arc-based model is largely influenced b y i nput p arameters, the

heuristic algorithm is not and indeed the quality of the solutions found is not much sensitive to

changes in υ and ρ.

Detailed results on all instances are reported in the supplementary material available online.

See tables 7, 8, 9 and 10 for a complete list of the results and figures 3 a nd 4 f or a graphical

comparison of the performance achieved by the heuristic algorithm, the arc-based model and the

column generation procedure on test sets 1 and 2.

7.5. Results on Real-Word Scenarios

In order to test our approach in a practical context, we run our algorithms on test set number

3 whose instances come from real-world scenarios.

From a pure performance point of view the behavior of the algorithms on test set 3 is very

similar to the one on test sets 1 and 2. The same can be said on the average quality of the

solutions found.

Results for D2S1 show that, in designing a Pedibus service network, the value of δ′ is the most

critical one and that in small networks changing ρ is almost not influential. Indeed, with a small

δ′ setting up a Pedibus network may require more than twice as many drivers as the theoretical

minimum amount lb. Increasing δ′ from 0.1 to 1.0 reduces the number of drivers by almost 40%.

This increase in the value of δ ′ corresponds to an increase in the maximum allowed deviation from

the shortest path equal to 700 meters for children in T1. However, even with δ′ = 1.0 no student

in our solutions walks more than 2.4 km.

Figure 2: Instance W007, lines red and green merge at node 3, lines gray and purple merge at node 31

Figure 2 shows the solution for D2S1 on a real-world instance with 32 nodes (35 children, 2

children in locations 5, 8 and 23), δ′ = 1.0 and ρ = 5. Nine drivers are used, one for each line.

The initial locations of the drivers are marked by black nodes. Two line mergings are performed

to reduce the second component of the objective function: the red line merges with the green one

at node 3 while the gray and the purple lines join together at node 31.

For D2S2 we performed two distinct batches of tests, one with drivers randomly located over the

nodes in T3 and another using real locations of potential volunteers. Performance-wise differences

between the two tests are minimal. On both tests the MILP model was able to reach the optimal

solution in all instances with n = 32 and in instances with n = 116 and υ ≥ 1.5. The column

generation procedure terminates within the time-limit in all instances but one.

Looking at the quality and structure of the solutions, the differences are more evident. The

position of drivers is crucial in order to achieve a good quality solution, in particular when only few

drivers are available (υ ≤ 1.5, ρ = 10). The improvement in the first component o f the objective

function Θ is on average 30% when drivers are selected in T3. This may lead to situations, like

instance W004, where, when volunteers’ locations are given, children walk on average 2.6 Km,

while with drivers located in T3 they walk only 1.4 Km on average.

Figure 3: Instance W004: real volunteers’ locations Θ = 3.22.

Figure 4: Instance W004: drivers selected in T3 Θ = 1.73.

A comparison of the results obtained on instance W004 is depicted in Figures 3 and 4. In this

instance there are 5 drivers located on the black nodes on the map, υ = 1.2 and ρ = 10. Three of the

volunteers live within 700 from school (T1) and so they must take a long detour from their shortest

path in order to pick up children on their way to school. This, considered the min/max structure of

the objective function, has a detrimental effect on the yellow line. Indeed, as its driver lives about

1.9 km from school and Θ = 3.22, the driver could walk up to 6.2 Km without any impact on the

objective function. Clearly, in order to provide an acceptable solution for this instance either more

drivers or different starting locations must be considered. If randomly selected drivers in T3 are

used instead of volunteers, the solution (see Figure 4) is far more reasonable; indeed, as Θ = 1.73,

the driver of the yellow line will not walk more than 3.2 Km.

Finally, it is worth noting that heuristic solutions are on average within 10% from the best

ones. This corresponds to an increase of less than 100 meters in the average walking distance and

it is obtained within a fraction of the computational time required by both models.

The complete list of the results achieved on real-world scenarios for D2S1 and D2S2 is reported

in the supplementary material available online (see tables 11, 12 and 13).

8. Conclusions

This paper studies the problem of designing walking bus lines according to a new paradigm. The

walking bus analyzed here is a proposal born within a project funded by the Italian Environment

Department to shift rides from private cars to more sustainable modes in the trip from home

to school. The idea diverges from the classical walking bus services since it produces Door to

School itineraries that can potentially attract more users. The benefit o f having efficient Door to

School lines is twofold. In the short term, it reduces traffic congestion in front of the school, with

positive effects on safety and health. In the long term, it induces a behavioral change and raises

the sustainable mobility awareness of next generation citizens.

We showed that the peculiarities of the problem make it different from previously studied

problems, such as the school bus line planning. The two variants of the problem take into account

specific practical settings arising from the case s tudy. In one case the main objective is minimizing

the number of drivers, which is a major concern when the cost for the accompanying persons is in

charge of the school administration. Since it is a walking service, there is an explicit constraint on

the maximum deviations from the walking time of the shortest itinerary for each child. The second

case arises when the drivers are volunteers. Thus, the drivers and their starting locations are given

and the objective is to minimize the maximum deviation from the shortest path walking time. In

both variants, the feature that makes the problem interesting from a combinatorial optimization

point of view is the upper bound on the number of children per driver. Indeed, this constraint

makes it profitable to merge lines at some intermediate point and join residual capacity.

In order to exploit this feature we proposed three different approaches. The first is an arc

model that is fed to a commercial solver. The second one is a path model that is tackled with

a column generation approach. The third one is a heuristic procedure that identifies a subgraph

on which the arc model can be quickly solved. While it has been possible to apply all the three

approaches to the first variant of the problem, the min-max nature of the objective function of the

second one makes the pricing sub-problem particularly inefficient to be solved, as confirmed by the

poor performance of the column generation based solution approach.

The outcomes of the experiments are interesting. Though there is not a clear dominance

regarding solution quality, the application setting could dictate the best solution strategy to adopt

according to the available computing time. Every school year the lines should be pre-planned to

forecast the need for drivers. In that case running time is not that critical and a few hours can

be devoted to the search for a good solution. However, the Door to School service tends to be

extremely dynamic regarding children and drivers as well. It could be necessary to recompute the

lines on a daily base, when real time information becomes available. In such a case the heuristic

approach provides a flexible and effective tool to recompute the lines affected by the changes. Not

only demand and available drivers may vary, though; updated information concerning walkability

may arise from children and drivers reporting changing safety conditions along the lines, thus

triggering a modification on the walkability parameters of the mathematical models. This implies

that either a general solution is re-optimized to consider the changes, or new lines are recomputed

from scratch. Having a variety of methods allows the planner to choose each time the most suitable

one, knowing the size of the problem, the actual demand, and the available human and material

resources.

References

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The Traveling Salesman Problem: A Computa-

tional Study . Princeton University Press. ISBN: 9780691129938.

Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for the capacitated vehicle routing

problem based on a two-commodity network flow formulation. Operations Research, 52 , 723–738.

Bektaş, T., & Lysgaard, J. (2015). Optimal vehicle routing with lower and upper bounds on route durations.

Networks, 65 , 166–179.

Chillón, P., Evenson, K. R., Vaughn, A., & Ward, D. S. (2011). A systematic review of interventions for promoting

active transportation to school. International Journal of Behavioral Nutrition and Physical Activity , 8 .

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the miller-tucker-zemlin subtour elimination

constraints. Operations Research Letters, 10 , 27 – 36.

Dijk, M. L. V., Groot, R. H. D., Acker, F. V., Savelberg, H. H., & Kirschner, P. A. (2014). Active commuting

to school, cognitive performance, and academic achievement: an observational study in dutch adolescents using

accelerometers. BMC public health, 14 .

Fernandes, L. M., & Gouveia, L. (1998). Minimal spanning trees with a constraint on the number of leaves. European

Journal of Operational Research, 104 , 250 – 261.

Fischetti, M., & Toth, P. (1997). A polyhedral approach to the asymmetric traveling salesman problem. Management

Science, 43 , 1520–1536.

Gamvros, I., Golden, B., & Raghavan, S. (2006). The multilevel capacitated minimum spanning tree problem.

INFORMS Journal on Computing , 18 , 348 – 365.

Gouveia, L., & Simonetti, L. (2017). Spanning trees with a constraint on the number of leaves. a new formulation.

Computers & Operations Research, 81 , 257 – 268.

Gurobi Optimization, L. (2018). Gurobi optimizer reference manual. Last visited 2018-10-31.

Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hackebeil, G. A., Nicholson, B. L., & Siirola, J. D.

(2017). Pyomo–optimization modeling in python volume 67. (2nd ed.). Springer Science & Business Media. ISBN:

9781461432265.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers,

J. Desrosiers, & M. M. Solomon (Eds.), Column Generation (pp. 33 – 65). Boston, MA: Springer US.

Kara, I. (2010). On the millertuckerzemlin based formulations for the distance constrained vehicle routing problems.

AIP Conference Proceedings, 1309 , 551–561.

Kara, I., & Derya, T. (2011). Polynomial size formulations for the distance and capacity constrained vehicle routing

problem. AIP Conference Proceedings, 1389 , 1713–1718.

Kingham, S., & Ussher, S. (2007). An assessment of the benefits o f t he w alking s chool b us i n c hristchurch, new

zealand. Transportation Research Part A: Policy and Practice, 41 , 502 – 510.

Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M., & Soumis, F. (1999). 2-path cuts for the vehicle routing

problem with time windows. Transportation Science, 33 , 101–116.

Lambiase, M., Barry, H., & Roemmich, J. (2010). Effect of a simulated active commute to school on cardiovascular

stress reactivity. Medicine & Science in Sports & Exercise, 42 , 1609 – 1616.

Laporte, G., Nobert, Y., & Taillefer, S. (1987). A branch-and-bound algorithm for the asymmetrical distance-

constrained vehicle routing problem. Mathematical Modelling , 9 , 857 – 868.

Lozano, L., Duque, D., & Medaglia, A. L. (2016). An exact algorithm for the elementary shortest path problem with

resource constraints. Transportation Science, 50 , 348 – 357.

Lysgaard, J., Letchford, A., & Eglese, R. (2004). A new branch-and-cut algorithm for the capacitated vehicle routing

problem. Math. Program. Ser. A, 100 , 423 – 445.

Malucelli, F., Nonato, M., & Tresoldi, E. (2017). Optimization based planning of pedibus lines: an arc based

approach. Transportation Research Procedia, 27 , 760 – 767.

Malucelli, F., Tresoldi, E., & Nonato, M. (2018). Designing pedibus lines: a path based approach. Electronic Notes

in Discrete Mathematics, 69 , 149 – 156.

McDonald, N. C., & Aalborg, A. E. (2009). Why parents drive children to school: Implications for safe routes to

school programs. Journal of the American Planning Association, 75 , 331 – 342.

McDonald, N. C., Brown, A. L., Marchetti, L. M., & Pedroso, M. S. (2011). U.s. school travel, 2009: An assessment

of trends. American Journal of Preventive Medicine, 41 , 146 – 151.

Mendoza, J. A., Watson, K., Chen, T.-A., Baranowski, T., Nicklas, T. A., Uscanga, D. K., & Hanfling, M. J. (2012).

Impact of a pilot walking school bus intervention on children’s pedestrian safety behaviors: A pilot study. Health

& Place, 18 , 24 – 30. Active Living Research.

Naddef, D., & Rinaldi, G. (2002). Branch-and-cut algorithms for the capacitated vrp. In The Vehicle Routing

Problem chapter 3. (pp. 53–84).

OpenStreetMap contributors (2017). Planet dump retrieved from https://planet.osm.org. Last visited 2018-10-31.

Porro, P. (2015). Sviluppo di un algoritmo di ottimizzazione dei percorsi in un servizio Pedibus. Master’s thesis

Politecnico di Milano Milano, Italy. Last visited 2018-10-31.

Riera-Ledesma, J., & Salazar-González, J. J. (2013). A column generation approach for a school bus routing problem

with resource constraints. Computers & Operations Research, 40 , 566 – 583.

Salama, H. F., Reeves, D. S., & Viniotis, Y. (1997). The delay-constrained minimum spanning tree problem. In

Proceedings Second IEEE Symposium on Computer and Communications (pp. 699 – 703).

Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., & Springael, J. (2013). A metaheuristic for the

school bus routing problem with bus stop selection. European Journal of Operational Research, 229 , 518 – 528.

Sunyer, J., & et al. (2017). Traffic-related air pollution and attention in primary school children: Short-term

association. Epidemiology , 28 , 181 – 189.

Tanaka, K., Miyashiro, R., & Miyamoto, Y. (2016). A bi-objective optimization model for designing safe walking

routes for school children. Geographical Analysis, 48 , 448 – 464.

Tanaka, K., Miyashiro, R., & Miyamoto, Y. (2018). A layered network formulation for the safe walking route design

problem. Journal of Advanced Mechanical Design, Systems, and Manufacturing , 12 .

Westman, J., Friman, M., & Olsson, L. (2017). What drives them to drive? Parents’ reasons for choosing the car to

take their children to school. Frontiers in psychology , 8 .

